" NebulOuS

A META OPERATING SYSTEM FOR BROKERING
HYPER-DISTRIBUTED APPLICATIONS ON
CLOUD COMPUTING CONTINUUMS

D4.2

NEBULOUS SECURE CROSS-CLOUD AND FOG
APPLICATIONS DEPLOYMENT & ORCHESTRATION
BASED ON SMART CONTRACTS

[17/06/2025]

***. | Funded by
*.,.” | the European Union

NebulOuS

Grant Agreement No.

D4.2 NebulOusS Secure Cross-Cloud
and Fog Applications deplovment & Orchestration based on smart contracts

101070516

Project Acronym/ Name

NebulOuS - A META OPERATING SYSTEM FOR BROKERING HYPER
DISTRIBUTED APPLICATIONS ON CLOUD COMPUTINGCONTINUUMS

Topic

HORIZON-CL4-2021-DATA-01-05

Type of action

HORIZON-RIA

Service

CNECT/E/04

Duration

36 months (starting date 1 September 2022)

Deliverable title

NebulOuS Secure Cross-Cloud and Fog Applications deployment &
Orchestration based on smart contracts

Deliverable number D4.2
Deliverable version V1.0
((ilglril‘t;z;;tual date of 31 May 2025
Actual date of delivery 17/06/2025
Nature of deliverable OTHER
Dissemination level Public

Work Package WP4
Deliverable lead ACTIVEEON

Ankica Barisic (ACTIVEEON), Moritz von Stietencron (BIBA), Nikos

Author(s) Papageorgopoulos (UBI), Sarantis Kalafatidis (UBI) & Geir Horn (UiO)

Abstract The introduction of smart contracts in the deployment mechanism to
support approvable service levels (T4.3) and report on the final
iteration of all the WP4 mechanisms for providing a secure deployment
and orchestration of applications on heterogeneous cross-clouds and
fog resources.
cloud-edge continuum, fog computing, orchestration, networking, vpn,

Keywords .
security, access control, kubernetes.

DISCLAIMER

Funded by the European Union. Views and opinions expressed are however those of the author(s)
only and do not necessarily reflect those of the European Union or Directorate-General for
Communications Networks, Content and Technology. Neither the European Union nor the granting
authority can be held responsible for them.

COPYRIGHT

© NebulOuS Consortium, 2022

This document may not be copied, reproduced, or modified in whole or in part for any purpose
without written permission from the NebulOuS Consortium. In addition to such written permission
to copy, reproduce, or modify this document in whole or part, an acknowledgement of the authors of
the document and all applicable portions of the copyright notice must be clearly referenced.

All rights reserved.

Funded by
the European Union

www.nebulouscloud.eu
info@nebulouscloud.eu 1

0 NebulOuS

D4.2 NebulOusS Secure Cross-Cloud
and Fog Applications deplovment & Orchestration based on smart contracts

CONTRIBUTORS
Name Organization
Ankica Barisic AE
Moritz von Stietencron BIBA
Nikos Papageorgopoulos, Sarantis Kalafatidis UBI
Geir Horn Ui0O
PEER REVIEWERS
Name Organization
Yiannis Verginadis ICCS
Pawet Skrzypek 7bulls
REVISION HISTORY
Version Date Owner Author(s) Comments
0.1 10/03/2025 AE Ankica Barisic Preliminary draft
0.2 07/04/2025 BIBA Moritz von Stietencron Chapter 6
0.3 17/04/2025 UBI Giannis Ledakis Chapter 4 & 5
0.4 25/04/2025 AE Ankica Barisic First draft
0.5 05/05/2025 UBI Nikos Papageorgopoulos, Chapter4 &5
Sarantis Kalafatidis
0.6 06/05/2025 AE Ankica Barisic First draft
0.7 12/05/2025 Uio Geir Horn Chapter 2
0.8 15/05/2025 EUT Maria Navarro Version for Review
0.9 30/05/2025 ICCS, 7bulls Yiannis Verginadis, Pawet Review
Skrzypek
1.0 16/06/2025 EUT Maria Navarro Final

Funded by
the European Union

www.nebulouscloud.eu
info@nebulouscloud.eu

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

TABLE OF ABBREVIATIONS AND ACRONYMS

AE Activeeon

ABAC Attribute-Based Access Control

AMD64 AMD 64-bit x86 instruction set architecture

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

ARM Advanced RISC Machines

AWS Amazon Web Services

BQA Brokerage Quality Assurance

CI Continuous Integration

CDh Continuous Delivery or Deployment

CNCF Cloud Native Computing Foundation

CNI Container Network Interface

CPU Central Processing Unit

CRD Custom Resource Definitions

CRUD Create, Read, Update, Delete

DLTs Distributed ledger technologies

DNS Domain Name Service

DT Digital Twin

DTO Data Transfer Object

EC2 Amazon Elastic Compute Cloud
- fhuengﬁ?o?)ian Union www.nebulouscloud.eu

info@nebulouscloud.eu 3

D4.2 NebulOusS Secure Cross-Cloud

N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts
EU European Union
FGW Fabric Gateway
FPGA Field-Programmable Gate Array
GCE Google Compute Engine
GPU Graphics Processing Unit
GUI Graphical User Interface
HTTP HyperText Transfer Protocol
IaaS Infrastructure-as-a-Service
ICMP Internet Control Message Protocol
IP Internet Protocol
IPSec Internet Protocol Security protocol suite
JSON JavaScript Object Notation format
K8s Kubernetes
LDAP Lightweight Directory Access Protocol
(Meta-)O0S (Meta-)Operating System
NAT Network Address Translation
NPM Node Package Manager
0AM Open Application Model
ONM Overlay Network Manager
OPA Open Policy Agent
PA ProActive
PERM Policy, Effect, Request, Matchers
PKI Public key infrastructure

