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EXECUTIVE SUMMARY

This document presents a comprehensive overview of the all research and development activities,
under Work Package 5, related to the initial iteration of NebulOuS technology. This technology aims
at delivering dedicated functionality that enables autonomous application reconfiguration support in
ad-hoc cloud computing continuums (i.e., dynamically changing hosting environments that involve
multi-cloud, fog and edge resources).

First, it outlines the creation of an advanced monitoring system for Fog-enabled applications, based
on distributed complex event processing, which is crucial for maintaining optimal application
performance and resource allocation according to the defined Service Level Objectives (SLOs). In
addition, this deliverable reports on the development of an Al-driven anomaly detection for edge
computing that combines immunological algorithms with machine learning for focusing on network
security aspects. It also covers an interoperable 10T/Fog data management mechanism and an
orchestration tool for efficient data stream handling across the cloud continuum. Furthermore, it
introduces dedicated NebulOuS components for autonomous application reconfigurations in
dynamic cloud environments. Last, we report on an asynchronous message-based API for enhanced
communication and interoperability within the NebulOuS Meta-0S system.

Funded by
the European Union www.nebulouscloud.eu
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1 INTRODUCTION

The document provides a detailed overview of the research and development activities associated
with Work Package 5. It focuses on the NebulOuS technology that aims to enhance autonomous
application reconfiguration support in ad-hoc cloud computing continuums.

To begin with, it delves into the development of an advanced monitoring system designed to efficiently
handle the oversight of Fog-enabled applications, ensuring robust monitoring data collection and
processing. NebulOuS introduces a highly effective, and resilient monitoring system designed to offer
insightful feedback on the quality of service (QoS) metrics associated with the execution of
applications within cloud continuums. This is essential for enabling the automated application
reconfiguration support, ensuring optimal performance and resource utilization, according to defined
Service Level Objectives (SLOs). Therefore, NebulOuS shall offer a monitoring mechanism based on
distributed complex event processing (DCEP) that relies on an unlimited number of distributed
monitoring agents that formulate a dynamic and hierarchical network of complex event processing
agents.

Following this, the document details the research and development of an Al-driven anomaly detection
mechanism at the edge to ensure the application QoS according to the agreed service level agreement
(SLA). This framework is specialized for handling time series data and other data types, incorporating
advanced machine learning techniques to focus and tackle complex security challenges in diverse
environments. Therefore, we explore the potential of combining the immunological algorithm with
other machine learning techniques towards developing a hybrid approach that harnesses the
strengths of both bio-inspired and traditional methods.

Moreover, as part of WP5, we report on the work on an interoperable [oT/Fog data management
mechanism that is able to efficiently manage and propagate applications data streams over a
dispersed network of cloud computing continuum resources. This approach also involves an [oT data
processing pipelines orchestration tool in order to identify and manage data sources, transformation
operations and data consumers in a unified way. This may lead to the capability of defining SLOs that
are more data streams management oriented and therefore drive the potential application
reconfigurations that may be required.

Furthermore, this deliverable explores innovative solutions that facilitate autonomous application
adjustments in the dynamic environment of cloud computing continuum, by leveraging the previously
mentioned mechanisms, and allowing for seamless application reconfigurations and optimizations
across the computing continuum. Systems like the introduced SLO Violation Detector will exploit
monitoring data to consider the potential severity of imminent or potential SLO violations in order to
enact application reconfigurations.

Last, the document highlights the implementation of an asynchronous message-based Application
Programming Interface (API). This API is instrumental in orchestrating effective communication and
interoperability among the various components of the NebulOuS meta-0S system, ensuring a cohesive
and efficient technological infrastructure.

2 EFFICIENT MONITORING OF FOG-ENABLED APPLICATIONS

In the fast-evolving world of cloud computing, the tasks of monitoring and efficient metrics analysis
for triggering application reconfigurations are undeniably intricate. These tasks demand advanced
tools and methodologies such as Complex Event Processing (CEP) systems which excel in digesting
and processing a multitude of heterogeneous event streams [1] below. Traditional centralized CEP
approaches often necessitate substantial bandwidth and computational power usage in order to

Funded by
the European Union www.nebulouscloud.eu
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aggregate monitoring metrics, while they tend to suffer from a lack of resilience and scalability due
to a single point of failure. This is true, especially when dealing with dispersed health status
monitoring data. To mitigate such issues, distributed CEP architectures are gaining momentum,
particularly in dynamic settings like (ad-hoc) cloud computing continuums [2],[3]. These
architectures offer a more resilient and scalable solution by decentralizing the processing of
monitoring workloads. However, there's a caveat: such systems are typically reliant on simpler and
static or predefined infrastructures. This reliance inherently restricts their ability to uncover
potential reconfiguration opportunities across diverse and dynamic environments, including multi-
cloud, fog and edge computing resources. This limitation poses a significant challenge in fully
leveraging the distributed nature of cloud continuums to optimize application performance and
resource utilization.

As part of Task 5.1- Efficient, Secure and Fault-tolerant Monitoring of Fog-enabled applications,
NebulOuS provides an efficient, lightweight, fault-tolerant monitoring mechanism for catering
feedback on QoS aspects of application execution in cloud continuums. This feedback is required for
automatically reconfiguring application placement and for determining SLO and SLA violations. As
already mentioned, due to the geographical dispersion and heterogeneity of the resources used for
application deployment in modern cloud continuum applications, a centralised monitoring
mechanism is insufficient. Therefore, NebulOuS shall offer a monitoring mechanism based on
distributed complex event processing that relies on an unlimited number of distributed monitoring
agents that formulate a dynamic and federated network of complex event processing agents. These
agents are appropriate for the lightweight and advanced processing of real-time monitoring streams,
by automatically following the decided topology of application deployment in the cloud continuum.
To reduce the amount of monitoring data entering the NebulOuS platform, the monitoring
mechanism assesses the health status of resources (e.g, to detect failed ones) and actively seeks
reconfiguration opportunities. This monitoring mechanism will be presented in the following
subsections of chapter 2, building on top of our previous work on the Event Management System
(EMS) [4].

2.1 APPROACH

In NebulOuS, as part of Task 5.1, we significantly extended the EMS system [4] to enable event
processing capabilities that among others may reach the edge of the network. Specifically, the
NebulOusS fault-tolerant monitoring mechanism introduces a multi-layered distributed complex event
processing architecture that automatically follows the cloud and edge infrastructural resources
(according to the decisions of the Optimiser) in a fault-tolerant and secure way.

EMS was first introduced as a specialized monitoring framework for multi-cloud applications. EMS's
decentralized approach presented significant advantages for multi-cloud environments, through a
hierarchical filtering approach that effectively overcomes potential bottlenecks and reduces excessive
network bandwidth usage. This means that no single monitoring server should be used to aggregate
and process infrastructure and application monitoring health data from dispersed VMs. With a
network of agents responsible for collecting and processing data from different cloud sources and
vendors, EMS provides valuable insights for informed decision-making, when it comes to
reconfiguring multi-cloud applications.

Funded by
the European Union www.nebulouscloud.eu
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EMS was enhanced, within the Horizon Morphemic! project, imbuing the system with self-healing
capabilities. This was a significant improvement for bolstering the resilience of this monitoring
service across a dispersed number of cloud resources that may span multiple cloud service vendors.
These self-healing capabilities are anchored in a decentralized EMS topology orchestration, named as
the federated EMS. The approach introduced an innovative monitoring agent clustering methodology.

Instance-level SRR & ey ] : ! B <

VM1 VM2 VM3 VM1 VM2

EPA
Agent Manager- [ HAgent Manager - - f\qeml‘danager-

Event Broker Event Broker Event Broker
Monitoring Monitoring i Monitoring Monitoring
7st-je\{el ,,,,, Probes AN I o | _Probes A Probes o Probes
CEP
2nd-level : = =
CEP | @ Alrgen vanage [ VM {lsemvancoe | N
@ € Event Broker T EientBroker
Monitoring P
Probes Monitoring
Probes..
7 Agents
GlOba/'/eve/ CEP il Configurator | | ---Y..=o LY T ..

L ' > Event Broker

j Monitoring

Figure 1: Federated Event Management System (EMS)

In NebulOuS we follow and extend accordingly this monitoring approach, where an Event Processing
Manager (EPM), and several Event Processing Agents (EPAs) autonomously manage their monitoring
roles, i.e., the most resource capable node autonomously undertakes the role of the “local” aggregator
of monitoring data. Furthermore, this monitoring approach can be dedicated to Kubernetes-based
deployments over cloud computing continuums. As presented in Fig. 1 the EMS monitoring roles
correspond to:

Instance-level CEP: referring to collecting monitoring metrics from VMs or Kubernetes pods
involving mainly the necessary infrastructure, and application-level monitoring probes, along
with the metrics propagation to the next level processing node;

1st-level CEP: referring to host level monitoring capabilities that “follow” the deployment of
application component on cloud, fog or edge resources’ virtual machines and/or Kubernetes
pods to aggregate monitoring metrics only from the hosting resource;

2nd, 3rd - Jevel CEP: referring to different levels of monitoring metrics aggregation and
processing that make sense per application deployment. These levels may abide to cloud

1 https: //www.morphemic.cloud/
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topologies (i.e., cloud availability zone, region or cloud provider) or even be extended to
follow meaningful geographical (for the application) areas (i.e. fog and edge locations).

e Global-level CEP: referring to NebulOuS hosting resource where SLOs should be detected to
trigger application reconfiguration cycles.

Also, Fig. 1 depicts conceptually the internal structure of an EPA that comprises the following
capabilities:

e Monitoring Probes: referring to a subcomponent that is able to measure and publish
important for the application QoS, telemetry data;

e Event Broker: referring to an asynchronous message bus that follows the publish/subscribe
paradigm to efficiently propagate metrics captured as events throughout the monitoring
topology as required;

e CEP:referring to a powerful complex event processing engine that can identify event patterns
over signalled time or events windows. The event patterns detected, consolidate composite
events, captured as intermediate findings between raw events that may lead to the detection
of SLO violations;

e Agent Manager: referring to the necessary functionality for configuring each EPA (i.e., which
metrics to monitor and with what sample rates, what event patterns to detect, to which event
aggregator should the composite events be propagated to, etc.). This manager also introduces
the necessary self-healing functionality, allowing several EPAs to be self-organised in clusters
of monitoring nodes, equipped with the capability to replace any failing node or cope with
any intermittent connectivity issues.

e Agents Configurator (available only in the EPM): referring to the capability of securely
connecting to cloud continuum resources that are to be used for deploying application
components. This secure connection allows NebulOuS to install all the necessary
subcomponents to EPAs (as mentioned above).

Therefore, EMS is a significant part of the NebulOusS platform as it is able to autonomously deploy and
federate an unbounded set of agents, capable of aggregating valuable infrastructure and application
level monitoring metrics and gradually propagating them among the different layers of the topology
to detect and publish SLOs with the least network bandwidth used, possible. Furthermore, these
agents can autonomously orchestrate responses to node failures or any other intermittent
connectivity issues, thereby enhancing the overall resilience of the NebulOuS monitoring capabilities.

2.2 EMS CONCEPTUAL ARCHITECTURE

EMS is responsible for establishing a network of agents that is called Event Processing Network (EPN)
that collect telemetry data from monitoring probes. Using advanced complex event processing
techniques, these monitoring data are filtered and analysed in order to detect SLOs while minimizing
the bandwidth used. To properly form this network of monitoring agents, EMS needs to be aware of
the application requirements with respect to the desired QoS. As mentioned in D2.2 [5] NebulOuS
uses three declarative models for describing cloud continuum applications placement and
reconfiguration requirement. Specifically, it uses:

e the Open Application Model as the de-facto standard for describing hyper-distributed
applications;

e a model based on AMPL for describing the application components placement constraints
and optimisation goals;

e a custom model (based on the metric model from CAMEL [6]) for capturing the QoS
requirements associated with hyper-distributed applications and for addressing their
monitoring aspects.
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The third model, also known as NebulOuS Metric Model, is digested by EMS in order to specify the
necessary monitoring data and their processing required per application component, based on the
predefined Service Level Objectives (SLOs). EMS is a sophisticated system designed and extended for
monitoring cloud continuum applications. It functions as a distributed network, with a central
component called EPM (part of the NebulOuS platform) and multiple agent components known as
EPAs. Therefore, the core EMS functionalities include the:

e analysis of the NebulOuS Metric Model, given by the application DevOps, in order to extract
the required monitoring information per component along with the processing needed.

e secure connection and deployment of EPAs to each application node (i.e., cloud, fog, edge)
that hosts an application component (to be monitored).

e secure configuration of each EPA regarding the monitoring sensors that should be used and
the complex event processing rules that should be deployed, according to the application
component(s) that will be hosted on the same node (according to the decisions of the
NebulOuS Optimiser).

Next, the fine-grained core functionalities of EMS, initially provided in [7], are described along with
the necessary extensions required to cope with the heterogeneity and dynamicity of cloud
continuums. We provide the high-level architectural views of both EPM and EPAs through UML
component diagrams depicted in Figures 2 and 3. We begin with the architectural details of EPM that
include several sub-components:

e Metrics Model Translator: provides a two-step process involving the analysis of the
NebulOuS Metric model to produce a multi-root Directed Acyclic Graph (DAG) and also the
Generation of EPLZ rules and other related information. The extensions of this sub-
component involve besides the change in the supported domain specific language (DSL) used
as input, the underlying object store used, and the ability to deploy multiple complex event
processing rules to analyse monitoring metrics coming from multiple components hosted on
the same node (e.g, same VM but different Kubernetes pods). In addition, two
subcomponents are included:

o Validator: a dedicated service that verifies all the aspects of the received metric
model syntax (i.e., not missing core model constructs, all defined raw metrics
correspond to available/defined metric sensors etc.)

o Persistence: an appropriate service that persists the incoming metric model and all
the exported configuration data (i.e., multi-root DAG, EPL rules) into the underlying
file system.

e C(lient Installer: provides the necessary instructions on how to install an EPA to the
application nodes, defined in the application deployment model. It comprises three sub-
components, the Configurator and two Installers:

o Configurator: prepares the EPAs configuration that includes metrics to collect,
metric processing rules (as CEP rules), propagation rules, and also neighbouring EPAs
(for clustering), cluster credentials etc.

o VM Installer: is used to deploy EPAs in application VMs. It securely connects to the
new application VMs using SSH protocol, and executes a number of predefined jobs,
captured as sets of OS-specific instructions. These instructions coincide to the

2EPL corresponds to the Event Processing Language used by the ESPER CEP engine (https://www.espertech.com/esper/) that is
deployed along with each EPA.
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installation and configuration of the EPA, and the Monitoring Probes that correspond
to a Netdata3 agent.

o Kubernetes (K8S) Installer: is used to deploy EPAs in an application Kubernetes
cluster. In this case, it contacts Kubernetes API server and deploys EPAs and
monitoring probes as a Kubernetes daemonsets*. The settings required for
bootstrapping EPAs, are stored as configmapsS or secrets.

e Baguette Server: undertakes the deployment of the Event Processing Network. Specifically,
it designates EPAs installed in each cloud continuum resource, to the appropriate grouping,
by sending the corresponding configuration. It also collects VM’s or pod’s identification
information sent from EPAs. The Baguette server encapsulates:

o aNodeRegistry: thatisa SSH server used to accept incoming connections from EPAs.
These connections are used to send configurations or other commands to EPAs but
also receive cluster related information from the EPAs (e.g., which EPA was elected as
the aggregator).

o Topology Coordinator: that undertakes the assignment of configurations to the
respective EPAs according to the translated metric model.

e Control Service: coordinates and oversees all the EPM operations. It also interacts with the
NebulOuS Control Plane and furthermore offers a few EPM management and debugging
functions.

e Broker-CEP Service: encapsulates an event message broker instance and a CEP engine
instance, hence Broker-CEP provides event propagation, based on the publish subscribe
paradigm, and complex event processing capabilities. The Consumer sub-component
depicted inside Broker-CEP is used to forward the event broker messages into the CEP engine
in order to check if they match one or more of the deployed CEP rules.

e Local Topology Manager: introduces an EPM in the local cluster of EPMs, while it maintains
a view of the available EPMs in the cluster. Only one of them can be considered as the active
server (i.e., the Global-level Aggregator) that EPAs are aware of and can interact with. The rest
of them are considered stand-by servers. If the active EPM becomes unavailable, Local
Topology Managers of stand-by servers will select a new active EPM, using the Aggregator
selection protocol described in Section 4.2.4.1 [7]. The new active EPM will reconfigure the
EPAs with its address and credentials. Active EPM replicates its current state (including
configuration and information of EPAs) to stand-by servers or persists it to a common storage
so that if any stand-by server becomes the active one it will be able to recover the work state
of the previous active server.