Funded by

thhe BuiroRea WnIGH www.nebulouscloud.eu

info@nebulouscloud.eu 4

D4.2 NebulOusS Secure Cross-Cloud

N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts
PoS Proof-of-Stake
PoW Proof-of-Work
QoS Quality of Service
R&D Research and Development
RAM Random Access Memory
RBAC Role-Based Access Control
RDBMS Relational Database Management System
REST Representational State Transfer
RM Resource Manager
RTT Round-trip Time
SAL Scheduling Abstraction Layer
SC Smart Contract
SCE Smart Contract Encapsulator
scp Secure Copy
SLA Service Level Agreement
SLO Service Level Objective
SSH Secure Shell protocol
TLS Transport Layer Security
UDP User Datagram Protocol
VM Virtual Machine
VPC Virtual Private Cloud
VPN Virtual Private Network
WG WireGuard

Funded by

thhe BuiroRea WnIGH www.nebulouscloud.eu

info@nebulouscloud.eu 5

D4.2 NebulOusS Secure Cross-Cloud

N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts
wP Work Package
XACML eXtensible Access Control Markup Language
YAML Yet Another Markup Language
- fhuenngozian Uil www.nebulouscloud.eu

info@nebulouscloud.eu 6

D4.2 NebulOusS Secure Cross-Cloud

N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts
TABLE OF CONTENTS

EXECUTIVE SUMMARY ...ooteuieteeeeemeesseesseessesssesssesssessssssssesssessssssssesssesssessssssssssssesssess sessssesssesssessssssasssasesssasssessssessssssseesass 11
1 INTRODUCTION ... cetiereeeesreeeessersesseesseesesssesssssssssssssesssesssssssssssssesssessssssessssssessesssessssssesssessesssessessssssssssesssesssssnes 11
2 DEPLOYMENT & ORCHESTRATION IN HETEROGENEOUS ENVIRONMENTS.......coeonineeries 12
2.1 EXECUTIONWARE OVEIVIEWcurieeeureireereenseesesssesssssessssssssssssssssesssssssssssssssssssssssssssassssssssssssssssssassssees 13
2.1.1 Execution Adapter (PTOACLIVE) .. sssasssanes 13
2.1.2 Deployment Mana@er (SAL) . eeeemeessessseessessssssssesssessssssssssssesssessssssssssssssssesssessssssssssssesssessssssns 14
2.2 NEBULOUS DEPLOYMENT SCENARIO WITH EXECUTIONWAREoovomiereerreerreeeseemseesseeens 15
2.2.1 Cloud Resources registration and deregistration ... eeeeeeeseeseessmessesssessseesseesseessessseeens 15
2.2.2 Edge Resources registration and deregiStration........c.oeceneenseneensessessessessessesssessessessesees 18
2.2.3 Filtering NOde Candidates......oeereureereeeessseseesseseesseesssssesssessesssssssssssssssssssssesssssssssssssssssssesasessees 19
2.2.4 Deploying the Cluster and APPlICAtIONoeeecereerereesees e seeseessesssesssess s sssssesssessseesas 20
2.2.5 Cluster ReCONTIGUIATION. ... wuueeuremeemeeseerrersessseesseesseesse s s s sssesssess s sesssss s sssesssesssssssesssessssesas 22
2.3 EXECUTIONWARE DEPLOYMENT ARCHITECTURE AND LIFECYCLE MANAGEMENT... 23
2.3.1 Fully Automated NebulOuS Deployment Pipeline......connnnnnnnnsssssssssenes 23
2.3.2 Persistence and Cleanup MeChaniSImSeeererneeeeeesesseesseesessesssesssssssesssesssssssssssssssseeeas 25
2.3.3 Automated TESTING SUPPOTT .. errrerreereereeseesse e isss e sssssesssss s s sssssss s ssssssses st sasess st 26
3 FROM SLA TO SMART CONTRACTS ...coieeeeeereererseesseesessessesse s essssssessssssssssssessssssssssesssssssssssssssasssssssses 27
31 BaACKETOUNM......eeiecereeeeeeet ettt eb s bbb e 27
3.11) 00T Vool 00) 0 1 ¢ U 3OS 29
3.1.2 SLA to Smart Contract TranSformation ... eereereeneeseeeesseessessessessessses s sesssessssssessssssees 29
3.1.3 Communication between SCE and Other SEIVICES ... seesesessseesesssessesees 32
4 AUTOMATIC DEPLOYMENT OF SECURE NETWORK OVERLAYoveieeerrerersreesseeesseesseesseeseesnns 33
4.1 O VBT VIEW...eeeeereescereteese s sss s essessessessesse s s sses s s s AR R e AR e s e 33
4.1.1 Technical IMPleMENTAtION ..o sees 33
4.1.2 A CNIEVEIMENTS. ... et ee et s e b s s RsEER e RER e seEa e RE e e e 34

4.1.3 Use-case Description performing the main functionalities of ONM in a local deployment.34

4.1.4 Headscale/Tailscale Implementation - Support connectivity for devices behind NAT or
firewalls 34

4.1.5 Deployment and TESTINGc.ciueureeeeereereereeeeeseesseesessseseessesssessesssessesssesssssssssessssssesssssse s ssssssssssesasessees 35

4.1.6 Validation of Kubernetes Pod Communication over Headscale/Tailscale Mesh with Cilium
CNI 36

4.2 Secure device onboarding and management - Integration of headscale/tailscale solution in
FRTE] 0100 Fo XD o) PPN 37
43 Summary of Technical Contributions and Challengescoereeneeenmirnnesneeseesseeesseesseesseeens 40
- fhuenngo'xan Uil www.nebulouscloud.eu

info@nebulouscloud.eu 7

D4.2 NebulOusS Secure Cross-Cloud

N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts
5 SECURE AND PRIVACY-BY-DESIGN IN DATA STREAMS PROPAGATION......cooccvnmirmirmnssnnesssissnens 40
5.1 APPIOACH OVETIVIEW ..o sss s sssssssss sttt st sasssnssnssnssnssns 40
51.1 Access CONLrol [N KUDEIMELEScoiuiereereereireeeseieeiseesesssssssssssse s ssssssssssssssssessssssssssssssssssssssssssssnns 40
5.1.2 POLICY EINEINIE coeueeiecerrieeeesee ettt s bbb bR s bbb 42
5.1.3 OPA GateKReePET POLICIES .. ssssss s ssssssssssssssssssssssss s sssssssssssssssssesnes 43
514 Cilium NetWOTK POLICIES ...vuueurieeeereeeeiseiseissesseseesssissssse s seesss e ssssssssss s sssssssssss s e sss s sasssanes 45
5.1.5 Security Observability and LOZZING......corinineneeneeneiseeseeneessesssssssssesssssssssssssessessssssssssesassssees 46
5.1.6 Data Stream Propagation CONTIOL ... sssssessses s sessssssssssesasesaees 47
5.2 IMPIEMENTATION 1uviririrssiseresese bbb 49
52.1 Security and Privacy ManNQETeeneminessesssesssssssssessassssnes 49
5.2.2 EFK LOZZING STACK w.ovvuiiiiretreeseisecsseie ettt sss e bbb s s sassssnes 51
5.2.3 Tetragon INtEGTAtION ... rieeeeeeeeereee ettt ees bbb bbb 52
6 DIGITAL TWINS ORCHESTRATION IN CLOUD COMPUTING CONTINUUM......cconmmernerirursrsrens 54
6.1 Challenges of Traditional Digital TWINSccoceenenenneineseenesssesesssssssssssssssssssesssssssssssssssssssees 54
6.2 Digital Twins in the NebulOuS PlatfOrm ... sesssssssssssssessees 55
6.2.1 Digital TWIN ATCHITECTUTE oottt s s ees e 56
6.2.2 Nebulous Digital Twin Application TTaCEScoereeeeereemeereereeeesseeseessesssssesssessesssesesssessessesssessees 57
6.2.3 Logging Interface: EMitting TraCes ...cemminenineessessseesessessnes 58
7 CONCLUSIONSoeereeeesreeseeseeesseessessseesssesssesssessseessessssssssssssessseesssesssesssessseesssssasesasesssesssessssesssesssessssssssesasessaees 59
8 0 2 2 A L 0 PP 61
- fhuengﬁ?o?)ian Union www.nebulouscloud.eu

info@nebulouscloud.eu 8

D4.2 NebulOusS Secure Cross-Cloud

N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts
LIST OF FIGURES

Figure 1. EXecution Adapter ArCHILECTUIE ...ciueeeeeeeeeeeseesssesssesssesssesssssssssss s s sssssssssssssasssans 14
Figure 2. EXeCUtIONWATE AICRITECTUTEcuuceeeeeeeeceeesstesesssesssesssssssesssssss s ssssssssssss s ssss s s s ssss s ssss s sasssans 15
Figure 3. Generated deployment workflow for master node in Execution Adapter workflow studio.......... 21
Figure 4. Execution Adapter Dashboard view of the WOTKflow €XeCULIONcveeeeeeeereereeessessssesssesssseesseessessnnas 21
Figure 5. Execution Adapter (ProActive) and Deployment Manager (SAL) deployment in NebulOuS
Q0L 0 7=) 0 OO 24

Figure 6. Results and interface of automated test successful EXeCULIONcceveeeeereeeseersseersssessssessssssssessseesssessnnas

Figure 7. Smart Contract Encapsulator (SCE): Workflow and Module Communication

Figure 8. SCE COMPONENT INTETACTIONScuieueureeeeeesseeseesessessessessessesssessessssssesssssssssesssssssssessesns 32
Figure 9. ONM created WireGuard-based overlay NEtWOTIK......ccccrermrmrrereesssessesssssessssssssssssssesssssssssens 34
Figure 10. Headscale/Tailscale integration and Cilium CNI........cceeemrrerneemssessssssssessssssssssssssssssssssssens 37
Figure 11. NebulOuS - Cluster Initiation Procedures integrating ONM functionalities ... 38
Figure 12. Created Interfaces on edge cloud node (RaSpberry Pi)ermernmessmmsesseessssssssessssseesens 39
Figure 13. Access CONIol iN KUDEITIETESweecermeermeerseesssessrseessessssssssssns 41
Figure 14. Kubernetes Dynamic Admission Control using external policy engines: flow of an API request
42
Figure 15. OPA Gatekeeper as a Validating Admission WebhoOK........corernernsessersesseesssessssesssssssesens 43

Figure 16. NebulOusS old architecture (deployment view)

Figure 17. NebulOuS new architecture (deployment view)

Figure 18. Kubernetes Cluster Security Architecture with Tetragon-based Observabilitycceereeeen: 53
Figure 19. Elasticsearch Kibana Dashboard Displaying Tetragon Security LOZS.......oermermeesreserseeeeens 53
Figure 20. Elastic Security Alert Dashboard Showing Detected Security Threat ... eneenseenseens 54
Figure 21. Traditional Digital Twin Archit@Cture [68] ... ssssssssans 56
Figure 22: NebulOuS Digital TWin ATChIECTUTE ..o veeeeeceeeeereeerseerssseessssesssssssssssessssesssssssssssssssssssssssssssssssssesssssssssens 57
7 wwnebulouscloud.

info@nebulouscloud.eu 9

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

LIST OF TABLES

Table 1. Overview of the information needed to register Cloud 2Providers

Funded by bul loud
the European Union Www'ne utouscioud.eu
info@nebulouscloud.eu

10

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

EXECUTIVE SUMMARY

Deliverable D4.2 of the NebulOuS project presents the final iteration of Work Package 4 (WP4),
focused on secure deployment and orchestration of cross-cloud and fog applications through smart
contract-based mechanisms. Building on the foundational concepts and preliminary results reported
in D4.1, this document demonstrates the evolution and integration of WP4 technologies into the
NebulOuS Meta-Operating System, delivering enhanced capabilities for brokering hyper-distributed
applications across heterogeneous infrastructures.