¢ Plugin Framework: corresponds to a programmatic API that enables the registration and
interaction of plugins with the EPM. Plugins extend the EPM by introducing new capabilities.
For instance, a Health Checker plugin is bundled with an EPM, which can check the
availability of other (stand-by) EPMs. Health Checker plugins inform the Local Topology
Manager when other EPMs malfunction or become inaccessible. Moreover, through this
plugin framework a NebulOuS Middleware Interface have been developed that allows the
communication of EPM with the middleware AMQP broker. This communication permits for
example EPM and specifically the Metrics Model Translator to receive a new metric model

3 https: //www.netdata.cloud/

4 https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/

5 https://kubernetes.io/docs/concepts/configuration/configmap/
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once the NebulOuS user provides a new application description or propagate to the rest of
NebulOuS components an alert concerning SLOs.

e Subscriptions Advisor: propagates to the appropriate NebulOuS component a list of event
topics that they should be subscribed to according to the applications metric model and utility
function. This list may involve raw, composite and/or predicted metrics. For instance, the
Severity-based SLO violation detector (presented in section 5) needs to know which
composite and predicted metrics should be subscribed to in order to calculate the potential
severity of an imminent SLO violation.

e KB8S Pods & Nodes Watcher: connects to the Kubernetes API server to frequently query for
changes in the cluster pods and pinpointing pods across the different cluster nodes to
maintain a real-time view of the cluster that should be known by the Baguette Server.

e Configuration Manager: baguette server and broker-CEP caches configuration details
regarding EPAs that should be provided to kubernetes installer.

e Web Console: provides a dashboard for monitoring the functioning of the local event broker.

Event Processing Manager (EPM)

T Metrics Model Translator = Broker-CEP Service
= | validator | = | Persistence — .
P Consumer T Event Broker
Connection to . | .
i T f _

Models Repository e =0 O ——+——+—0O Receive Events
I o ‘ . Send Events
= T '\ Local Topology Manager

Control Service = CEP Engine =
© | REST Controller [] [
GoH—o ] ——
EPM RESTAPI T
0 (]
j— \\ - Subscriptions |
[HX - Advisor fia——
1 Web Console : _—
: o Baguette Server ‘ Plugin Framework
Client Installer - 5| Topology Coordinator =] c"riac':;r ‘ Connections to other
= LT Health Checkers
= | configurator K8S Installer ‘
Node Registry - NebulOuS

1 = | Middleware

Receive events from
! o) Middleware AMQP broker

= Interface
VM Installer

— e Send events to

= L —— Middleware AMQP broker
i |
. / = Configuration Mgr ‘ T | L& Pv?l:fci::o“s
[ O-LT J

= ——
[
SSH Connections  Connection to K8S SSH Connections Connection to K8S
to VMs API Server from EPAs (clients) API Server

Figure 2: Revised Event Processing Manager (EPM) Architecture

As mentioned above EPM operates as a global server in a federated event processing network
comprising EPAs distributed across cloud continuum resources. In NebulOuS, EPAs are deployed
using their docker image that binds to EMS-client-configmap. In Figure 3, we present a high-level
overview of the EPA architecture, in a UML component diagram, that comprises the following sub-
components:

e Baguette Client: a componentresponsible for connecting to EPM and receiving configuration
instructions. It comprises two subcomponents:
o SSH Client: provides secure communication with the Baguette server using an EPM
signaling protocol.
o Command Executor: configures and starts the Broker-CEP service based on the
instructions received from the Baguette Server of EPM.
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Broker-CEP service: provides the local Complex Event Processing engine (i.e., Espert), along
with the local Event Broker (i.e., ActiveMQ7) that collects and propagates metrics to EPAs in
other cloud continuum nodes, where components of the same application have been
deployed.

Local Topology Manager: introduces the EPA to the local cluster of EPAs, while it maintains
a view of the available EPAs (nodes) in the local cluster. It is also responsible for executing the
Aggregator selection protocol if the cluster aggregator is lost, i.e. autonomously select the
next appropriate nearby node that can undertake the role of aggregator. This process
leverages the Atomix8 framework to establish local clusters of EPAs, ensuring a robust and
dynamic system capable of maintaining the EMS's operational integrity by dynamically
adjusting to changes within the cloud continuum environment, such as node failures or the
integration of new nodes. Furthermore, it updates the Broker-CEP component configuration
when a new aggregator publishes its address and credentials. Eventually, it is notified about
any changes regarding the active EPMs and updates Broker-CEP configuration accordingly.

L]
Event Processing Agent (EPA)

Baguette Client Broker-CEP Service

} SSH Client Consumer Event Broker

i O—1]
1 70 // [ Send Events
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Figure 3: Revised Event Processing Agent (EPA) Architecture

Plugin Framework: corresponds to a programmatic API that enables the registration and
interaction of plugins with EPAs. Plugins extend the EPA by introducing new capabilities, such
as the desired monitoring probes tool. In NebulOuS the Netdata Collector plugin is bundled
in EPA installation package to retrieve the configured telemetry data. It subsequently

_——— 0O Receive Events

8 https://github.com/espertechinc/esper

7 https://activemg.apache.org/

8 Atomix web site: https: //atomix.io/
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publishes the retrieved measurements to local EPA event broker as events. Additionally, a
Health Checker plugin is also included, which periodically connects to event brokers of
adjacent EPAs to verify they are operating properly.

In the following section we highlight the extensions to EMS system, both with respect to EPM and
EPAs, based on the NebulOuS Task 5.1 work.

2.3 NEW FEATURES AND EXTENSIONS

A number of modifications and extensions have been introduced to EMS as inherited from
Morphemic, in order to meet the particular requirements of cloud computing continuums.
Additionally, improvements, bug fixes, and library version updates have been made. In the following
section the most important of them are detailed.

2.3.1 New EMS Translator

EMS encompasses a Metrics Model Translator component that is responsible, upon request, to
retrieve an application metric model (i.e. its monitoring specification), and generate all required
structures and information needed for deploying and initializing EMS system and start monitoring
the application. The EMS version inherited from Morphemic project has a hardwired Translator
component suitable for retrieving an application’s CAMEL model (which encompasses metric model)
from a CDO server, in the form of a CDO object graph. It subsequently traverses the graph to extract
the needed information. CDO and CAMEL domain specific language were architectural choices in
Morphemic project hence their use.

In the context of Nebulous, we enhanced EMS to use pluggable Translator components, and developed
a plugin that is capable to consume and process Nebulous metric models. Apart from generating the
structures and information needed for initializing EMS, it furthermore generates messages sent to
other components reporting the metrics they need to use in order to fulfil their respective purposes.
In the remaining document, when mentioning Translator or Translator component we refer to the
new Metrics Model Translator plugin, unless otherwise indicated.

A new metric model is extracted from the payload of a special event sent by Nebulous Ul (once an
application is submitted to the system). It is in JSON or YAML format and must abide to the Nebulous
Metric Model Specification. This specification has been represented as a meta-model, using
JSONSchema which is available here?. For this reason, the Translator plugin subscribes to a
preconfigured topic (eu.nebulouscloud.ui.dslmetric. model) where such events are published. Upon
reception, the Translator plugin, carries out the following tasks:

e Invokes Metric Model Validator to check the model’s syntax. More details are given in the next
section.

e Parses JSON or YAML payload into a hierarchy of objects (i.e., dictionaries).

e Extracts information like application components and scopes (i.e., level of required metrics
aggregation), SLOs, metrics, constants, and function definitions.

e Runs several (additional) checks in order to ensure the model’s completeness and integrity.

% https://opendev.org/nebulous/monitoring/src/branch/master/nebulous/metric-model
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e Builds a Directional Acyclic Graph (DAG) that describes the metrics dependencies in a syntax-
agnostic way.

e Generates complex event processing rules (or CEP rules) that implement the monitoring
functionality described in the metric model. CEP rules are generated using preconfigured
templates, combined with the extracted metric model information. Currently, CEP rules are
in Esper Processing Language (EPL), since Esper CEP engine is used in EMS.

e Extracted information and CEP rules are stored in a Translation Context, which can be
persisted, or exported as an image, SVG or graph in DOT format.

It is worth noting that Nebulous EMS Translator is not a mere adaptation of its ancestor, i.e. the
Morphemic Translator, for Nebulous needs. Contrary, it has been developed from scratch, using well-
known technologies (for YAML parsing and handling). Its internal functioning differs from its
ancestor’s (despite their outputs are similar); the former uses a multiple-pass approach for extracting
information, while the latter used a single-pass model graph traversal.

2.3.2 Metric Model Validator

This is a new EMS Translator sub-component. Its purpose is to parse a given payload in order to check
if it represents a valid Nebulous metric model and report any errors it finds. EMS Translator invokes
validator to check metric model validity, before it starts processing it and extracting the needed
information.

Metric Model Validator uses the Nebulous Metric Model Specification in order to validate metric
models. This specification is captured using a JSONSchema (meta-)model, which is itself captured as
a JSON file as mentioned before. This approach allows the easy change/update of the specification,
when a new version or a bug fix is available.

When a new metric model is passed to Metric Model Validator, it is first converted from YAML to JSON.
Next, a dedicated validation library is used to check validity and get any errors. Any errors found are
reported back to Translator in order to stop translation and notify NebulOuS platform. This approach
increases the overall system reliability since the defined model is first validated and then
implemented into autonomous Event Processing Network.

2.3.3 EMS refactoring - Pluggable Architecture

The EMS architecture has been reworked to allow the use of plugins in certain processing points,
instead of using hardwired components like in the previous EMS versions. Plugins can be developed
separately from the core EMS and included as libraries with it.

EMS offers default plugin implementations for all functions that require a plugin. Some of them are
just placeholders, not performing any important operation (No-Op plugins). When EMS is configured
to use a certain plugin, this will replace the default one. The most notable such plugin is EMS
Translator. Other plugins are monitoring data collection plugins used in EPAs (e.g., Netdata and
Prometheus collectors).

2.3.4 Context-Aware metric event propagation

When EMS is configured to deploy three-tier (or three-level) monitoring topologies, it will
autonomously assign the Aggregator role to certain EPAs, typically one per group of nearby nodes
(named local cluster). Specifically, EPM will inform all EPAs about all the other EPAs deployed in the
same cluster and it will provide them with config details that will let them communicate and be self-
organised under a selected aggregator. The aggregator isresponsible for (a) receiving monitoring data
from other (group) EPAs, (b) collecting the monitoring data from any nearby resource-constraint
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application nodes (that don’t have an EPA installed), and (c) run the metric computations (as CEP
rules) pertaining to the second monitoring level, using data from all EPAs and nodes of the group.

The aforementioned tasks are additional to the normal EPA tasks, hence resulting in higher resource
consumption. For this reason, Aggregator EPAs periodically assess if the resource consumption gets
too high (thus depriving the collocated application component from needed resources). In such a case
it will query other EPAs about their status, in order to hand over the Aggregator role. This is achieved
by running a distributed leader election protocol, where the state of all agents is estimate and the EPA
that has enough resources available will become the new Aggregator. The EPA states are estimated
with a relative score that takes into account both the maximum and the available level of resources
like CPU usage, memory and storage. The exact scoring function can be set in EMS configuration.
Obviously, resource-constraint nodes cannot participate in leader elections. When the Aggregator role
passes from one EPAto another, all peers are automatically notified in order to reconfigure themselves
and start propagating events to the new Aggregator.

2.3.5 Prometheus / OpenMetrics endpoints leveraging

A new monitoring data collection (Collector) plugin has been added to EPAs. This plugin can collect
measurements from Prometheus!® and OpenMetrics!! endpoints that follow the latest exposition
format. The collected data are mapped onto metric model raw metrics (and in fact to the
corresponding event topics), using the configuration provided in the metric model. These raw metrics
will be aggregated and processed, on the fly, based on several CEP rules that are constructed according
to the metric model.

2.3.6 Application-metric values acquisition

EMS will provide three methods of metric values acquisition. These methods will involve the use of
different monitoring probes as well as dedicated EPA data collector plugins (where applicable). It is
up to application owner or DevOps to choose which of them are suitable for his/her application.
Furthermore, it is possible to mix these methods, meaning that one method can be used for collecting
the values of some metrics, while another method for other metrics.

The metric values acquisition methods are:

e Push of metric values to local EPA
e Expose metric values as OpenMetrics endpoint
e Push or Expose metric values to local Netdata agent

As of NebulOusS first release, the first method is available, while the next two are already in progress
and included in a subsequent release.

2.3.6.1 Push to Local EPA

This method requires that applications include application-provided and controlled sensors that
measure the attributes/metrics of interest, and subsequently send them to the local EPA. Since EPAs
are deployed as a Kubernetes daemonset (i.e. one EPA instance exists at every Kubernetes node) there

10 https://prometheus.io/

1 OpenMetrics, the de-facto standard for transmitting cloud-native metrics at scale, https://openmetrics.io/
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will always be one EPA running at the same node as any Application component. Therefore, the
application component responsible for sending the measured values to EPA, will need to be aware of
the host IP address (which is also the local EPA's IP address), as well as a few additional connection
information provided as a configmap by EPM.

In detail, EPM, just before deploying EPA daemonset, will create and store a Kubernetes configmap
that will be accessible by the application. This configmap will contain the port and credentials
required in order to connect to EPA instances for sending metrics. The IP addresses are not included
since they vary between Kubernetes nodes and because they can be easily retrieved from application
components. Afterwards, EPA and Application deployments occur. On start up, EPAs and Application
components will read their respective configurations (from the corresponding configmaps) and
initialize accordingly. Eventually, Application will start emitting measurements to local EPAs using the
configuration loaded at startup.

One important remark is that Applications using this method are required to be able to send
measurements using ActiveMQ STOMP!2 or openwire!3 protocol. More options are also considered for
the next release of EMS. To assist Application developers to easily fulfil this requirement, two sample
implementations of measurements sending to EPA are provided; one in Java and one in Python.
Moreover, a sample Deployment manifest is also provided demonstrating one way of reading
configmap and getting host IP address.

Sample Kubernetes Deployment manifest, for reading configuration

A sample Kubernetes deployment manifest is given next. A more complete example including a Helm
chart, can be found at NebulOuS repository at OpenDev.org, at
https://opendev.org/nebulous/monitoring/src/branch/master/nebulous/examples/helm-
charts/simple-app.

Table 1. Sample Kubernetes deployment manifest

apiVersion
kind
metadata
name
spec
replicas
selector
matchLabels
app
template
metadata
labels
app
spec
containers
name
image: "sample-app.image.repository:sample-app.image.tag"

12 https://activemg.apache.org/components/classic/documentation/stomp

13 https://activemg.apache.org/components/classic/documentation/openwire
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imagePullPolicy
env
#
# EMS ActiveMQ connection info
#
name: 'BROKER_SERVER'
valueFrom
fieldRef
fieldPath
name: 'BROKER_PORT'
value: '61610°
name: 'BROKER_USERNAME'
valueFrom
configMapKeyRef
name
key
name: 'BROKER_PASSWORD'
valueFrom
configMapKeyRef
name
key

Java metric publisher to EPA

This example requires the use of ActiveMQ client library, which must be included during the code
building. The relevant Maven dependency is given next.