This deliverable D4.2 is focused on

e The introduction of smart contracts in the deployment mechanism to support approvable
service levels

e Orchestration of applications on heterogeneous cross-clouds and fog resources using
deployment manager and network

e Secure deployment of applications on heterogeneous cross-clouds and fog resources

e Digital twin of deployment optimization

1 INTRODUCTION

D4.2 main goal is the introduction of smart contracts in the deployment mechanism to support
approvable service levels (T4.3) and report on the final iteration of all the WP4 mechanisms for
providing a secure deployment and orchestration of applications on heterogeneous cross-clouds and
fog resources.

In particular, D4.2 addresses four key innovations:

1. Executionware Architecture Enhancements - Advancing the Deployment Manager (SAL)
and Execution Adapter (ProActive) to support fully automated, reproducible, and scalable
deployment pipelines across cloud, edge, and hybrid environments.

2. Smart Contract-Enabled SLA Management - Introducing blockchain-based service level
agreement enforcement mechanisms, bridging the gap between declarative SLAs and runtime
smart contract execution.

3. Privacy-Preserving Network Orchestration - Expanding the secure overlay networking
capabilities of the Overlay Network Manager (ONM) to facilitate encrypted communications,
NAT traversal, and cross-node integration through WireGuard and Headscale/Tailscale
solutions.

4. Security and Policy Framework - Implementing privacy-by-design strategies and runtime
observability via integration of OPA Gatekeeper, Cilium, and Tetragon to manage access
control, enforce network segmentation, and ensure runtime compliance across deployment
targets.

The report is structured to provide a comprehensive technical overview of these mechanisms, while
also highlighting their alignment with the broader NebulOusS objectives of automation, security, and
trustworthiness in distributed cloud-edge deployments. In particular:

e Section 2 details the architecture, lifecycle, and operation of the enhanced Executionware
stack.

Funded by bul loud
the European Union Www'ne ulouscioud.eu
info@nebulouscloud.eu 1

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

e Section 3 explains the SLA-to-smart contract transformation process and outlines the
technical infrastructure enabling automated SLA enforcement.

e Section 4 covers secure networking through ONM, with specific focus on overlay creation,
device onboarding, and Kubernetes integration.

e Section 5 presents the privacy and security framework implemented across the deployment
lifecycle.

e Section 6 introduces the orchestration of digital twins in cloud-edge continuums as a key
enabler for adaptive and intelligent deployments.

e Section 7 summarizes the results and outlines the next steps toward the final system
integration.

Overall, this deliverable demonstrates how NebulOuS translates complex orchestration and
compliance requirements into automated, trustworthy, and scalable deployment workflows. The
developed technologies lay the foundation for the platform’s second release, enabling dynamic,
secure, and SLA-aware deployment of applications in a cloud-edge continuum.

2 DEPLOYMENT & ORCHESTRATION IN HETEROGENEOUS
ENVIRONMENTS

In the context of Task 4.1 "Deployment & Orchestration in heterogeneous environments”, NebulOusS has
developed Executionware components that enable seamless deployment and orchestration of
applications across the cloud-edge continuum. These components—namely, the Deployment
Manager (i.e., SAL) [2],[3] and the Execution Adapter (i.e., ProActive) [4][5][6] are responsible for
translating optimized deployment plans into actionable operations across a wide array of target
infrastructures.

NebulOusS supports deployment on public cloud platforms such as AWS, Azure, and Google Cloud, as
well as private clouds based on OpenStack and edge devices spanning AMD, ARMv7, and ARMv8
architectures. These heterogeneous resources are onboarded and managed through an integrated
system, where the Execution Adapter interfaces directly with the Deployment Manager to register or
deregister resources. This process can be initiated either via the NebulOuS GUI for cloud resources
or through the NebulOuS Resource Manager for edge devices.

Once resources are available, the NebulOuS Optimizer component evaluates all candidate nodes,
across cloud and edge, to determine the most suitable setup. Based on this optimal configuration, the
Deployment Manager triggers the deployment or reconfiguration of Kubernetes clusters and
applications. During this process, key NebulOuS components are automatically instantiated within
the target cluster.

Kubernetes [7][8] remains the backbone for container orchestration within each cluster; handling the
local deployment and lifecycle management of containerized workloads. However, the infrastructure
layer beneath Kubernetes, provisioning, scaling, and cluster formation, is fully managed by the
Executionware stack.

In this deliverable, we present the advancements made in Executionware for managing multi-cloud
and cloud-to-edge deployments, enabling NebulOuS to operate over dynamic, distributed, and
heterogeneous infrastructure environments. The next section provides an in-depth description of the

Funded by bul loud
the European Union Www'ne ulouscioud.eu
info@nebulouscloud.eu 12

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

Deployment Manager and Execution Adapter, detailing their architecture and implementation. We
then present the NebulOuS Deployment Scenario, outlining the full lifecycle of resource and
application management through dedicated REST API endpoints and execution sequences. This
includes resource registration (both cloud and edge), candidate node discovery, cluster and
application deployment, and reconfiguration operations. We also cover the role of NebulOuS
deployment scripts in supporting k3s- and k8s-based clusters [7][8], resource deregistration, and
mechanisms for persisting state across operations. Finally, we highlight the framework's automated
testing capabilities and the fully automated deployment pipeline, which ensure reproducibility and
robustness, key aspects of the support provided in the NebulOusS platform.

2.1 EXECUTIONWARE OVERVIEW

The Deployment Manager and Execution Adapter form the backbone of the NebulOuS Executionware
layer, acting as the key enablers for translating optimized deployment plans into actual infrastructure
provisioning and orchestration actions. These components ensure that application deployment in
heterogeneous environments, spanning public clouds, private data centers, and edge devices, is both
automated and robust.

The NebulOuS deployment and orchestration capabilities are built on Activeeon’s ProActive
Workflows and Scheduling technology. Specifically, the functionality of the Execution Adapter and
Deployment Manager is realized through two core components of the ProActive stack:

e The Execution Adapter [4][5][6], implemented using ProActive’s core engine and its IaaS
Connector microservice.

e The Deployment Manager [2],[3], implemented via the Scheduling Abstraction Layer (SAL),
a Java-based orchestration and resource coordination layer.

2.1.1 Execution Adapter (ProActive)

The Execution Adapter [4][5][6] (see Figure 1) is responsible for direct interaction with
infrastructure APIs. It communicates with various cloud, on-premise, and edge providers to deploy,
configure, and manage computing resources. This abstraction is enabled through the ProActive node
model, which provides a unified representation of infrastructure resources—regardless of the
underlying platform—enabling consistent management of heterogeneous environments.

At the heart of this functionality is the ProActive IaaS Connector [9], a microservice that exposes
RESTful endpoints for performing lifecycle operations on infrastructure resources. The laaS
Connector supports a broad spectrum of providers, including AWS EC2, Google Cloud, OpenStack,
VMWare, and Docker, and is built on top of the Apache jclouds toolkit. The main models exposed by
the IaaS Connector include:

Infrastructure: defines authentication and management endpoints.

Instance: represents machine configurations (e.g., image, hardware, network).

NodeCandidate: represents resource metadata (e.g., region, price, architecture).

These models are backed by a caching mechanism that optimizes performance across multi-provider
environments. ProActive nodes are automatically deployed over the allocated compute resources

using SSH-based installation of lightweight Java agents (node. jar), ensuring minimal overhead and
high portability.

Funded by bul loud
the European Union Www'ne ulouscioud.eu
info@nebulouscloud.eu 13

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

The Execution Adapter provides the admin interface for backend and development support,
including:

e Automation Dashboard, which is used to monitor the execution of cluster deployments.

o Workflow Studio, which is used for testing the NebulOuS scripts.

e Scheduler, where all deployment jobs can be monitored.

e Resource Manager, visually presenting resources and their usage.

Storage
Backends

ProActive §
Workflows & Scheduling

ProActive Web Portals

Scheduling Portal Automation Dashboard Resource Manager Portal]
i LDAP or

i Active
ProActive Microservices (part of them) i | Directory

APls (REST, Java, ..}

ProActive Core

Resource Manager

Eos

RDBMS

™)s o o

Figure 1. Execution Adapter Architecture

Y YT

Infrastructure Compute Resources

2.1.2 Deployment Manager (SAL)

The Deployment Manager [2][3], implemented using Activeeon’s Scheduling Abstraction Layer (SAL),
serves as the coordination layer that orchestrates the provisioning and cluster setup processes. It
interacts with the Execution Adapter through the ProActive REST API and is responsible for:

e Triggering infrastructure resource retrieval according to user-defined constraints (CPU, RAM,
region, etc.).
e Constructing deployment jobs and defining per-task node selection strategies.
e Managing node candidate caching and reuse.
e Initiating cluster setup and workload deployment.
The Deployment Manager exposes a comprehensive set of REST endpoints that define the lifecycle of
a deployment, from registration of cloud providers to application orchestration. These endpoints are

documented and integrated with the NebulOuS platform’s GUI, enabling users to register cloud
infrastructures and edge devices and trigger deployments seamlessly.

Funded by bul loud
the European Union Www'ne ulouscioud.eu
info@nebulouscloud.eu 14

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

The Deployment Manager begins its operation by establishing a connection with the Execution
Adapter through an authentication endpoint, acquiring a sessionId based on user credentials. Once
connected, users can register new cloud providers using dedicated REST APIs and proceed to
resource allocation and application deployment. The architecture of Executionware solution is
presented in Figure 2.

In the following sections, we describe the main operations supporting the NebulOusS scenario using
these endpoints.

Deployment Manager @ Execution Adapter
] H N Control resources allocationideallocation
_ Add clouds. — » 0 Scheduler
Retrieve node - : Assess component deployment
candidates H 4
P]
U ¢ Register Edge Node : : o ST acer Schedule allocation tasks
NEBULOUS B Scheduling : H Execute & monitor tasks
(Optimizer, Abstraction ‘ Kub
GUl L : ubernetes
b Define and deploy K8s ayer (SAL) I
Broker, FogEdge e " .
R) e Connector-iaas b L JCloud
Deploy application /‘ ‘
- =>
Scaling infout = I
Java VLV

I N ¥ -2 i
AN T

SAL interface
(Postman
collection) +
automated test
scenario

= |
-"A /L_i t k
AE support 090 o

Figure 2. Executionware architecture

ProActive
documentation
(REST API)

2.2 NEBULOUS DEPLOYMENT SCENARIO WITH EXECUTIONWARE

2.2.1 Cloud Resources registration and deregistration

Cloud registration within the NebulOuS platform is initiated through the AddCloud endpoint by
NebulOuS GUI [10]. In this process, the upper layers of NebulOuS request the Deployment Manager
to define a new cloud infrastructure by providing a unique cloud name. This name must not match
any existing registration, as conflicts can cause failures during configuration updates or leave
resources orphaned.