A complete example of a Java application sending random values to the local EPA, can be found at
NebulOuS repository at OpenDev.org, at
https://opendev.org/nebulous/monitoring/src/branch/master/nebulous/examples/simple-app-
java.

Python metric publisher to EPA

This example requires the use of STOMP Python library. It can be installed using the following
command:

The contents of "requirements.txt” file are:

A complete example of a Python application for sending random values to the local EPA, can be found
at NebulOuS repository at OpenDev.org, at
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https://opendev.org/nebulous/monitoring/src/branch/master/nebulous/examples/simple-app-

python.

2.3.6.2 Expose as OpenMetrics endpoint

This method of acquiring metric values requires the application to expose one or more Prometheus
or OpenMetrics endpoints, using the OpenMeric exposition format. EPA will then periodically contact
these endpoints and scrape the exposed metrics. To enable EPA contact the endpoints, it is
additionally required that the application metric model provides the needed configuration. For each
raw metric that will have its values using this method, it is necessary to define a sensor of
“prometheus” type and provide the corresponding configuration (including the scraping period).

2.3.6.3 Push or Expose to local Netdata agent

This method of acquiring metric values requires the deployment of Netdata as a daemonset. EPA will
periodically contact its collocated Netdata agent and scrape the metrics of interest. It is required that
the application metric model provides the needed configuration. For each raw metric that will have
its values using this method, it is necessary to define a sensor of “netdata” type and provide the
corresponding configuration (including the scraping period, and netdata group, chart, and
dimension).

2.4 IMPLEMENTATION DETAILS

The deployment process of all the necessary EPAs for monitoring the application and therefore
constructing a dynamic event processing network is presented in Figure 4. The process is essentially
triggered once the application Metric Model has been submitted and the NebulOuS Deployment
Manager has deployed a new Kubernetes cluster. The deployment of the cluster also includes the
automatic deployment of EPM on the master node. Once EPM receives the metric model, it validates
and translates it to devise the proper configuration of EPAs (i.e, deployment Helm Charts and
Configmaps). Then EPM connects to the Kubernetes API server to instruct the deployment of 1 EPA
per cluster node. Each EPA once spawned inside the cluster as deamonset it uses the configmap to
connect to EPM (i.e., Baguette server) and announce itself. According to EPMs instructions every EPA
configures the necessary monitoring probes (and activates any other available collector e.g,
Prometheus) to generate telemetry data, deploys EPL rules to be able to aggregate and process
complex events and joins an EPN cluster. As described in the previous section EPAs of a certain EPN
cluster automatically decide which EPA will undertake the role of local aggregator, tuning EPL rules
and notifying EPM about the decision. From that point on the monitoring network is ready to monitor
infrastructure, application and data related metrics, process them and detect potential SLO violations
that should trigger reconfigurations.
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All EMS components have been implemented using the Java™ programming language, version 21, and
the Spring-boot framework, thus making their maintenance quite predictable. Third-party libraries
used include, ActiveMQ classic, Esper CE library, Fabric8 Kubernetes client, Apache MINA SSH, Atomix,
JGraphT, Project Lombok, various Apache Commons libraries (lang3 and text). EMS is delivered as a
set of software packages; one for the EPM node, one for EPAs, and one for the Broker client tool.
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Figure 4: Event Processing Network Deployment Workflow

All EMS parts (EPM, EPA and Broker client) are built and bundled using the well-known Maven
system. During the building process EPM and EPA Docker images are created. EMS code is available
under MPL v2.0 license and it hosted OpenDev.org, at
https://opendev.org/nebulous/monitoring/src/branch/master/nebulous

is in

2.4.1 EMS deployment on Kubernetes cluster

Currently, EMS is deployed per application, hence it must be deployed in application Kubernetes
cluster, after this has been created and configured but before application components get deployed.
EMS deployment completes in a number of steps, occurring at certain points of the overall application
deployment process.

First, the EPM needs to be deployed using a suitable Helm chart or an installation script that will
invoke Helm. The NebulOuS Deployment Manager will execute the installation script or the Helm
utility. EPM configuration can be passed as environment variables or as a host bound configuration
file. After deployment, EPM will boot and connect to Nebulous message broker, and subscribe for
messages regarding a new application metric model that denote monitoring details of the application
to be deployed and maintained by NebulOusS.

Upon receiving a message with the application metric model, EPM will use Translator to process it
and derive needed configurations. It will use its K8S Client Installer module to contact Kubernetes API
server in order to:
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e store a new configmap with the EPA bootstrap configuration (i.e.,, EPM SSH server address
and credentials, collectors to enable etc),

e store a new configmap that can be used by the application components. It contains settings
for connecting to the EPAs,

e deploy EPAs as a daemonset on the application cluster.

Next, Kubernetes will deploy EPA daemonset, creating exactly one EPA instance per cluster node (i.e.
physical/virtual machine). When an EPA boots, it will read bootstrap settings from EPA configmap
and automatically connect to EPM, in order to receive its monitoring-related configuration, as well as
clustering information (i.e. nearby EPAs, and clustering key).

2.5 FUTURE WORK

In the upcoming releases of NebulOuS platform, EMS will be further extended with a number of
planned features. These include Context-Aware metric security and reworking of EPM to support
multiple applications.

2.5.1 Context-Aware metrics security

The first planned EMS extension, is the addition of a new feature in EMS that regards a flexible security
mechanism, applied on monitoring data exchange between EMS parts (EPM and EPAs), as well as the
collection of monitoring data from monitoring probes.

When exchanging monitoring data, the default EMS configuration requires that all interactions are
encrypted. In fact, all EMS parts automatically generate credentials and cryptographic keys, and
securely announce them to EPM and other EPAs. This behaviour can be totally disabled (although not
advised), in which case all monitoring data exchanges will become unencrypted. However, there are
valid cases where data encryption is not critical or comes to a very high cost that does not justify the
encryption. For instance, in cases where small [oT devices are part of the application, data encryption
could consume significant amount of computing resources, depriving them from the application
components. Furthermore, it can also drain the available power source (battery) faster, and probably
reduce the expected lifetime of the battery or even of the device. In such situations, it would be very
desirable to be able distinguishing between critical monitoring data that must be encrypted before
sent over the network, from non-critical data that can go unencrypted. The decision on the data
criticality could be either directly stated in the metric model or inferred based on where the
organisational boundaries, the use or not of third party devices, the use of trusted hosting providers
or not, etc. Additionally, it is desirable this distinction is flexible and adaptable, based on the current
operational status of the device; for example, critical measurements are sent encrypted to EMS, unless
the battery level is extremely low in which case, they can be sent unencrypted. If the power level
increases to a safe level (e.g. device gets plugged to power network) then critical measurements are
again sent encrypted.

Another case where monitoring data encryption is not required would be an application deployed in
private network or in a network where communication links are encrypted (e.g. using VPN). In this
case the monitoring data encryption offers no additional security. If, however, an application node is
connected both to secure and insecure networks, then it is desirable to use encryption when
transmitting over the insecure links at least.
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2.5.2 Support for Multiple Applications

The second major EMS extension we plan, regards reworking EMS in order to be able handle more
than one application simultaneously. EMS was originally designed and implemented to monitor a
single application (that was a project requirement). However, in the context of a meta-0OS like
NebulOusS is, this requirement is no longer valid. In fact, the opposite is required, since the same meta-
0S services must be able to cope with several different applications and application instances (as it
happens in normal OS'es). Handling multiple applications on the side of the EMS means that resources
which are inside the EMS, common to all applications need not be committed for each new application
which is introduced.

In order to meet this requirement inversion, we currently deploy one EPM instance and a separate
EPA network for each application deployment. For this reason, EPM is deployed in the application
cluster along with application components and other platform agents.

In the next EMS release, we plan to revise EMS workflows, and data structures, and rework EPM and
EPA implementations in order to be able to handle multiple applications. We do not expect significant
architectural changes to be required, however the implementation changes are expected to be quite
extensive. Next, we detail the most significant of them.

e Introduction of an Application Monitoring Context, where all monitoring-related information
pertaining to one application is stored. This information can be either extracted from the
metric model, or provided by EPAs, or acquired from any other source. EPM will create and
maintain Application Monitoring Context instances to track the state of the monitoring
network of each application. Snapshots of Application Monitoring Context instances will be
stored, in order to enable load balancing and EPM node replacement.
We note that Translator already generates Translation Context instances with the outcomes
of metric model analysis. Additionally, EPA data are store in EPM Node Registry, per IP
address. Node Registry entries will need to be distinguished per application too.

e Identifiers used for naming event topics, CEP streams or any other structure, will be suitably
modified in order to include an application reference or allow deriving it. Moreover,
Application identification keys will be introduced in EMS interactions to help distinguishing
between applications. These identifiers will be stored in Application Monitoring Context
instances.

Apart from the aforementioned extensions, additional changes might be introduced to EMS during
the project progress, either in response to new or evolving use case requirements, or due to other
reasons.

3 AI-DRIVEN ANOMALY DETECTION AT THE EDGE

As described in deliverable D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-
0S, the Al-driven Anomaly Detection engine ensures Quality of Service (QoS), by detecting scenarios
that perform differently from what they are expected to in the resource utilization of k8s-based
applications (k8s). Leveraging Netdata for malicious/adversarial/intrusion behavior provides a real-
time and comprehensive approach to monitor and respond to deviations from normal patterns.

Our approach aims to utilize Netdata to collect data and to detect anomalies in a set of resource
metrics of Kubernetes clusters taking into account several metrics. By contrast, Netdata offers an
anomaly detection mechanism that only analyzes each metric in an isolated manner. On the other
hand, integrating Netdata with an immunological algorithm like Dendritic Cell or Negative Selection
for malicious/adversarial/intrusion behavior involves combining the real-time monitoring
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capabilities of Netdata with the Figure 5 shows a scheme where in each worker node there is a
Netdata child and in each cluster container there is a Netdata parent and together with an ML
algorithm. Within each instance per application there is a database containing data collected by
Netdata.

/Ccntainer Cluster

Master
Mode

Worker Node

etdata Child

Worker Node

stdsta Child " | NebulOuS
agent

Worker Node

etdata Child "

Al-driven Anomaly | P
Detection

.

Figure 5: Kubernetes-NetData-ML approach.

3.1 APPROACH/METHODOLOGY/MODELS

Netdata deployment involves deploying Netdata agents on Kubernetes worker nodes using
Kubernetes DaemonSets and ConfigMaps for scalable deployment.

A baseline establishment is achieved by establishing normal behavior for resource utilization metrics
using historical data, while statistical models like moving averages or standard deviations are utilized
to identify deviations from this baseline. The methodology for that involves analyzing historical data
of resource utilization metrics, such as CPU, memory, and disk usage, to define normal behavior
within each cluster. The amount of historical data required depends on factors like the size of the
cluster, the variability of workloads, and the desired level of accuracy. Typically, a sufficient amount
of historical data covering at least a few weeks to a month is recommended to capture diverse
patterns and variations in workload behavior. Our idea is to check if two weeks are enough for a
selected use case and then work accordingly with the rest of the cases. The frequency of updating the
baseline should be determined based on the dynamic nature of the cluster's workloads. In
environments where workloads change frequently or seasonally, the baseline may need to be updated
more frequently to accurately reflect the current typical behavior. Conversely, in more stable
environments, less frequent updates may suffice. A common approach is to update the baseline
periodically, such as daily or weekly, and adjust the frequency as needed based on observed changes
in workload patterns. Automated processes can streamline this updating process, ensuring that the
baseline remains relevant and reflective of the cluster's evolving behavior. Our initial idea is to update
daily.
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When considering machine learning algorithms for anomaly detection, several types of algorithms
can be explored, each with its own strengths and suitability depending on the specific characteristics
of the data and the desired outcomes. Some of the commonly considered machine learning algorithms
include clustering algorithms, supervised learning algorithms, unsupervised learning algorithms,
and deep learning algorithms. On the other hand, immunological algorithms, inspired by the
principles of the immune system, offer another approach. The immune system is a complex network
of cells, tissues, and organs that work together to defend the body against pathogens, such as viruses
and bacteria. It achieves this through a process of recognizing foreign entities (antigens) and
mounting an immune response against them while tolerating the body's own cells (self).

Immunological algorithms draw inspiration from several key principles of the immune system, such
as recognition, learning and adaptation, and diversity. Just as the immune system can distinguish
between self and non-self antigens, computational models classify data points as either normal (self)
or anomalous (non-self) based on certain features or characteristics. Similarly, the immune system's
ability to adapt to new threats by learning from past encounters is mirrored in immunological
algorithms, which often incorporate mechanisms for learning and adaptation to dynamically adjust
to changes in the data environment. Additionally, like the diverse repertoire of immune cells
maintained by the immune system to recognize a wide range of antigens, immunological algorithms
employ diverse sets of detectors or classifiers to handle different types of anomalies.

Two algorithms, such as Dendritic Cell Algorithm (DCA) or Negative Selection Algorithms (NSA),
mimic the mechanisms of the immune system to recognize and respond to anomalies.

We have evaluated eight algorithm implementations: a k-nearest neighbors algorithm!4, a logistic
regression algorithm!5, a random forest algorithm!¢, a decision tree classifier algorithm?!7, an XGBoost
algorithm (which utilizes gradient-boosting decision trees)!8, a LightGBM algorithm (leveraging a
histogram-based method that bins data using a distribution histogram)?1, a dendritic cell algorithm
[8], [9] and a negative selection algorithm [10]. Our benchmark used the NSL-KDD dataset2°[11]. The
XGBoost and LightGBM algorithms demonstrated superior efficiency for our specific task, but the k-
nearest clustering algorithm could be a good election if simplicity and interpretability are sought.

The criteria for selecting machine learning algorithms depend on various factors, including the nature
of data (its dimensionality and distribution), the scalability of the algorithm (capability of process
large volumes of data), the robustness of the algorithm (adaptability to changes in the data
distribution). The inclusion of immunological algorithms in the selection process offers unique
advantages such as self-regulation, self-organization, and self-repair, making them robust and
adaptable to changes. Additionally, these algorithms can handle high-dimensional and noisy data
effectively. In the next iteration we will work / test with real data, the LightGBM algorithm or a

14 https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

15 https://scikit-learn.org/stable/modules/classes.html#module-sklearn.linear_model

16 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier

7 https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn-tree-decisiontreeclassifier

18 https://xgboost.readthedocs.io/en/latest/python/python_api.html

¥ https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html

20 https://www.unb.ca/cic/datasets/nsl.html
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clustering algorithm and some of the immunological ones. We are deeply interested in gaining
knowledge and analyzing the potential of these latest algorithms.

KNeighborsClassifier LogisticRegression RandomForestClassifier
precision recall fl-score support precision recall fl-score support precision recall fl-score support
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Figure 6: Comparison of the different algorithms evaluated.

The alert configuration process involves defining thresholds and conditions that trigger alerts based
on anomalies detected in the monitored metrics. This process starts by identifying the essential
metrics critical for monitoring, in our case, the Kubernetes cluster's health and performance (CPU
usage, memory utilization, and network traffic). Baseline thresholds should then be established for
each chosen metric, either through historical data analysis or predefined standards. Machine learning
models are then incorporated to analyze metric data and identify deviations from established
baselines. Sensitivity levels must be adjusted to balance minimizing false positives and false negatives
(hyperparameter optimization). Finally, it is necessary to define specific conditions or rules that
activate alerts when machine learning models detect anomalies and send notifications if necessary
to the event management.