To ensure a clean environment, proper deregistration must be performed using the RemoveClouds
endpoint. Correct deregistration guarantees that all resources are released on the provider side,
avoiding additional costs from lingering virtual machines (VMs) and ensuring internal states are
cleared.

After a cloud is successfully registered, the Deployment Manager automatically triggers an
asynchronous discovery process to retrieve available cloud images and node candidates. The
platform monitors this operation through the
isAnyAsyncNodeCandidatesProcessesInProgress endpoint, polling until completion. Once the
discovery phase ends, the GetCloudImages endpoint is used to validate the cloud authentication
and fetch the available images.

Funded by bul loud
e/ ExGiS0ati DI www.nebulouscloud.eu
info@nebulouscloud.eu 15

NebulOuS

D4.2 NebulOusS Secure Cross-Cloud

and Fog Applications deplovment & Orchestration based on smart contracts

If cloud credentials are misconfigured or insufficient, errors will occur during image retrieval, with
additional details accessible via Execution Adapter logs. It is important to note that SSH credentials,
though required later during cluster deployment, are not involved in this initial registration flow. This
discovery phase ensures that cloud infrastructures are accurately validated and ready for subsequent
orchestration operations within the NebulOuS ecosystem.

Integration with cloud providers is handled as follows:

e Google Compute Engine (GCE) [11], Amazon Web Services (AWS EC2) [12], and OpenStack
[13] are integrated through JClouds [14],
e Microsoft Azure [15] is integrated directly through the Azure API [16].

Because of differences across providers, specific fields must be populated during cloud registration.
The required fields for each cloud provider are summarized in Table 1.

SAL Field Name

cloudld

cloudProviderNa
me

cloudType

securityGroup

sshCredentials.
username

sshCredentials.
keyPairName

sshCredentials.
publicKey

sshCredentials.
privateKey

endpoint

scope.prefix

Funded by
the European Union

Table 1. Overview of the information needed to register Cloud 2Providers

GCE

Azure AWS

{{cloud_name}}

Open Stack

Cloud ID placeholder to identify the cloud configuration. String value need to represent valid

cloud name.
google-clom"p ute- "azure” "aws-ec2" "openstack "
engine
Cloud provider identifier
"PUBLIC" "PUBLIC" "PUBLIC" "PRIVATE"
{{aws-securityGroup}} {{os-securityGroup}}
Name of the
null null Name of the AWS EC2 OpenStack security
Security Group to .
. group assigned to
apply to the instances. VMs

"ubuntu”

Defines the SSH username for connecting to Ubuntu 22.04 VM instances.

{{aws-keypair}}

{{os-keypair}}

null null AWS EC2 key pair OpenStack key pair
name used to access name used to access
the instances via SSH. | the instances via SSH.
{{gce-publickey}} {{azure-publickey}}
SSH public key to grant | Public SSH key used null null
user access to created for authentication
instances. into Azure VMs.
{{gce-privatekey}} {{azure-password}} {{aws-privatekey}}
Private key or .
SSH private key used to password to Private key to connect null
. : to the AWS EC2
connect to instances. connect via SSH to :
instances.
Azure VMs.
{{os-auth_url}}
null null null Authentication URL
for OpenStack identity
service (Keystone).
"project”
null null null OpenStack scope

prefix (commonly

www.nebulouscloud.eu
info@nebulouscloud.eu

16

NebulOuS

I

D4.2 NebulOusS Secure Cross-Cloud

and Fog Applications deplovment & Orchestration based on smart contracts

project for project-
scoped tokens).

{{os-projectName}}
scope.value null null null OpenStack project
name for scoping the
authentication.
{{os-identity-api-
version}}
identityVersion null null null Identity API version
used (usually "3").
{{os-defaultNetwork}}
defaultNetwork null null null OpenStack default
network name or ID
for the VM instances.
{{gce-user}} {{azure-user}} {{aws-user}} {{os-user}}
credentials. GCP service account Username or client AWS access key ID OpenStack username
RISEN user email used for ID of the Azure (part of authentication g) - authentication
authentication. service principal. credentials).)
{{gce-secret}} {{azure-secret}} {{aws-secret}} {{os-secret}}

credentials.
secret

Secret content of the
GCP service account

Password or secret
key for the Azure

AWS secret access key
(part of authentication

OpenStack user's
password or secret for

key (JSON). service principal. credentials). authentication.
{{azure-domain}} {{os-domain}}
credentials. :
GETERT null Active Directory null OpenStack domain
name (used in
Tenant ID.
Keystone v3).
{{azure-
subscription_id}}
credentials. null subscription ID null null
subscriptionld under which
resources are
managed.
{{gce-project-id}}
credentials.
null null null

projectld

Project ID where
instances are created

While the registration procedure through SAL is standardized, each cloud provider introduces
operational and technical particularities that must be considered for correct resource discovery and
orchestration.

For instance, Google Compute Engine (GCE) [11] organizes resources around zones rather than
regions, as seen with AWS or Azure. GCE’s lack of strict regional partitioning during node candidate
retrieval can significantly increase synchronization time, especially if a project contains numerous
images or instances across zones. To maintain efficiency, it is important that only relevant and active
resources are kept within the project.

Similarly, OpenStack [13] deployments typically do not use region-based partitioning unless
explicitly configured by the administrator. Consequently, image and node discovery can be slower in
OpenStack environments. Additionally, OpenStack platforms are often customized, resulting in
variations in API behavior and available metadata depending on the specific distribution (e.g., vanilla
OpenStack, OpenTelekomCloud, CityCloud).

www.nebulouscloud.eu
info@nebulouscloud.eu 17

Funded by
the European Union

D4.2 NebulOusS Secure Cross-Cloud
Ne b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

By contrast, Amazon Web Services (AWS) [12] structures resources explicitly within regions, leading
to faster and more scoped discovery operations. However, AWS instances must be tagged with a
specific label (by default, proactive=true) to be visible to NebulOuS. Without this label, virtual
machines will not be considered eligible candidates, which ensures that only intentionally
provisioned resources are exposed to orchestration workflows.