3.2 CONCEPTUAL ARCHITECTURE & IMPLEMENTATION DETAILS

In deploying Netdata within Kubevela as a DaemonSet, each worker node is ensured to have an
instance, supported by the creation of ConfigMaps to store configuration settings. Automating the
deployment across nodes via DaemonSets streamlines the process, complemented by Kubernetes
services for efficient management and exposure of Netdata instances. This setup facilitates
comprehensive monitoring coverage and seamless access to monitoring data.
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Table 2 : Kubevela Netdata cluster deployment example

Kubevela Netdata cluster deployment example
HAH##HHAH A HHHHAHA##AH SERVICE ####HH##HAHHHAHFHHHH
apiVersion: core.oam.dev/v1betal
kind: Component
metadata:
name: netdata-parent-service
spec:
type: webservice
properties:
image: netdata/netdata
port: 19999
expose:
- port: 19999
as: NodePort
nodePort: 30000
HAH###HH#HHHHHHAH#A##A#H CONFIGMAP - PARENT - CONFIG #######H#H#HHHHHAHHH
apiVersion: core.oam.dev/v1betal
kind: Component
metadata:
name: netdata-parent-configmap
spec:
type: raw
properties:
apiVersion: v1
kind: ConfigMap

metadata:

name: netdata-parent-config
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HAH##HHHAH A #HH#H#A##H# NETDATA - PARENT ########H#H#HHHHHHAH
apiVersion: core.oam.dev/v1betal
kind: Application
metadata:
name: netdata-parent-app
spec:
components:
- name: netdata-parent-service
type: webservice
properties:
# Propiedades del servicio
- name: netdata-parent-configmap
type: raw
HAH##A#H#HHAHH#H#HA##H CONFIGMAP - CHILD - CONFIG ####### ##H#HHH#HHHH#
apiVersion: core.oam.dev/v1betal
kind: Component
metadata:
name: netdata-child-configmap
spec:
type: raw
properties:
apiVersion: vl
kind: ConfigMap
metadata:
name: netdata-child-config
data:
netdata-streaming.conf: |
[stream]
enabled = yes
destination = netdata-parent-service:19999
api key = c4ea96fa-1329-4f77-b503-d607db19be52
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H#t##H#A#HH B HHA#HHH##H#H NETDATA - DAEMONSET - CHILD #############HHAH#HH
apiVersion: core.oam.dev/v1betal
kind: Component
metadata:
name: netdata-child-daemonset
spec:
type: worker
properties:
image: netdata/netdata
cmd:
- ["/bin/bash"]
ports:

- containerPort: 19999
H#fH#HHH R #H A #HH##E NETDATA - CHILD ######### A #H##H#HHH#H
apiVersion: core.oam.dev/v1betal
kind: Application
metadata:

name: netdata-child-app
spec:
components:
- name: netdata-child-daemonset
type: worker

- name: netdata-child-configmap

type: raw

Subsequently, it is necessary to integrate a malicious/adversarial/intrusion detection system (a machine
learning component) incorporating algorithms such as the LightGBM and/or immunological (seeTable 3
Table 3). Additionally, establish communication channels between the machine learning process and
Netdata in an initial phase, followed by another channel between the prediction process (which uses the
generated machine learning model) and Netdata, is crucial for ensuring seamless real-time metric transfer
on both occasions. These connections will use the capabilities of the “get_data” function implemented in
netdata_pandas.data (API calls). This feature acts as a conduit, facilitating the monitoring flow.
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Table 3: Machine learning algorithm deployment example

cpu: "1"

3.3 INTERFACES OFFERED/REQUIRED

1. Netdata interface:

The interface with Netdata APIs (or data sources) allows real-time metrics to be retrieved for analysis
using a machine learning algorithm.

Key system metrics captured by Netdata include CPU, memory, disk usage, network bandwidth,
process counts, and more. Container metrics include resource utilization metrics for containers and
virtual machines using /sys/fs/cgroup. Advanced metrics include using eBPF, kernel-level metrics
like file descriptors, virtual filesystem [/0, and process management are captured.

2. Machine learning detection system interface:

The interface with the machine learning detection system allows to configure, monitor and retrieve
information from learning models integrated with Netdata.

3.4 BEYOND STATE-OF-THE-ART

Exploring the potential of combining the immunological algorithm with other machine learning
techniques presents an exciting opportunity for a hybrid approach that harnesses the strengths of
both bio-inspired and traditional methods. By integrating the immunological algorithm with
established machine learning techniques such as deep learning, reinforcement learning, or ensemble
methods, we can create a robust framework capable of tackling complex security challenges in
diverse environments. This hybrid approach allows us to leverage the adaptability and self-learning
capabilities inspired by biological immune systems, while also harnessing the predictive power and
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scalability offered by traditional machine learning algorithms. Moreover, combining these techniques
opens avenues for enhanced feature extraction, pattern recognition, and anomaly detection,
ultimately leading to more accurate and effective intrusion detection systems. Through rigorous
experimentation and optimization, we can unlock the full potential of this hybrid approach, paving
the way for advanced threat detection and mitigation strategies in cybersecurity.

3.5 NEXT STEPS FOR THE FINAL ITERATION OF THE MECHANISMS

Through the development of Kubernetes Helm charts, streamlined deployment and management of
Netdata within Kubernetes are facilitated, enabling easier installation, updates, and configuration
management across the Kubernetes environment. Performance optimization efforts are directed
towards ensuring the integrated system efficiently handles large-scale and dynamic Kubernetes
environments.

Additionally, establishing a feedback loop between Netdata and the machine learning algorithm not
only enables continuous adaptation to new patterns but also offers several potential benefits:

e Enhances the ability to detect emerging threats or anomalies in real-time by dynamically
adjusting detection criteria based on changing data patterns.

e Improves the accuracy and effectiveness of intrusion detection by feedback.

e Enables proactive threat mitigation by identifying and responding to suspicious activities
before they escalate.

By incorporating these potential benefits, the feedback loop between Netdata and the machine
learning algorithm becomes fundamental in malicious/adversarial/intrusion detection accuracy.
Here's a succinct outline of the steps involved in implementing the feedback mechanism:

e Define a function to capture the model's predictions and their corresponding outcomes (true
positives, false positives, etc.).

e Analyze the captured data to identify misclassifications or false alarms and their underlying
causes.

e Integrate the feedback into the ML model to adjust its parameters or update its training data.

e Periodically evaluate the performance of the ML model using metrics such as precision, recall,
F1-score, etc.

e Monitor the model's capability to recognize new patterns and identify emerging threats over
time.

e Incorporate mechanisms to track changes and improvements made to the model based on
feedback received.

Furthermore, integration with alerting mechanisms or automated responses ensures timely
reactions to identified anomalies, enhancing overall security. By leveraging Netdata's real-time
monitoring capabilities and the adaptive nature of the chosen machine learning algorithms, this
approach aims to strengthen intrusion, adversarial or malicious detection in Kubernetes clusters by
recognizing deviations from normal behavior in a natural and simple way.
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4 INTEROPERABLE IOT/FOG DATA MANAGEMENT

As described in deliverable D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-
0S, The Data Collection and Management component is related to data management, both in the
context of managing the monitoring data collected from the 1oT/Edge/Cloud compute resources, as
well as with respect to the data exchanged internally between the NebulOuS components. Regarding
the IoT data management, three distinct sub-components were envisioned to comprise this module:
A pub/sub mechanism, a time-series IoT data store, an IoT data flow pipelines orchestration
mechanism.

4.1 10T/FOG PUB/SUB MECHANISM

Distributed micro-service oriented applications that can benefit from the NebulOuS resource
brokerage capabilities require some communication mechanism to exchange messages between its
components. Often, this kind of architectures rely on the publish/subscribe paradigm of
communication. To facilitate the adoption of NebulOuS by such applications, the Data Collection and
Management module offers a pub/sub mechanism. Its goal is to allow the communication between
modules of the applications running on top of NebulOuS and serve as an entry point for IoT data
required by these applications. This pub/sub mechanism articulated using Apache ActiveMQ allows
components of the application to exchange messages using well known protocols such as AMQP21,
MQTT?22z , STOMP23 and REST24. On top of that, we offer extensions for the ActiveMQ message broker
to automatically collected metrics about the communication patterns between the application
components (number of messages per second, total size of the messages, message processing latency,
etc..). These metrics can then be used by application owners as part of the application definition to
detect SLO violations and decide on the need for re-adaptation.

4.1.1 Conceptual Architecture & Implementation details

The proposed pub/sub mechanism utilizes Apache ActiveMQ Artemis?5 as a message broker. Artemis
is an open-source project to build a multi-protocol, embeddable, very high performance, clustered,
asynchronous messaging system?s.

Whilst utilizing a custom protocol for its inter-broker communication in clustered deployments,
Artemis is compatible with a wider range of standard and well-known protocols in the 0T landscape.
It supports: AMQP 1.0, MQTT (3.1, 3.1.1 and 5), STOMP 1.0, 1.1, or 1.2 and REST, among others.
Artemis unifies the different messaging semantics proposed by these standards and allows clients
utilizing any of these standards to communicate using a single broker, thus, facilitating the integration
of data streams coming different data sources (IoT devices, industrial equipment, etc.).

2 https://www.amgp.org/resources/specifications

2 https://mqtt.org/

2 https://stomp.github.io/

% https://activemq.apache.org/components/artemis/documentation/2.25.0/rest.html

25 https://activemq.apache.org/components/artemis/

2 https://activemq.apache.org/components/artemis/documentation/
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Although Artemis is not bundled as part of the standard deployment of NebulOusS core nor its agents,
we propose its usage to articulate the communication between application components. For this, we
have developed a reference application that shows how a NebulOuS user (DevOps) can model its
application to include the messaging broker.

Apache ActiveMQ Artemis offers the flexibility to be deployed using several strategies?’. From a
centralized broker instance where all clients connect to a central point to a clustered deployment
where all brokers are connected conforming a single virtual broker and messages sent to one broker
address will be transparently distributed to brokers where consumers for the destination topics are
connected. This later approach allows having user application deployments where multiple
applications components reside in the same Kubernetes node and, thus, utilize one single instance of
the Artemis broker (limiting the number of resources needed) whilst still being able to have other
components deployed on separated Kubernetes nodes without affecting the ability to communicate
with the rest of the application components. Additionally, having multiple components that exchange
messages between them residing in the same Kubernetes node permits to eliminate the transmission
of the messages to the network, lowering the bandwidth needed for the application and improving
the latency in communications. To leverage the cluster capabilities of ActiveMQ, the proposed
deployment relies on the use of Kubernetes DeamonSets28. This mechanism allows to define a Pod
that will be automatically deployed in each Kubernetes node running any other regular application,
Pods. Conversely, when all regular application Pods are removed from a node, the DeamonSets Pod
instance is automatically deallocated. Moreover, defining the Artemis broker as a DeamonSet on the
user application models (OAM) managed by NebulOusS, simplifies the deployment of the pub/sub
nodes (as the user doesn’t need to specify the details of each node) and guarantees that one instance
of the pub/sub broker will be available locally on each node running any of the user application
components Pods.

Figure 7 shows the deployment topology that is making use of the clustering capabilities of Apache
Artemis. This application, composed of several components (C1, C2, ... C7) is deployed across 3
different pods (POD 1, POD 2, POD 3). On each POD, a message broker is automatically installed by
Kubernetes as a daemon set. The brokers conform a cluster that permit not only the communication
between components in the same POD (C1 and C2, C3 and C4) but also the communication with
components on other PODs.

From a security point of view, the proposed broker deployment works under the assumption that
there will exist one Artemis cluster for each end user application that NebulOuS might manage. This
guarantees complete isolation of the broker with other applications owned by the same user or other
users. However, utilizing the bridging and clustering capabilities of Artemis29, application owner can
freely connect two or more NebulOuS managed applications Artemis cluster to facilitate inter-
application communication.

Continuing with the security aspects of the proposed solution, it is left to the owner of the application
to decide on the authentication and authorization policies to be enforced by the broker. In this
respect, Artemis offers a comprehensive set of configurations that enables it to adapt to the
specificities of different usage scenarios3?.

27 https://activemqg.apache.org/components/artemis/documentation/

28 https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/

29 https://activemq.apache.org/components/artemis/documentation/latest/clusters

30 https://activemq.apache.org/components/artemis/documentation/latest/security.html#authentication-authorization
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Figure 7: Sample application deployment topology

Table 4 shows a sample application that utilizes the proposed pub/sub mechanism. The example is
composed of 5 objects, the master broker, the daemon broker, the producer, and the consumer.
e ActiveMQ Master broker: Necessary for articulating the ActiveMQ cluster.
e ActiveMQ Daemon broker: Defined as a daemon to be deployed along each of the nodes PODs.
It is configured to contact the ActiveMQ Master.
e ActiveMQ Demon service: Connects PODs for clients of the ActiveMQ broker to the broker for
their POD deployed using daemonsets.
e Producer and Consumer: Dummy ActiveMQ clients that can connect to the host “artemis-
daemon-service” to contact the ActiveMQ broker associated with the POD where it is running.

Table 4 : OAM of a sample application using the proposed pub/sub mechanism

kind: Application
metadata:

name: pub-sub-mechanism-deployment
spec:

components:

- name: pub-sub-master
type: webservice
properties:
image: activemq/artemis
volumeMounts:
configMap:
- name: broker-config.xml

mountPath: /broker-path/etc-override /broker.xml
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cmName: broker-config-cmap
traits:
- type: expose
properties:

port: [8161,61616]

- name: pub-sub -daemon
type: daemon
properties:
image: activemq/artemis
ports:
- port: 61616
protocol: TCP
- port: 8161
protocol: TCP
- name: daemon-service
type: k8s-objects
properties:
objects:
- apiVersion: v1
kind: Service
metadata:
name: artemis-daemon-service
spec:
internalTrafficPolicy: Local
ports:
- name: msg
port: 61616
protocol: TCP
targetPort: 61616
- name: http
port: 8161
protocol: TCP
targetPort: 8161

selector:

www.nebulouscloud.eu
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app.oam.dev/component: pub-sub -daemon
type: NodePort
- name: producer
type: webservice
properties:
image: nebulous/iot-producer
traits:
- type: "node-affinity"
properties:
affinity:
name: ["'node-1"]
- name: consumer
type: webservice
properties:
image: nebulous/iot-consumer
traits:
- type: "node-affinity"
properties:
affinity:

name: ["node-2"]

4.1.2 Interfaces offered/required

Utilizing the extensibility features offered by Artemis, we have developed a plugin that automatically
publishes to the NebulOuS EMS agent (i.e. EPA) metrics related to the usage of the pub/sub
mechanism by the user applications and therefore revealing aspects of the application data
exchanged. These metrics can then be used by application owners as part of the application metric
model used by NebulOusS to decide on the need for re-adaptation. More precisely, the developed
plugin collects the following metrics:

= messages_count: The number of pending messages for any queue.

= max_message_age: Age of the oldest pending message on a given queue.

= consumers_count: The number of active consumers subscribed to a queue.

= group_count: The number of message groupings for a queue. Messages on a queue are
grouped by the value of the “JMSXGroupID” attribute associated to each message. This metric
is relevant for the [oT Data processing pipeline orchestration tool (described section 4.3).

The metrics are reported per queue and broker on a fixed interval (e.g., each 30 seconds).

Additionally, events related to the lifecycle of messages exchanged between user application
components using the proposed pub/sub mechanism are reported. On each step of the message
lifecycle (a producer writes a message to the cluster, the message is delivered to a consumer, the
consumer acknowledges the message), the plugin generates events with relevant information that
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can be used for understanding how IoT applications components on NebulOuS are communicating.
On each of these lifecycle events, several raw parameters are reported (e.g., pub-sub node
receiving/serving the message, id of the message, timestamp of the event, etc...). The details on the
parameters reported on each of these events are detailed in Table 5, Table 6 and Table 7.

Table 5: Message published event

Event name Message published event
Event description | Event generated when a message is published to the pub/sub system
Fields
Name Type Description
messageld Long Id of the message
timestamp Long Timestamp when the event occurred.
messageSize Long Size of the message (in bytes).
messageAddress String Address where the message is published.
node String The name of the pub/sub cluster node where the
message was published.
Table 6 Message delivered event
Event name Message delivered event
Event description | Event generated when a message is delivered to a client of the pub/sub
system
Fields
Name Type Description
messageld Long Id of the message.
timestamp Long Timestamp when the event occurred.
messageSize Long Size of the message (in bytes).
messageAddress String Address where the message is consumed.
node String Node where the client is connected.
clientld String Id of the client receiving the message.
publishNode String Node where the message was originally published.
- fhuengigot;ian Union www.nebulouscloud.eu
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publishAddress String Address where the message was originally
published.

publishClientId String Id of the client that originally published the
message.

publishTimestamp String Time when the message was published
(milliseconds since epoch).

Table 7 Message acknowledged event

Event name Message acknowledged event
Event description | Event generated when a message is acknowledged by a client of the pub/sub
system

Fields

Name Type Description

messageld Long Id of the message.

timestamp Long Timestamp when the event occurred.

messageSize Long Size of the message (in bytes).

messageAddress String Address where the message is published.

node String Node where the client is connected.

clientld String Id of the client receiving the message.

publishNode String Node where the message was originally published.

publishAddress String Address where the message was originally
published.

publishClientld String Id of the client that originally published the
message.

publishTimestamp String Time when the message was published
(milliseconds since epoch).

deliverTimestamp String Time when the message was delivered to the client.

With these raw parameters, relevant metrics can be derived by the EMS system that can help to decide
on the need to scale/downscale the application components responsible for processing messages to
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adapt to a variation of the workload. In this respect, there are several metrics that can be derived.
Some examples are:

e Time difference between a message being originally sent to the broker by a producer and the
message being delivered to a consumer.

= Time difference between a message being delivered to a consumer and the consumer
acknowledging the message.

= Number of messages per second shared between two components of the user application.

= Volume in megabytes of data shared between two components of the user application.

4.1.3 Next steps for the final iteration of the mechanisms

The current proposed deployment for the pub/sub mechanism relies on the use of static XML
configuration files to specify the authentication/authorization aspects. This becomes a burden when
working with IoT related application, where the number of clients can grow very fast if each IoT
device has its own credentials. The second iteration of the pub/sub mechanism will investigate the
integration of external authentication/authorization frameworks like Keyrock3! and Keycloacks?,
utilizing the extensibility offered by Artemis with its Security Settings Plugin33

4.2 10T TIME SERIES DATA STORE

Although the deployment of a IoT time series database was envisaged as a component to be deployed
as part of NebulOusS platform, later analysis of the matter has led to conclude that a better approach
is to let the application owner decide the most appropriate database technology for their use case
and deploy it as a regular NebulOuS application (or part of it). This decision is motivated by the fact
that, each application will have specific requirements regarding the solution to be used. These
requirements can be related to topics such as how the data is to be stored (wide table vs narrow
tables), the high availability requirements and target performance (inserts per second, queries per
second, etc...) among others.

Nevertheless, as part of “T5.3 Interoperable [oT/Fog data collection and management” efforts will be
put on documenting the approach to integrate TimeScaleDB34 into an application managed by
NebulOuS and connect it to the proposed pub/sub mechanism.

TimescaleDB is an open-source time-series database engine. Built on top of PostgreSQL, it adds
several improvements to optimize the storage of time series data on a massive scale (up to tens of TB
uncompressed ). TimescaleDB is specifically optimized for storing and querying time-series data. It
provides a robust set of query functionalities for handling time intervals, downsampling, and other
common time-series operations.

31 https://keyrock-fiware.github.io/
32 https://www.keycloak.org/

33 https://activemq.apache.org/components/artemis/documentation/
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Among other competitors (Apache Druid35, InfluxDB36, OpenTSDB37, Graphite38, etc.) TimescaleDB
has been chosen as the tool to demonstrate the integration of time series databases in NebulOuS
managed applications because it offers similar time-series query capabilities while it requires little
administration efforts in comparison with other technologies.

4.3 10T DATA PROCESSING PIPELINES ORCHESTRATION TOOL

4.3.1 Introduction

NebulOusS provides specific semantics for modelling [oT data processing pipelines by identifying their
main components (data sources, transformation operations and data consumers) and interlace them
to conform data transformation flows. Once defined by the user, the orchestration of these data
transformation pipelines is handled by NebulOuS core, allocating/deallocating computational
resources whenever needed to adapt to the current workload.

To better understand better the NebulOuS approach, consider the vehicle fleet monitoring solution
depicted in Figure 8: Vehicle fleet monitoring [oT data pipeline example.

Reverse
Geofencing geocoding

Gt

Figure 8: Vehicle fleet monitoring IoT data pipeline example

Monitored vehicles are equipped with a data logger that collects information about GPS position of
the vehicle and publishes it to the NebulOuS input queue. GPS monitoring is known to be error prone,
so the user wants to perform an outlier detection on the raw data (filtering step). The applied
algorithm needs to know the last N readings to classify the Nth+1 reading. As a result, this outlier
detection can be parallelized up to one instance of the step per vehicle and must always be guaranteed
that readings from a vehicle are processed by the same instance. Next step of the process is to detect
if the vehicle leaves a delimited geographic area for longer than a certain period (geofencing step).
Again, this operation can be parallelized but the events from one vehicle need to be processed by the
same worker. If a vehicle leaves the designated area, a notification is to be sent to the manager of the
fleet. This notification contains a human readable message about the location of the vehicle (e.g:
street address). For this, a reverse geocoding process needs to be executed on the latitude, longitude
data of the egress event (reverse geocoding step). This step can be parallelized infinitely, as each event
can be processed separately. With the result of the reverse geocoding, a notification step is
responsible for managing the actual sending of the notification via mail (notification step). This

35 https://druid.apache.org/
36 https://www.influxdata.com/products/influxdb-overview/
37 http://opentsdb.net/

38 https://graphiteapp.org/

Funded by
the European Union www.nebulouscloud.eu
45



NebulOuS

D5.1 [Prototype of Monitoring & Fog/IoT Data Streams
Management in Cloud Computing Continuum]

operation doesn’t allow for parallelization. After the filtering step, processed data is to be stored on a
time-series database (storing step). The parallelization level of this step is limited by the number of
concurrent connections to the underlying storage system (e.g., 5).

Geofencing Reverse
geocoding

\ Reverse
geocoding
Figure 9: Vertical scalability of the IoT data pipeline example

Geofencing

Reverse
geocoding

One of the key requirements of such applications is the ability to scale vertically part of the pipeline
depending on the workload. For instance, Figure 9: Vertical scalability of the IoT data pipeline
example shows a situation where several steps of the application (Geofencing and Reverse geocoding)
have been vertically scaled to parallelize the process of the step workload during a period of high
pressure on these steps.

In NebulOusS, we understand a data processing pipeline as a directed acyclic graph of steps. A step is
a logic block that receives data from an input stream, does some computation over it and produces
results in one or more output streams. In the example above, five steps can be identified: i) filtering,
ii) geofencing, iii) reverse geocoding, iv) notification v) storing.

The proposed semantics for modelling 10T data processing pipelines allow the user to indicate the
structure of the pipeline, the level of parallelism allowed for each step of the flow and the workload
distribution criteria among these parallel instances. On top of that, the user is also able to indicate
the SLO constraints/optimization function that governs the actual deployment of the pipeline in
terms of number of parallel instances of each step and number of resources (CPU/RAM/GPU, etc...)
dedicated to these instances. With this, the user is capable of leveraging the capacity of the meta-0S
to i) adjust the number of instances of each of the steps of the pipeline as well as the CPU/RAM
dedicated to each of these instances depending on the current workload of the application (e.g.
number of messages per second) and ii) automate the deployment of the pipeline and re-
configuration when the workload changes.

4.3.1.1 Definition of the data processing pipeline

Data processing pipelines (pipeline so forth) are defined as regular applications managed by
NebulOusS. As any other application inside NebulOusS, the user needs to provide its application graph
(Open Application Model or 0AM), the service level objective (SLO) and the objective function.

The application graph of a pipeline consists of the set of steps. A step is a logic block that receives
data from an input stream does some computation over it and produces results in one or more output
streams. The solution relies on ActiveMQ queues (offered by the IoT pub/sub mechanism described
in 4.1) to articulate the communication between pipeline steps: passing of messages between them
and collecting audit logs of their execution. Each step of this pipeline is mapped to a “component” in
the OAM file. For each of these steps, the application owner can specify the constraints on the
computing node that is going to host that step (max/min RAM, CPU, GPU, disk, etc..) as well as all the
horizontal scalability of the step (range of number of instances that can run in parallel).

In order to control how messages are distributed across the different instances of each step. A
configuration file is required to be provided by the application owner (devops). This file, in JSON
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format contains, for each step of the pipeline (identified by its component name in the OAM file), an
object with the following information:

e input_stream: The name of the stream from where the step will consume data.
e grouping key_accessor: Information on how to extract the key for grouping messages.
o source: property|body_json|body_xml
o expression: string.
= In case of source == “property”. The grouping key for a message will be the
value of the message property with key “expression”.
= In case of source == “body_json”. The grouping_key for a message will be the
string serialized value of the JSON path “expression” of the message body.
= In case of source == “body_xml”. The grouping key for a message will be the
string serialized value of the XML path “expression” of the message body.

To define the SLO of each step, user can leverage the metrics automatically reported by the [oT/FOG
Pub/Sub mechanism for each queue (messages_count, max_message_age, consumers_count,
groups_count) and/or metrics derived from the message lifecycle monitoring (wait time, processing
time, volume of data exchanged, etc...) (as described in 4.1) to define independent SLOs for each of
the pipeline steps. Usually, these SLOs would indicate the max processing latency of messages for a
certain step or the max length of the input queue for the step.

4.3.2 Conceptual Architecture & Implementation details

The proposed approach relies on the use of the [0T/FOG pub/sub mechanism described in section
4.1. It utilizes Artemis to create a cluster of pub/sub brokers that allows the pipeline instances steps
to communicate between them. To constrain how messages sent to a certain queue are to be
distributed among the different instances of the step that are running, the solution relies on the
message grouping capabilities of Artemis3®. This functionality permits to mark messages with a
JMSXGrouplD attribute. With this Artemis guarantees that all messages with the same JMSXGroupID
value will be sent always to the same client that is subscribed to the queue where the message resides.
Should the client be disconnected (due to failure of the client or scale-in/down of the deployment
topology), another client subscribed to the queue would be selected and start receiving the messages.
At any given time, a client subscribed to a queue can receive messages from many JMSXGroupIDs.

To simplify the process of marking the messages with the appropriate value of JMSXGroupID to
achieve the desired workload distribution among parallel instances of each of the IoT transformation
pipeline steps, we have developed an Artemis plugin that handles this task
(MessageGroupIDAnnotationPlugin). Once the Artemis broker starts, it retrieves the JSON file
containing the pipeline definition provided by the application DevOps (as explained in section
4.3.1.1). After that, the broker is ready for receiving new messages from the producers. Once a
message is received, the plugin sets the value for the JMSXGroupIDs of the message according to the
metadata defined in the pipeline definition file.

Since many steps can consume the output produced by a single step (e.g: in the example APP
geofencing and storing steps are consuming the results from the filtering step), but each step might
require different groupings for the message. To fulfil this requirement, it is necessary to create an
address for each consuming step and divert there the messages sent to the producing step output

39 https://activemq.apache.org/components/artemis/documentation/latest/message-grouping.html#message-grouping
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address. The developed ProcessingPipelineManagementPlugin handles this process automatically on
startup of the broker.

4.3.3 Usage Example

This section utilizes the example application described Figure 8: Vehicle fleet monitoring [oT data
pipeline example to provide a summary of how the proposed Data processing pipeline orchestration
approach can be applied to an user application.

For this application, the NebulOuS user (DevOps) should register a new OAM similar to the draft
definition described in Table 8 8.

Table 8: Draft of OAM for the Vehicle fleet monitoring APP.

kind: Application
metadata:
name: vehicle-fleet-monitoring
spec:
components:
- name: pub-sub-master
type: webservice
properties:
image: activemq/artemis
volumeMounts:
configMap:
- name: broker-config.xml
mountPath: /broker-path/etc-override /broker.xml
- name: iot_dpp_libs
mountPath: /broker-path/libs
- name: pipeline.json
mountPath: /broker-path/pipeline.json
- name: filtering-step
type: webservice
properties:

image: vehicle-fleet-monitoring/filtering-step

traits:
- type: "scaler”
properties:

replicas: [1,7]
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- name: geofencing-step
type: webservice
properties:

image: vehicle-fleet-monitoring/geofencing-step

traits:
- type: "scaler”
properties:

replicas: [1,7]
- name: reverse-geocoding-step
type: webservice
properties:

image: vehicle-fleet-monitoring/reverse-geocoding-step

traits:
- type: "scaler”
properties:

replicas: [1,7]

For brevity reasons, this draft OAM definition doesn’t include many of the steps from the sample
application. Also, instead of using DaemonSets to deploy a cluster of Apache Artemis brokers, it relies
on a centralized broker.

In this case, the OAM file contains the components relative to three steps of the pipeline: filtering,
geo-fencing and reverse-geocoding. For each step, an OAM component is registered. For each step,
the trait “scaler” is assigned a range from 1 to 7. This indicates that the step can have from 1 to 7
instances running in parallel.

Another key aspect of the example is how the Apache Artemis component isregistered. There, volume
mounts are used to provide: The broker configuration file, the JAR containing the plugin
implementation and the pipeline definition file.

The broker configuration file is an XML that contains all the configurations for the broker as
described in the Apache Artemis documentation?. There, the user must register the following
plugins:

- eut.nebulouscloud.iot_ dpp.QueuesMonitoringPlugin: Apache Artemis plugin that
periodically collects usage metrics from the queues of the broker (messages_count,
max_message_age, consumers_count, group_count) and publishes them to EMS.

- eut.nebulouscloud.iot_dpp.monitoring.EMSMessageLifecycleMonitoringPlugin:
ActiveMQ Artemis plugin for tracking the lifecycle of messages inside an ActiveMQ cluster. On

40 https://activemq.apache.org/components/artemis/documentation/latest/configuration-index.html
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each step of the message lifecycle (a producer writes a message to the cluster, the message is
delivered to a consumer, the consumer ACKs the message), the plugin generates events with
relevant information that can be used for understanding how 10T applications components
on NebulOuS are communicating.

- eut.nebulouscloud.iot dpp. MessageGroupIDAnnotationPlugin: ActiveMQ Artemis
plugin that sets, for any incoming message, the appropriate value for the JMSXGroupID
according to the configuration found on the pipeline definition file.

- eut.nebulouscloud.iot_dpp. ProcessingPipelineManagementPlugin: Apache Artemis
plugin responsible for creating necessary diverts for message addresses to allow multiple
pipeline processing steps to consume the outputs from the same preceding step but using
different grouping strategies.

The registration of the plugins is achieved including the following section in the XML configuration
file of the broker.