Azure [15] also relies on strict regionalization but differs in its credential and authentication
handling. Azure requires a service principal (Application ID and Secret) associated with an Active
Directory tenant, alongside the subscription ID. For VM access, Azure supports both SSH keys and
password-based authentication, unlike most other providers that mainly rely on SSH key pairs.

Across all cloud providers, differences in metadata exposure and API capabilities exist. Some
providers offer detailed specifications and rich metadata natively, while others return minimal
information, necessitating additional normalization during the discovery phase. To address these
inconsistencies, NebulOuS implements cloud-specific handlers to standardize the resource
information model.

The cloud registration process within NebulOuS, orchestrated through the Deployment Manager,
establishes a structured mechanism for integrating cloud infrastructures across multiple providers.
Despite following a standardized workflow for cloud addition, asynchronous resource discovery, and
image validation, each provider introduces specific challenges related to credential management,
regionalization, metadata retrieval, and API behavior. Understanding these variations and properly
managing provider-specific requirements—such as AWS instance tagging, OpenStack's customizable
environments, GCE's zoning structure, and Azure's service principal authentication is crucial to
achieving seamless and efficient multi-cloud orchestration within the NebulOuS ecosystem.

2.2.2 Edge Resources registration and deregistration

Edge device management in NebulOuS plays a crucial role in enabling seamless application
deployment across the cloud-edge continuum. The Executionware provides the necessary interfaces
and automation to register and deregister edge nodes, allowing edge resources, spanning AMD and
ARM architectures [17][18][19], to be brought into the orchestration pipeline as candidates for
optimized workload deployment.

The registration process is initiated through a dedicated REST API by NebulOuS Resource Manager
[20], enabling users to onboard new edge nodes via the RegisterNewEdgeNode endpoint. This
action results in the assignment of a unique Device Identifier and a Candidate Node ID, which are
critical for subsequent deployment and orchestration processes.

While the RegisterNewEdgeNode endpoint captures essential metadata and integrates the device
into the NebulOusS system, validation of edge node availability occurs later, during the actual cluster
deployment phase. The Deployment Manager ensures that the registration information accurately
persisted and made accessible for cluster planning and execution.

The available list of registered edge devices can be retrieved using the GetEdgeNodes endpoint,
offering transparency and control over accessible resources. Edge devices can be deregistered using
the DeleteEdgeNode endpoint, ensuring clean removal and maintaining internal system
consistency.

Funded by bul loud
the European Union vaw.ne ulouscioud.eu
info@nebulouscloud.eu 18

D4.2 NebulOusS Secure Cross-Cloud
Ne b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

When registering a new edge device, the RegisterNewEdgeNode endpoint expects a complete
EdgeDefinition object to be provided to the Deployment Manager. This object encapsulates all
relevant metadata about the edge resource, including:

Network accessibility (public and private IPs)

Authentication credentials (SSH username and password or key)
Hardware specifications (CPU, memory, disk, GPU/FPGA availability)
Operating system details

Geolocation (latitude and longitude)

Architecture type (e.g., AMD64, ARMv7, ARMv8)

This information enables the Execution Adapter to accurately instantiate a corresponding Node
Candidate in the platform, which serves as a logical representation of the physical device. To ensure
compatibility across diverse hardware types, the Execution Adapter leverages architecture-specific
execution agents, self-contained . jar files, that are downloaded and executed on the edge device
during registration.

These node. jar files are tailored to the device’s architecture (AMDx64 [16], ARMv7 [18], or ARMv8
[19]) and are responsible for establishing communication between the physical edge node and the
ProActive Resource Manager. Agents are accessible through the portal, and the appropriate jarURL
must be used during registration. Successful execution of the agent finalizes the registration process
and confirms the device’s readiness for deployment.

During registration, a corresponding Node Candidate is added to the orchestration system. During
deregistration, the Node Candidate is removed, ensuring that only active devices are considered for
workload deployment. This tight coupling guarantees system cleanliness, robustness, and dynamism
across the NebulOusS orchestration environment.

2.2.3 Filtering Node Candidates

To support intelligent and adaptive deployment decisions, the Deployment Manager provides the
findNodeCandidates endpoint for NebulOuS Optimizer [21] to query the available pool of
resources. This filtering mechanism is based on placement requirements and constraints defined
either by the application developer or inferred from optimization strategies. The results are node
candidates, representations of physical or virtual machines, that meet the specified conditions and
are eligible for deployment.

Filtering is done by composing a list of requirements, which may include node type (IAAS for cloud
resources or EDGE for physical edge devices), cloud provider, price, operating system, location, and
specific hardware capabilities such as memory, cores, GPU, or FPGA availability. For example, a
deployment targeting a cloud region in Bergen (bgo) may require IAAS-type nodes with Ubuntu 22,
8GB RAM, and 4 CPU cores. These criteria are structured as typed attributes (e.g,
AttributeRequirement, NodeTypeRequirement) and passed as filters to the Deployment
Manager. The resulting node candidates are then referenced by their unique IDs for scheduling and
resource reservation.

To accommodate cloud-specific constraints and limitations, Executionware includes predefined,
provider-specific queries hardcoded within the search logic. This is particularly important because
not all metadata is retrievable through public APIs across cloud vendors. For instance, when dealing
with AWS, operating system information is not exposed for instances. As a workaround, the required
0S version (e.g., Ubuntu 22.04) must be explicitly defined when creating cloud configurations on the

Funded by bul loud
the European Union vaw.ne ulouscioud.eu
info@nebulouscloud.eu 19

D4.2 NebulOusS Secure Cross-Cloud
Ne b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

provider’s side. Similarly, hardware attributes such as GPU or FPGA availability are calculated using
the latest provider data, rather than being directly queried.