Table 9: Sample section for registering Apache Artemis plugins

<broker-plugins>
<broker-plugin class-name="eut.nebulouscloud.iot_dpp.QueuesMonitoringPlugin"></broker-plugin>

<broker-plugin class-name="eut.nebulouscloud.iot_dpp.EMSMessageLifecycleMonitoringPlugin
"></broker-plugin>

<broker-plugin class-name="eut.nebulouscloud.iot_dpp.MessageGroupIDAnnotationPlugin "></broker-
plugin>

<broker-plugin class-name="eut.nebulouscloud.iot_dpp.
ProcessingPipelineManagementPlugin"></broker-plugin>

</broker-plugins>

Regarding the JAR containing the plugin implementations, its source code can be found on
https://review.opendev.org/admin/repos/nebulous/iot-dpp-orchestrator,general

Regarding the pipeline definition file, the DevOps must provide a file with the following contents:

Table 10: Pipeline definition for the Vehicle fleet monitoring APP

{

"filtering_step": {
"input_stream": "raw_data",
"grouping _key_accessor": {

"source": "body_json",

"expression”: "vehicle_id"
}
b
"geofencing_step": {
"input_stream": "filtering_step_output”,
"grouping _key_accessor": {

"source": "body_json",
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"expression": "vehicle_id"

}
b
"reverse_geocoding_step": {
"input_stream": "geofencing_step_output”
}
}

There, information on the input of each step and how messages are grouped is provided:

o filtering step:that consumes messages published on the “raw_data” address (there is where
vehicles should publish the GPS readings). Filtering of incoming messages can be parallelized
but it must be guaranteed that all messages from the same vehicle are processed by the same
step instance. For this, this step states that messages should be grouped by the value of the
attribute “vehicle_id” found in the body of the messages.

o geo_fencing step: consumes from “filtering step_output” address (that is where the
workers from the “filtering step” publish their output). Again, multiple instances of
“geo_fencing step” can exist, but messages from the same vehicle must always be processed
by the same instance of the step. For this reason, the “grouping_key_accessor” is provided.

e reverse_geocoding step: consumes from "geofencing_step_output". This time, no special
requirements on the distribution of messages needs to be imposed, for this,
“grouping_key_accessor" is not informed.

With this configuration, once the application is deployed, the metrics and events described in section
4.1.2 Interfaces offered /required are published on the EMS and can be used to define the SLO for the
application and the optimization criteria.

4.3.4 Next steps for the final iteration of the mechanisms

Having implemented the fundamentals for modelling IoT data processing pipelines, efforts for the
task “Task 5.3: Interoperable 10T /Fog data collection and management” will focus on validating the
proposed approach. This will be handled following two different directions. First, a laboratory-scale
test application will be modelled using the proposed approach and workload simulations will be
conducted to evaluate how NebulOusS core handles the re-adaptation needs. In parallel, the approach
will also be validated using use cases already present in the project (Crisis management use case)
and other use cases that might join the project as part of the Open Calls. The findings obtained from
these activities will help to identify new metrics that could be beneficial for expressing the SLO’s of
the applications and the optimisation function. Also, the laboratory scale application can be made
publicly available to let NebulOuS adopters better understand how IoT data processing pipeline
oriented applications can be modelled.
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5 SELF-ADAPTIVE RECONFIGURATION ENACTMENT

Reactive application management means that there is a Service Level Objective (SLO) violation event
triggering the adaptation, and then all the metric values representing the application’s current
execution context is frozen while the Solver finds a configuration that is optimized for the measured
application execution context. This approach can always be used; however it takes time to compute
the optimized configuration and to reconfigure the deployed components. This may lead to a
significant lag between the time point when the measurements were taken, and the time point when
the optimized application is ready and running. The benefit is that the reactive adaptation is
computed on exact information available at the time of the SLO violation detection. Alternatively, one
may predict the measurements and the SLO violation events to a future time point long enough into
the future to complete the optimization and the adaptation of the adaptation before this time point is
reached. This is obviously better provided that the prediction is exact. But since it must be based on
machine learning, which assumes that the future will look similar to the past, there will always be a
discrepancy between the predictions and the real execution context when the reconfigured
application is ready for use, and this discrepancy increases with the length of the prediction horizon.

Proactive adaptation was piloted in the MORPHEMIC#! platform developed in the Horizon 2020
project of the same name. The process introduced in MORPHEMIC is similar in NebulOusS. First,
predicted monitoring metric values are being received through the communication broker and are
being stored in an InfluxDB database. Each application features its own bucket, therefore allowing
for the isolation of data between applications. Then, forecasters are able to query the database, create
the datasets which are needed for their operation and create predictions. In NebulOuS we aim to
reuse at least one forecaster from MORPHEMIC, which is based on exponential-smoothing available
here*2. After, the Prediction Orchestrator collects and ensembles these predictions to a final predicted
value. This value is then used by the SLO Violation Detector to create areconfiguration alert whenever
necessary. The process is illustrated in Figure 10 showing the detection of an SLO violation event at
t; and where the reconfigured application is only available for use at t,g. The Solver in MORPHEMIC
used an external module to calculate the utility value for a proposed configuration, and the Utility
Generator used again a Performance Predictor to forecast the effect of the proposed configuration on
performance indicator values depending on the configuration. For instance, the response time of an
application is directly measurable and influenced by the current application configuration and
execution context. The proactive version predicted the future application execution context vector for
t,g denoted O(t,g) and this was used in the optimization loop leading to the deployment of the
optimized configuration ¢*(t,g).

It is necessary to distinguish between configuration independent metric values that can be trivially
measured and predicted by time series prediction methods, and the performance indicators that
must be calculated using regression on the independent metrics and the running configuration. The
estimation of the regression functions will be done by the Performance Module in NebulOusS, and the
evaluation of both the utility function and the regression values can then be directly computed by the
Solver. More details are available in the NebulOuS deliverable D3.1 [12]. The prediction of the

4 https://www.morphemic.cloud/

“2 https://opendev.org/nebulous/exponential-smoothing-predictor
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independent metric values and the prediction of a possible future SLO violation event is discussed in
the following.

Performance predictor

(t3)|c(tzg)
Forecaster ) i

- Utility Generator
Service Level

SO T B(te) N ) U(e(t20)10(t20), $)
Objective violation L‘(fg)T'—‘(tzs) l U180, )

—— O(tz9)
Meta- - Meta.
solver Solver - » Adapter ﬂ
0(t3) c*(t3) - v
" (tz8) Execution
ware

Service Level
Objective violation

Event management system

c*(t3)
" (t2s)
Deployment easurements Reconfigured
4 /\_ application
td ts ’ tz;; Time

| Reconfiguration lag: h = t,g — t3 |
[ *

Figure 10: The application optimisation inherited from the MORPHEMIC project showing both the reactive optimisation to a
Service Level Objective violation at time t3 leading to the new reconfiguration deployed at t,g, and the proactive version
where the metric values are predicted for t,g.

Once the new configuration has been calculated, it must be enacted. This is done by two critical
components: The Adapter and the Deployment Manager called the “Executionware” in MORPHEMIC.
The Adapter computes the difference between the running application and the configuration to be
enacted, keeps the resources the two configurations have in common and instructs the Deployment
Manager to create the missing resources and free the resources that will no longer be used. The
Adapter is a part of the Optimiser Module and the initial version of the Deployment Manager is
discussed in D4.1 Initial Orchestration Layer & Security-enabled Overlay Network Deployment.

5.1 SLO VIOLATION DETECTOR

5.1.1 Introduction

The Severity-based SLO Violation Detector, is a component which is responsible for the recognition
of the need for a reconfiguration. It allows an application to function smoothly, by preserving at
runtime the constraints the DevOps has provided. Using its help, the platform can save resources by
not continuously running resource-hungry optimization algorithms, but focusing instead on the
points in time, when the operational thresholds the DevOps has set have been violated. The role of
the component can be better understood by using the following diagram:
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Figure 11: The interactions of the Severity-based SLO Violation Detector within the Nebulous platform

The SLO Violation Detector (or SLOViD) draws its roots directly from the respective component which
was introduced in the Morphemic project. Of course, a lot has changed in this component, which
most importantly has been reworked and re-architected to satisfy the demanding multi-application
needs of Nebulous.

5.1.2 Approach

The most important challenge which is presented in the context of Nebulous for the SLO Violation
Detector, second only to dynamically improving its behaviour, is the support for multiple applications.
To actually handle the case, a major refactoring was required from the source code which was
inherited. The general architecture of the component will be outlined in the following section 5.1.3.
order to extend the functionality of the component, the mavenized structure which was employed for
the Morphemic version, was mostly kept intact. Additional or more refined concepts were introduced
in existing classes, but where needed additional classes were created. However, code packages were
kept the same.

Seizing the opportunity of the code refactoring, a transition to a new AMQP communication library
introduced by EXN43 was performed. Moreover, some new functionality in the form of elementary
support for a Spring Boot API was added. Therefore, the SLO Violation Detector can now spawn new
detection engines both through a REST API and through ActiveMQ.

5.1.3 Conceptual Architecture

The architecture of the SLO Violation Detector appears in Figure 10. In the above figure, we present
the internal architecture of the SLO Violation Detector, and the main input and output of the
component. As it can be seen, the SLO Violation detector receives functional input from the NebulOuS
platform, in the form of three messages-events arriving in the Nebulous broker: The “SLO Rule”
message, the “Metrics list” message and the “Device lost” message. Out of these, the most important
is the “SLO Rule” message, which contains the actual SLOs which should be respected by the
application. The “Metrics list” message defines the metrics which should be predicted for the
particular application, and therefore indirectly indicates to the SLO Violation Detector some metrics
which will be exposed by the application and will possibly need a subscription. It is very important,
as it now (unlike Morphemic) contains information on the estimated maximum and minimum values
of a metric, therefore minimizing the need for coarse, generic estimations. Finally, the “Device lost”

4 https://opendev.org/nebulous/exn-connector-java
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message indicates that a device was lost from the platform and therefore it is necessary to signal that
a reconfiguration will be (possibly) needed.

Device / VM SLO Violation Detector
input

Director | 510 Rule

Realtime message
metric
input

Predicted
metric Device
input lost

Reconfiguration
evaluation needed

Figure 12 The interfaces of the SLO Violation Detector and its internal conceptual architecture

As underlined in the previous section, the main change from the Morphemic platform which should
be underlined in this deliverable is the refactoring of the SLO Violation Detector, in order to be able
to support multiple applications. In the architectural view of Figure 10 above, this is implied by the
handling of all communication with actual VM instances and edge devices spawned by NebulOusS, by
different detector instances.

The complete functionality of the component, from the registration of an application to it, until a
reconfiguration is sent, is the following:
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Figure 13 The flow of processing for a single SLO rule within the SLO Violation Detector, starting from the reception of its
definition, and ending with the publication of the alert event and the reception of new real-time and predicted monitoring
data

As Figure 11 portrays, for an application to be considered by Nebulous, it is first necessary to receive
an “SLO rule” event. While in Morphemic this event was received by a monolithic SLO Violation
Detector, and triggered the functionality described in steps 2,3 and 4, in Nebulous the same
functionality is accomplished by two different sub-components - the Director and the Detector
subcomponents respectively. In the context of Nebulous, one Director is always assumed, which
guides one or more Detector subcomponents. When a new “SLO rule” message arrives, the Director
subcomponent instructs the creation of a new Detector subcomponent. Each Detector is then
responsible to subscribe to real-time and predicted metrics which are relevant to the SLOs for the
particular application, which are expected to be received from EMS clients and the Nebulous
forecasting output (therefore, if the same metric is used in different applications the SLO Violation
detector can keep values distinct per application, associated to their own Detector). Real-time and
predicted values can be received both in regular and irregular time intervals.

To understand whether a reconfiguration is necessary, the SLOViD Detector subcomponent calculates
the Severity [13] of the current situation, as this is perceived through (at most) three different meta-
metrics: PrConf, Delta and Rate of Change. All of these meta-metrics take into account not only the
real-time values of monitoring metrics but also the predicted values which are provided by Nebulous
forecasting. PrConf is the probability confidence associated with a prediction for a particular
monitoring metric, multiplied by the normalized confidence interval width. Delta, refers to the
differential between the predicted value and the real-time value of the metric (the real-time value is
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calculated as the average of a configurable number of past observations). Rate of change is self-
explanatory - it calculates the rate of change of a metric, by calculating the normalized ratio of the
difference between the prediction and the real-time value of a metric, over the current real-time
value. When using the Prconf-Delta method to calculate Severity, only the product of the two meta-
metrics (PrConf and Delta) is used. On the other hand, calculating Severity using the All-metrics
method involves a typical calculation of Severity using all three meta-metrics. For more details, and
illustrative examples, the reader is referred to the documentation provided as part of the relevant
work in Morphemic project [14].

If the All-metrics method has been selected to calculate the final Severity value, the Severity value
which is calculated is used as the probability of an SLO violation (capped at 100%). On the other hand,
if the PrConf-Delta method has been chosen, the Severity value is compared with the overall median
Severity value which can be calculated for all inputs (equal to 0.0652), assuming normalized Severity
values from 0 to 1. This median value is used as the 50% reconfiguration probability value, and a
100% probability value is assigned to any Severity value equalling (or being greater than) 1. Although
this assignment of a probability to a Severity value is justified, it is not the sole possible assignment.
Therefore, we plan to improve this assignment of probabilities to Severity values as future work for
this component (see also the suggested approach in Section 5.1.5 ).

For more details on the calculation of the Severity value, the reader is directed to the documentation
of the component provided in D2.2 of the Morphemic project [14].

5.1.4 Interfaces offered and required

The Severity-based SLO Violation Detector component requires a number of interfaces in order to
process the messages which are illustrated in Figure 10. In the following table 11, the interfaces
offered and required by the component are described. The majority of the interfaces of the
component are kept the same as in Morphemic; Still, they are briefly repeated here for completeness,
with the addition of the Device lost interface. It should be noted that the ‘Device lost’ interface is an
inbound interface for the SLO Violation Detector, and when a message is received in it a new
reconfiguration message is triggered and published.

Table 11: The interfaces offered and consumed by the SLO Violation Detector

Interface name | Description Related topics Sample event
Monitoring Data | This interface is eu.nebulouscloud.m | {
. . . . "metricvalue": 12.34,
- real-time related to the onitoring.realtime.{ "level": 1,
metrics acquisition of METRIC_NAME} "component_id":"postgresql_1",
real-time and , timestamp": 163532341
predicted
monitoring
metrics
Monitoring Data | This interface is eu.nebulouscloud.m | {
. . . . "metricValue": 12.34,
- predicted related to the onitoring.predicted. "level": 1,
metrics acquisition of {METRIC_NAME} "timestamp": 163532341,
; "probability": 0.98,
pred_lCte_d "confidence_interval" : [8,15]
monitoring "predictionTime": 163532342,
metrics }
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Metrics list

This interface is
related to the
acquisition of
information on
the metrics
which will be
monitored

eu.nebulouscloud.m
onitoring.metric_list

{
"name": "_Application1",
"version": 1,
"metric_list": [
{
"name": "metric_1",
"upper_bound": "100.0",
"lower_bound": "0.0"
b
{
"name": "metric_2",
"upper_bound": "Infinity",
"lower_bound": "-Infinity"
b
{

"name": "metric_3",
"upper_bound": "10.0",
"lower_bound": "-4.0"
}
]
}

Device lost

This interface is
related to the
acquisition of
information on
the need of
Nebulous to
perform a
reconfiguration if
a used device is
lost at runtime

eu.nebulouscloud.m
onitoring.device_los
t

{
"device_id": "device_100",
"application_name": "_Applicationl”,
"timestamp": 1626181860
}

Reconfiguration
alert

This interface
provides an alert
to the NebulOuS
Optimizer of a
possible need to
reconfigure the
application

eu.nebulouscloud.m
onitoring.slo.severit
y_value

"severity": 0.9064,
"predictionTime": 1626181869,
"probability": 0.92246521

New SLO rule

This interface is
related to the
need of the SLO
Violation
Detector to aid
the enforcement
of SLOs for a
particular
application

eu.nebulouscloud.m
onitoring.slo.new

"name": "_Applicationl”,

"operator": "OR",

"constraints": [

{
"name":
"cpu_and_memory_or_swap_too_high",

"operator": "AND",
"constraints": [

{
"name": "cpu_usage_high",
"metric": "cpu_usage",
"operator": ">",
"threshold": 80.0

}J

{
"name" :

"memory_or_swap_usage_high",

"operator": "OR",
"constraints": [

{
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"name" :
"memory_usage_high",

"metric": "ram_usage",
"operator": ">",
"threshold": 70.0

s

{
"name" :

"disk_usage_high",

"metric": "swap_usage",
"operator": ">",
"threshold": 50.0

5.1.5 Nextsteps

While a fair number of changes have been implemented for the SLO Violation Detector, the
introduction of the capability to change the Severity threshold triggering an adaptation, or
equivalently being able to change the probability of an adaptation dynamically (and based on the
feedback of the topology), still needs to be implemented. Until now, the Q-learning technique has
been evaluated and is the technique which will be most probably used.

By comparing the current state of the platform with the desired goals, it has been established that in
order to achieve the dynamic adaptation of the behaviour of the component, a data-driven approach,
or a control-theoretic approach needs to be implemented. To illustrate, let us assume a scenario in
which there is a rule stating that an SLO violation should exist when the CPU usage is over 70% or
the RAM usage is over 70%. Then, the following table 12 can be created (assuming that the all-metrics
calculation method has been chosen).

Table 12: Scenario of a predicted SLO violation

Realtime Predicted Rate of PrConf Delta
change
Severity | Probability | Success
Cpu | ram | cpu |ram | cpu |ram | cpu | ram | cpu ram
0.7 0.8 0.8 0.9 0.14 | 0.13 | 09 0.9 0.33 0.66 0.5611 56.11% 100%
0.7 0.8 0.75 | 0.95 0.07 | 095 | 0.9 0.9 0.16 0.83 0.5794 57.94% 80%

Based on our preliminary analysis, we have considered that when the component performs a
calculation involving an SLO rule for a particular application, the real-time and predicted values for
the metrics which are involved in the rule, as well as the calculated meta-metrics, can be stored. Then,
when another situation (where situation is defined as the vector of SLO rule version and the current
real-time and predicted metrics for a particular application), similar to the older one has been
encountered, knowledge can be extracted to derive the next action of the SLO Violation detector
(announce need for reconfiguration or not). The decision can be taken by factoring in both the
previous success of following the action which would otherwise be deterministically chosen (i.e., to
announce the need for reconfiguration, whenever the probability is over X%) and an exploration
factor which would be considered only when the success rate is less than 100% for the particular
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situation. The success rate itself could be defined as the capability of the platform to reach an
estimated Utility function score by adapting the current topology.

It can be understood from the above example that Q-learning fits the vision to implement adaptive
behavior within the SLO Violation Detector. However, the final decision on the exact technology to be
used along with the relevant implementation details is something which will be reported in D5.2

5.2 PREDICTION ORCHESTRATOR

The Proactive Adaptation Approach is central to enhancing the precision of predictive models through
the integration of a wide array of forecasting tools. This methodology is predicated on the principle
that a broader spectrum of forecasting inputs contributes to more accurate and reliable predictions
across various metrics. The linchpin of this approach is the Prediction Orchestrator, which fulfils
several pivotal functions:

e Allocation of forecasting tasks: The Prediction Orchestrator delineates the specific metrics
that each forecaster must predict, including the necessary frequency of these predictions,
thereby ensuring a structured and systematic forecasting process.

e (Centralization of forecasts: By consolidating the forecasts from diverse sources into a unified
repository, the Prediction Orchestrator facilitates a comprehensive overview of predictive
insights.

e Oversight and validation: The Prediction Orchestrator rigorously evaluates the aggregated
forecasts to ascertain their relevance to future timeframes while securely archiving this data,
thus ensuring its integrity and applicability.

e Synthesis of predictions: Employing advanced analytical techniques, the Prediction
Orchestrator amalgamates the disparate forecasts into a singular, refined prediction for each
metric and temporal juncture, thereby enhancing the overall predictive accuracy.

e Dynamic response to updates: In instances where forecasters revise their predictions, the
Prediction Orchestrator swiftly recalibrates the consolidated forecast to reflect these updates,
maintaining the currency and relevance of predictive insights.

The foundational assumption of this approach is the existence of at least one forecasting method and
a Prediction Orchestrator. In scenarios where a singular forecasting method yields direct 'final’
predictions, the conventional procedural sequence is bypassed. Here, the 'final’ predictions hinge on
pre-established parameters for the prediction horizon and the quantity of future forecasting intervals,
necessitating merely a singular initiation message (start_forecasting, type I).

Each forecasting method is tasked with generating predictions for designated metrics, extending into
the future as specified. The inception of forecasting, termed 'epoch start’, alongside the "prediction
horizon', are critical components. The prediction horizon is defined by the minimal duration requisite
for an adaptation, rendering forecasts for intervals shorter than this horizon as extraneous.

For instance, should the epoch start be set at 1705046500, with a prediction horizon of 120 seconds
(2 minutes) and a requirement for 5 sequential forecasts, a method is expected to instantaneously
generate forecasts for timestamps 1705046620, 1705046740, 1705046860, 1705046980, and
1705047100. If these forecasts are produced at 1705046750, the initial two would be obsolete, and
the third too proximate to the prediction horizon (110 seconds), leaving only the latter two forecasts
as relevant.

This process is facilitated through various message types:

Type I Messages initiate the forecasting process, delineating the metrics to be predicted by a specific
method and are conveyed via the designated topic.
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The forecasting initiation involves a start_forecasting event, which outlines the metrics to be
forecasted by a specific method. This message is sent to the
eu.nebulouscloud.forecasting.start_forecasting.{prediction_method_name} topic, where
{prediction_method_name} is a placeholder.

An example of a Type [ message structure is:

"application_name" "_Application1"
"metrics” "cpu_usage"
"timestamp” 1705046535
"epoch_start" 1705046500
"number_of_forward_predictions" 5
"prediction_horizon" 120

metrics: A list specifying which metrics are to begin forecasting.

timestamp: The epoch time when the message is sent.

epoch_start: The starting point for forecasting.

number_of forward_predictions: How many forecasts are to be made per metric.
e prediction_horizon: The time interval in seconds between each forecast.

Type II Messages encapsulate the predictions formulated following a Type I message and are
published to a specific monitoring data interface topic.

Predictions should be formatted as Type Il messages for the monitoring data interface and published
to the: eu.nebulouscloud.monitoring.preliminary_predicted.{prediction_method_name}.
{metric_name} topic, with placeholders for {prediction_method_name} and {metric_name}.

Type III Messages, while not obligatory, signal the termination of a forecasting method's activity,
typically due to suboptimal performance, and specify the metrics for which predictions should cease.

The Prediction Orchestrator will play an instrumental role in this ecosystem, orchestrating the
forecasting activities by directing methods on the metrics and timing for predictions, collating and
scrutinizing forecasts, and refining these into more accurate predictions through sophisticated
techniques. These final predictions will be then relayed to the SLO Violation Detector and the
Optimiser ensuring that the system's adaptive responses are informed by the most accurate predictive
insights available.

5.3 ADAPTER

The Optimizer module consists of multiple internal components, see the deliverable D3.1 Initial
NebulOuS Brokerage and Resource Management. The predicted values for metrics that are used in the
utility function and the problem constraints are collected by the Solver. When the Solver is triggered
by the SLO Violation Detector to produce a solution, the Solver produces the solution that maximizes
the utility of the application for the farthest time point for which it has a prediction assuming zero-
order hold for all other metrics, i.e., that all metric values predicted are valid until the next prediction
arrives.

The Adapter is an internal component of the Optimiser Controller receiving the next application
configuration produced by the Solver. This configuration is compared to the running configuration,
and a list of nodes to add and a list of nodes to remove are produced to plan the adaptation. Note that
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both horizontal and vertical scaling are supported: the solver might decide to vary the number of
replicas an application component runs on (horizontal scaling), and/or might choose to redeploy a
component on a node with different requirements (vertical scaling).

After calculating the necessary changes, the Optimiser Controller calls endpoints on the Scheduling
Abstraction Layer (SAL) to create and shut down nodes as needed. After this process, the node
configuration for the application will correspond to the new application configuration computed by
the Solver. The adapter creates new nodes, submits the KubeVela file to deploy the containers of the
application on the new node configuration, then shuts down the retired nodes after KubeVela has
computed the difference between the running application pods and the requested pods and restart
deployed the application components according to the new scenario.

Concretely, the sequence of Adapter actions performed during the reconfiguration of the application
is as follows:

1. The adapter updates the KubeVela application model file by replacing values of resource
requirements with the values produced by the Solver.

2. It scans the updated Kubevela file to gather Node Candidates requirements.

3. It calls the Cloud/Fog Service Broker to get the available Node Candidates fulfilling the
requirements. The Cloud/Fog Service Broker returns the list of Node Candidates together with
their ranking. Node Candidates are ranked based on the preferences which are submitted for the
particular application, in terms of a selection of criteria with different weights. Details of
Cloud/Fog Service Broker and how the ranking is calculated are provided in D3.1 Initial NebulOuS
Brokerage and Resource Management.

4. The Adapter chooses the Node Candidates with the highest rank. Node Candidates can be either

Edge or Cloud Nodes.

[t compares the chosen Node Candidates with the Nodes that are currently used.

[t asks SAL to create new nodes and add them to the application cluster.

7. It sends the updated KubeVela file to SAL. SAL reconfigures the application: components are
moved to the newly created nodes.

8. Once the application is running on the new configuration, the Adapter calls SAL to remove any
superfluous nodes from the cluster and stop them.

AL

This behaviour ensures that the time when the application is not operating is minimized to be only
while the KubeVela framework updates the application, without waiting for the nodes to be started.
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Figure 14: The sequence of reconfiguration actions performed by Adapter

5.4 RECONFIGURATION ENACTMENT MECHANISM

The Deployment Manager (SAL#*) component serves as the foundational element within the NebulOuS
solution, with its core functionalities outlined in D4.1: Initial Orchestration Layer & Security-enabled
Overlay Network Deployment. By adhering to the principles of monitoring, decision-making,
execution, verification, and adaptation requested by the Optimizer and the Scheduler, SAL ensures
the seamless adaptation of resources and services to changing demands within NebulOuS cloud and
edge computing environment. SAL employs reconfiguration enactment mechanisms to enable
dynamic adjustments within the Kubernetes cluster. These mechanisms encompass actions such as
scale-in/scale-out processes through designated endpoints, updating labels of pods, and component
replication. This orchestration mechanism plays a pivotal role in facilitating efficient resource
utilization, effective load balancing, fault tolerance, and scalability.

5.4.1 Scale-in / Scale-out mechanism

Process for scaling in and out of the number of nodes in a cluster is supported by the SAL endpoints.

4 https://github.com/ow2-proactive/scheduling-abstraction-layer
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Scaling out involves adding new nodes to the existing cluster dynamically to accommodate increased
workload or demand. The endpoint for scaling out is represented by a POST request to a specific URL.
The request body contains JSON data specifying the details of the new node(s) to be added to the
cluster. In this case, the JSON array includes information about the new node such as its name (e.g.,
worker-node), node candidate ID, and cloud ID. The request also includes a session ID header for
authentication or session management purposes. Upon successful execution, the response returns
JSON data confirming the addition of the new node to the cluster. The response includes details such
as the cluster ID, cluster name, master node, and a list of all nodes in the cluster including the newly
added one.

Scaling in involves removing existing nodes from the cluster dynamically to optimize resource usage
or reduce costs. The scaling in process involves a similar mechanism where a request is made to
remove specific nodes from the cluster. Upon successful execution, the response will confirm the
removal of the specified node(s) from the cluster.

SAL Kubernetes

Optimizer API server

Scale in/ scale out request

Add/remove the Nodes

Confirm addition/removal
of the Nodes

Send updated list of the
nodes

T
|
I
|
I
|
|
I
I
L}
I
I
|
|
|
|
|
|
|

Figure : Scaleln/Out mechanism

5.4.2 POD migration

Pod migration in a Kubernetes cluster is the dynamic process of relocating pods (containers) from
one node to another, often prompted by events such as node failure, maintenance tasks, or scaling
operations. When a pod migrates to a new node, it must undergo labels update to accurately reflect
its updated location. Labels provide metadata regarding specific attributes of nodes, preferences or
conditions to avoid during the placement, or the pod requirement such as memory, CPU or storage.
The Kubernetes scheduler is responsible for determining where to deploy pods within the cluster
based on various factors such as resource availability and constraints, affinity, and anti-affinity rules?.
Labelling of a pod forces the scheduler to find feasible Nodes for a Pod and picks the most feasible
ones to run the Pod according to the given label. The scheduler then notifies the API server about this
decision in a process called binding. Initially, the Kubernetes cluster comprises multiple nodes, each

% https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
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labelled with attributes indicating for instance hardware specifications or geographical location. For
instance, Node A might be tagged with attributes like "zone=us-west" and "ram=4" to signify its
geographical location and the amount of RAM it possesses. However, when a trigger event signals the
need to decommission or repurpose Node A, its existing labels are removed through the process,
which involves updating the metadata associated with Node A via the Kubernetes API server.
Following the successful removal of labels of Node A4, if there's a demand for additional resources in a
specific geographical zone, Node B is appropriately labelled with attributes representing that zone.
This process involves updating Node B's metadata with new labels, such as "zone=us-east" and
"ram=8" signifying its new geographical location and increased RAM capacity. With Node B
appropriately labelled, Kubernetes components can efficiently consider it for workloads requiring
resources matching those attributes.

Subsequently, the redeployment process is initiated. Redeploying a Kubernetes deployment impacts
the cluster's workload distribution and resource allocation, potentially leading to pods migrating to
different nodes based on scheduling decisions. During redeployment, Kubernetes may terminate
existing pods associated with the deployment and schedule the creation of new pods based on the
updated configuration. This process ensures continuous service availability and optimal resource
utilization within the cluster. Overall, pod migration, relabelling, and redeployment activities in
Kubernetes clusters are vital for adapting to changes in application versions, configuration settings,
or maintenance requirements, while maintaining service continuity and resource efficiency.
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Figure : POD migration mechanism
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5.4.3 Componentreplication

In Kubernetes cluster management, component replication involves creating multiple replicas of an
application or service to improve availability, scalability, and fault tolerance. Initially, a single instance
of the application is deployed within the cluster using an application deployment endpoint provided
by SAL. Through this endpoint, the Optimizer configures the deployment to include multiple replicas
as needed. SAL ensures the continuous maintenance of the specified number of replicas within the
cluster. In response to increased demand or workload, the Optimizer dynamically scales up the
number of replicas. SAL allocates these replicas to available nodes based on resource availability,
constraints, and scheduling policies. The creation of additional replicas is initiated to meet the desired
replication count, with SAL instantiating new pods based on the application's container image and
deploying them to selected nodes. Continuous monitoring of the replicas' health and status is crucial
to maintain their availability and reliability. In the event of replica failure or deterioration, automatic
mechanisms are essential to replace them with new instances and sustain the desired replication
count. Conversely, during decreased workload or reduced resource usage, the Optimizer scales down
the number of replicas. SAL automates the termination of surplus replicas using the Kubernetes kube
component, thereby optimizing resource utilization across the cluster.
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Figure : Component replication
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6 ASYNCHRONOUS MESSAGE-BASED API

This section describes the architecture, as well as the approach taken to ensure an event driven
asynchronous architecture across the NebulOuS components. Using an event driven architecture, we
aimed to promote component decoupling through separation of concerns, component scalability
through asynchronous communication, and communication coherency through message address
conventions and message payload structure definition and homogenization [15].

s B S—
EXN Libraries
A vy
h \ z
=
- =
Apache Qpid =
=
@
\ v g
@
Topic and Message Specification
N
' ™y
ActiveMQ Classic
. vy
g ™y
AMQP 1.0
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Figure 15: Event driven asynchronous architecture across the NebulOuS components Message Broker

A core component of asynchronous communication is the message broker. A message broker is a
software system that enables communication between different applications, systems, or services by
translating messages between formal messaging protocols. It acts as an intermediary that facilitates
the exchange of messages by receiving a message from a sender (producer) and routing it to the
appropriate receiver (consumer), potentially transforming or processing the message along the way.
This allows for decoupling of the producer and consumer, meaning they do not need to be aware of
each other's existence or be directly connected.

Amongst the most important features provided by a message broker are:

e Message Queuing: Temporarily holding messages until they are processed by the receiver.

e Publish/Subscribe Model: Allowing messages to be published to a topic and received by all
subscribers to that topic.

e Message Routing: Directing messages from one or more producers to one or more
consumers based on routing rules.

e Message Transformation: Converting messages from one format to another to ensure
compatibility between different systems.

¢ Reliability and Durability: Ensuring messages are not lost in case of processing failures or
network issues.

e Scalability: Handling increasing loads by distributing messages across multiple consumers
or instances of the broker.
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Popular message brokers include RabbitMQ*6 , Apache Kafkat7 , ActiveMQ#8,, and Amazon SQS*°, each
with its own set of features and use cases. We opted for ActiveMQ Classic5® which provides a solid
and proven message broker fully supporting the AMQP 1.05! specification , which is the main
communication protocol.

6.1 MESSAGE PROTOCOL (AMQP 1.0)

There are several message protocols supported by the message brokers. We examined two of the
most common message protocols in event driven architectures, the Java Message Service (JMS)
protocol, given the fact that it was already adopted by several components in the platform, such as
the EMS (Section 2.2), and the Advanced Message Queuing Protocol (AMQP) protocol, and specifically
version 1.0.

We opted for AMQP 1.0 given its interoperability across different platforms and languages. JMS is a
set of interfaces and associated semantics defined specifically in Java, which can limit interoperability
to Java or Java Virtual Machine (JVM)-based languages, unless additional bridging software is used.
AMQP's protocol-level standardization makes it inherently more interoperable between different
systems and languages. As part of our task, we needed to allow components in a multitude of
programming languages to adopt the asynchronous messaging paradigm through a unified protocol.

Furthermore, and an important aspect of opting for AMQP is that it offers support for both brokered
and brokerless messaging architectures providing flexibility in deploying distributed systems and
can offer scalability advantages in certain scenarios. For example when a centralized broker is not
required and producers and consumers can communicated directly between each other, whilst
keeping the same implementation API

This allows us to future proof our communication component, and allow for a version of the platform
which does not rely on a message broker.

Finally, AMQP in its core implementation offers messaging functionality which would require 3rd
party plugins or further configuration in the case of the JMS protocol, such as message annotations,
filtering, and settlement and delivery tracking at the protocol level.

6.2 ADDRESS & PAYLOAD SPECIFICATION

As part of the main goal of this task, which was to allow components to seamlessly integrate and
communicate between each other, we defined a topic naming convention and payload specification
wrapping of a core AMQP message, which set the basis upon which the functionality would be

46 https://www.rabbitmg.com/

47 https://kafka.apache.org/

“8 https://activemqg.apache.org/

49 https://aws.amazon.com/sqs/

50 https://activemq.apache.org/components/classic/

51 https://www.amgp.org/specification/1.0
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implemented. The scope of such specification was to ensure future proof extensibility of the platform,
by allowing other components to be integrated in the future in a known matter.

6.2.1 Anatomy of a message

The message will adhere to the AMQP 1.0 protocol, whereby through convention components in the
platform need to abide by in order to seamlessly integrate with each other.

AMQP 1.0

to: eu.nebulouscloud.core.ui.application.new

Header message_id: ee23e891-a339-41e8-a108-aa72ecc4c4b0
correlation_id: 3b1b3e7c-dd81-454f-9b7b-02e02cdc012a
content_type: application/json

Annotations application: bda1976a-5d6a-4055-828d-fe389815ed69

{
"metrics": [
"CPU Usage",
"CPU Core",

BOdy _ ] "Frames Per Second"

"preferences":[

"CPU Usage > 80%",

"CPU Core Between 20"
1
"utilityFunction":[

"Function to analyze frames per second”
1
}

Figure 16: the AMQP 1.0 Message

The following table describes each part of the AMQP 1.0 Message.
Table 13. AMQP 1.0 Message Explained

to This is the intended address of the message, commonly referred to as
topic, however in AMQP it is referred to as the address, which can be
either a topic destination or a queue. By default, the address is
considered a queue unless otherwise specified

message_id In order to better track the message across logs or even in the actual
broker Ul each message has a unique identifiable UUID v4 ID.

correlation_id In order to support the request/reply paradigm of the Enterprise
Integration Pattern, the correlation-id is propagated by the consumer of
a message in case of a reply, so that the initial request can be matched

content_type By definition all message are of type JSON.
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m the European Union www.nebulouscloud.eu

69



NebulOuS

D5.1 [Prototype of Monitoring & Fog/IoT Data Streams
Management in Cloud Computing Continuum]

application This is set in the message annotations, and it allows component to
further filter messages intended for a specific application. The
application UUID is generated upon application create by the Ul
Controller

body This can be set to any content that is of the correct content-type, in this
case JSON (application/json)

6.2.2 Address naming convention

Besides the message payload convention, it is important to determine an address naming convention,
which provides several advantages during integration:

e Allows consumers to subscribe to all the nebulous events regardless of component
(producer) by subscribing to base of the naming convention e.g., eu.nebulouscloud.*

e Subscribe to all the events coming from a specific component regardless of the scope of the
message. For example, if the component is called ui subscribing to eu.nebulouscloud.ui.*

e Subscribeto a predefined action which is used across all components, for example component
state, by subscribing to eu.nebulouscloud.*.state.*

In order to achieve this, there are several parts to this convention.

Component Action

eu.nebulouscloud.ui.

Y
Base Name Sub-Component

Figure 17: Events Naming Convention

Base Name

Channel names should always start with eu.nebulouscloud in order to differentiate that the message
traveling through message broker is internal and part of NebulOusS. This will allow the possible use
of a message broker in the future, which is not provided by NebulOusS, but provided on-premises by
a possible user of our system.

Whether a queue or a topic is required as the channel type will not be depicted on the channel name.
Component

Defines the component producing the message, for example the ui, ems or optimizer. The component
does not necessarily need to map on a one-to-one basis with the existing components of the system.

So, the channel name of a message being generated from the ui will be prefixed as:
eu.nebulouscloud.ui

However, if a component wishes to further differentiate internal structure, such as Ul Application, that
can be done using as such:

eu.nebulouscloud.ui.application

This allows expanding the channel name filtering pattern either eu.nebulouscloud.ui* or
eu.nebulouscloud.ui.application.* for a specific one.
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Action

Each message communicates an action, the action could be of an informative scope like new
application, or of a demanding scope, such as request. The scope of the message is open to definition
by the components communicating in the platform and can be further customized with their
conventions.

On top of the message and naming conventions, we also specified default actions which need to be
supported by each component.

Component Lifecycle

In an asynchronous architecture the availability of a component may be optional, regarding its
availability, or its bootstrapping phase.

In the case of two coupled components, one needs to be aware of the availability of the other. It is for
this reason that we are introducing a reserved word state.

Producers are responsible of sending the appropriate messages which correlate with its application
state.

Table 14. Component State Message

eu.nebulouscloud.{component}.state It should be produced by a component, during
the lifecycle

Available States starting, ready, stopping, stopped

Custom States A component may send its own custom state,
e.g., "forecasting” which needs to be
contractually agreed between components
exchanging this state.

There is one more state which will allow the system to know the availability of a component during
runtime, which does not deal with the lifecycle of the component, called ping.

Table 15. Component Health Message

eu.nebulouscloud.{component}.health This should be produced by the component at
regular intervals. The internal timestamp can
be defined at a later stage.
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6.3 EXN MESSAGING LIBRARIES

In order to support components integrating with the library, we created a set of libraries across Java
and Python to offer a simplified API on top of Apache QpidS2, abstracting the complexity of direct
AMQP protocol manipulation.

The core aim was to facilitate the adherence to the predefined message and payload specifications.
The libraries include functionality for error handling, and communication patterns, effectively
reducingthe initial implementation effort required by developers when working directly with Apache
Qpid for common messaging tasks.

A configuration helper module was included to ease the further customization of the libraries so that
these could be used outside the scope of NebulOusS. Simplifying the setup of connections, exchanges,
and message filtering according to predefined address and payload conventions. Flexibility was a key
consideration, and while the library offered sensible defaults and simplifications for common tasks,
it also allowed users to override specific behaviours to suit their unique requirements. This flexibility
included customizing threading behaviour, event handling, and message processing logic to
accommodate specific application needs.

Implementations for common Enterprise Integration Patterns (EIP), especially the request-reply
pattern, were incorporated alongside configurable message filtering based on headers and
application UUIDs. This allowed developers to leverage advanced messaging functionalities with
minimal effort. Additionally, ready-made publishers for frequent messaging scenarios such as health
checks, state updates, and synchronized publishing were made available, ensuring that users could
quickly integrate standard messaging functionalities into their applications.

Community involvement and feedback were embraced by open-sourcing the libraries and
establishing clear contribution guidelines, greatly enhancing the libraries' quality and adaptability.
Continuous integration and deployment pipelines were set up, ensuring that the libraries were
reliably tested and updated, maintaining their usability and relevance in the face of evolving
messaging needs and practices.

6.3.1 Technical Implementation

There are five key classes of the EXN Libraries which provide the core functionality.
Context

The context class is an atomic singleton which is shared across consumers and producers, and it
handles state sharing as well as utilities to create and match addresses.

Furthermore, through the context, the state of consumers and producers can be manipulated at
runtime.

Consumer
This defines a consumer, using a key and address.

Other properties determine whether the consumers register on a topic or queue.

52 https://qpid.apache.org/
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A consumer can adhere to the address naming conventions, or define an arbitrary queue name, by
manipulating the FQDN property.

Finally, a consumer can determine at instantiation whether to filter for specific applications.
Publisher

This class defines the producers in the system. The publisher like the consumer is created by
specifying a key and an address. Through properties it can determine whether it publishes on a topic
or a queue.

Unlike the consumer, which determines the application filter at instantiation, a producer can publish
events for multiple applications.

There are three extensions of the Publisher class available through the library:
StatePublisher - provides methods for publishing the application state as defined in the specification.

ScheduledPublisher - provides methods to continuously publish an event at a selected interval.

SyncPublisher - This publisher abstracts the request-reply EiP using the correlation-id property of
the message header, and provides a sendSync method, that allows for synchronous message
exchanges.

Manager
ApacheCpid + conneclion; Connection

y. + mathod(): Type
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+ application: Strng
+ hander: Hanlder

Context
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PP + publizhars: Publishars]]
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Figure 18: Key classes of the EXN Libraries
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ConnectionHandler

This class should be abstracted and defined by all users of the library, it provides the main entry
point of the application, once all consumers and publishers are set up.

Connector

The connector is the main definition class, where all consumers and producers are defined, as well
as the message broker connection properties.

It provides the start and stop methods.

6.4 EXN MIDDLEWARE

The EXN Middleware is used as a critical architectural element within the communication framework,
providing a service integration middleware which provides communication across varied systems
and protocols. Using the EXN Libraries, this component ensures dependable asynchronous
communication the AMQP protocol.

A core function of the EXN Middleware is to allow the communication between components are
readily available, but do not adhere to the asynchronous event driven architecture, for example all
functionality is provided through synchronous HTTP calls. Furthermore, message payload
translation, error handling, are amongst the features that need to be handled by the middleware.

EXN

EXN Library Middleware

requestGet( ‘fileservice',
“files/config.yml’, /url
‘6ab5348b-fe3d’ //Application

) deduction:

analyzes message:

Component File Service

HttpMethod: GET
url: httos:Zilesenice/files/cantig ym,

HTTP
sends http request
i

UnderThe Haoad:
eu.nebul loud. exn.fil ice.file.get
200 OK, application/jsen

message propertiesia
application: 6ab5348b-fe3d {

[files/{filename}
HTTP/1.1

request file

config.yml

correlation-id: 2342-23423

actions:
[GET]

"content™ "..."
}
wraps to AMQP Body:

(=

X_HitpStatus: 200
X_HttpMessage: Ok
content-type: application/son:

message body:

eu.nebulouscloud.exn fileservice file.get reply

“content™ "..."

}

Figure 19: EXN Middlware’s HTTP abstraction service

In the EXN Middlware we created a core HTTP abstraction service and integrated for example two
core services SAL and the Cloud Fog Service Broker (CFSB). The HTTP abstraction service builds on
top of the address naming conventions providing the following specification:

e The URL endpoints after the base URL of the HTTP interface, are converted to dot notation

e HTTP Method names are appended to the end of the topic name following the mapping in
Table 16.

e Replies are sent using the calling address name and appending .reply
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This request-reply paradigm, was achieved by using the standard AMQP header property
correlation-id. Components using the EXN Libraries are able to call methods on any endpoint in a
pseudo-sync manner.

Table 16. Topic names and mapping to HTTP methods

HTTP Method Address Action

GET nebulouscloud.eu.exn.[service].[action]

nebulouscloud.eu.exn.[service].[action].reply

POST nebulouscloud.eu.exn.[service].[action].post

nebulouscloud.eu.exn.[service].[action].post.reply

PUT nebulouscloud.eu.exn.[service].[action].put

nebulouscloud.eu.exn.[service].[action].put.reply

DELETE nebulouscloud.eu.exn.[service].[action].delete

nebulouscloud.eu.exn.[service].[action].delete.reply

6.5 NEXT STEPS & FUTURE WORK

As a next step of task T5.5 is to provide the EXN Libraries in other programming languages such as
NodeJS and GO. Whilst having validated the robustness of the address naming conventions and
message payload specification.

Further developing both the Java and Python libraries, to include fixes and/or functionality
extensions that may come up in the next development cycle of the platform.

Finally, extend the EXN Middleware to provide extended services, enhancing the existing HTTP
transformation protocol, and allow for the integration of other message payloads such as XML or EDIs
through other communication protocols such as SOAP, JMS, etc.
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7 CONCLUSIONS

In this deliverable, we have provided a detailed report on the research and development efforts
undertaken as part of NebulOuS Work Package 5. We focused on the Meta-OS features that enable
self-adaptive and proactive reconfigurations enactment, considering efficient and resilient
monitoring, anomaly detection and predicted severity of imminent SLO violations of applications
deployed in cloud computing continuums.

The innovative technology discussed in this deliverable, is designed to enhance autonomous
application reconfiguration enactment capabilities within complex and dynamic cloud computing
environments, encompassing multi-cloud, fog, and edge resources. Key highlights include the
development of a sophisticated, resilient Event Management System that leverages distributed
complex event processing to provide critical QoS monitoring. Additionally, we considered Al-driven
anomaly detection featured, employing a hybrid approach that combines immunological algorithms
with machine learning techniques to address network security challenges effectively. Furthermore,
the development of an interoperable [0T/Fog data management system further enhances the ability
to manage and propagate application data across a distributed cloud continuum, facilitating the
orchestration of IoT data processing pipelines for improved data stream management. The
exploration of autonomous application adjustments through mechanisms like the SLO Violation
Detector represents a pivotal step towards achieving seamless application reconfigurations and
optimizations across the cloud continuum. Lastly, the establishment of an asynchronous message-
based API ensures effective communication and interoperability among the various elements of the
NebulOuS Meta-0S system.

As already mentioned, this work reports on the first iteration of all these mechanisms that are to be
tested and evaluated as part of the NebulOuS pilot demonstrators, but also through the financial
support for third parties’ program that aims to attract additional real use cases that will test the
platform in all meaningful scenarios. The second iteration of all the WP5 mechanism will focus on
further enhancing NebulOuS reconfiguration capabilities by incorporating forecasted monitoring
metrics, allowing the proactive reconfiguration of applications deployed on cloud computing
continuum.
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