Azure integration adds an additional layer of complexity. Successful deployment has been achieved
on a single Azure instance, F4s standard, that utilizes a third-party Ubuntu image. Other potential
Azure instances have been identified during discovery, but many are incompatible with standard
Execution Adapter deployment requirements. On another hand, during testing deployment with
different instances of other cloud providers, some instances are found also not to be supported, often
duet to limitations imposed by JCloud adapter. These unsuitable instances are captured and
registered in the Optimizer’s exclusion list to prevent faulty deployments. This ensures that only
validated and reliable instances are considered in future filtering operations.

For edge devices, node candidates are registered during the initial registration process. If a
deployment needs to target a specific device, NebulOuS can retain the node candidate ID at
registration time or define a unique name identifier for the edge device based on their owner, that
can later be searched using a hardware.name attribute filter.

Together, this flexible filtering mechanism ensures that deployments are both context-aware and
infrastructure-compliant, balancing performance, availability, and compatibility constraints across
heterogeneous environments.

2.2.4 Deploying the Cluster and Application

The deployment of Kubernetes clusters in NebulOuS is orchestrated through a clear and flexible
workflow, offering the NebulOuS platform full control over configuration and monitoring. The
process begins with the DefineCluster endpoint, which allows the Optimizer to define a cluster by
specifying its name, the associated node candidates, environmental variables, and the type of cluster,
either k8s (Kubernetes) [7] or k3s (lightweight Kubernetes) [8], with k8s set as the default. This
setup is supported by predefined deployment script templates [22], which can be customized for
specific installation needs, including integration with network components on public cloud
environments. Environmental variables can also be passed at this stage to guide the installation of
application components or to configure service-specific behavior.

Once clusters are defined, the DeployCluster endpoint is used to execute the deployment. This
endpoint transforms the cluster definition into an Execution Adapter workflow (see Figure 2) and
launches it on the target infrastructure, whether cloud or edge. As a result, all setup actions, from
node provisioning to Kubernetes bootstrapping, are orchestrated seamlessly.

Cluster deployment is monitored through Execution Adapter interfaces available to NebulOuS
developers and use case partners during the development and integration phases. These admin users
can test and adjust deployment scripts using the Workflow Studio, which provides a detailed and
editable view of the deployment logic (see Figure 3). Workflow scripts [22], namely
PRE_INSTALL_SCRIPTsh , INSTALL SCRIPTsh , POST_INSTALL_SCRIPTsh, STOP_SCRIPTsh,
UPDATE_SCRIPTsh are integrated as part of the task Implementation of the task D. Script
START_SCRIPTsh, is integrated as part of the task Implementation of the task E. Tasks A, B, C, F, G are
ProActive-defined tasks handling internal mechanisms.

Funded by bul loud
the European Union vaw.ne ulouscioud.eu
info@nebulouscloud.eu 20

D4.2 NebulOusS Secure Cross-Cloud

N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts
@ ACTiveeon BASIC EXAMPLES - A&" {© Automation Dashboard @ scheduling 5 Crchestration | (0 Resource Manager

aeog Hep| P vE | BAB|EOC| B3E

Workflows | mB1ae6-6-master-812e6.6 | m12e6.6-master 812266 Task _install_0

Taskc Variables @ ==

Task Generic Info @ o I ‘ A

Sl 1 - | Cotrottemvties -~ | Contro oticaton ~ < | Conirot sl - < | _ B Examwics -« JEERRN

Task Data Management @
Task Error Management Policy @
Task Impiementation @

Type @

B seript ol

<P infine Code ¢ Reference

Code @ GOO®
Envir
echa”
source

echo "Done.

- i

Separation script \

v i o Y
(- JF =

bash ~

Language ©

Figure 3. Generated deployment workflow for master node in Execution Adapter workflow studio

Throughout deployment, the cluster's status can be monitored automatically in real time using the
GetCluster endpoint or manually by leveraging tools like the Execution Adapter Dashboard,
Scheduler, and Resource Manager (see Figure 4.). These tools give visibility into individual node
states, resource consumption, and task execution, helping users identify any bottlenecks or failures.
If the deployment fails, in addition to the output in Execution Adapter, logs from the Deployment
Manager and iaas-connector components can be inspected to troubleshoot issues such as missing
credentials or unavailable nodes. It's important to ensure node availability and valid SSH credentials
as these are validated only at execution time.

o) workflo dio (%) scheduling & Orchestration | { sourc ager

ErUTECol WEVIIPESWON \ianage Files ~ @ Manage Third-Party Credentials B =
@ at vie: D Past Currenc Pending) OY
- formation O Resu S Tasks Outpu
Jo v Workflow submitted state Information & Actions © icmay = : a8
V302025 14285
Past Curent Pending Emor Submitted
2 de
20) FINSHED B8 - Total: 7
s 5
Id Task Name Status Output Duration Host/Node Name
label_nodes_1f831-3 & de o0
e) FINISHED =] osies @ mass
e [l 211ms o
- & de
n1f831-3-dummy-app-wior o 5 i
2083 5) FNISHED o- @ - B8 Open Output of this Task ¥
n1f831-3-dumm; con. A’de ‘ "
2052 P ey o FINSHED o @ - T oo [l
4302025 1255 o2
avseeo [0
m1f831-3-master-1f8313 sk ms
0s " ster-1 a = wsweo (@
o 0473
ad
Define_NS_AW!
ol o FsHED =
R 21 a e o0
gy dcletenode neeefs 1du.. o S =
0 : S
& de
delete_node_neeefs-1-du.
O H o FsED =

8 Documentation

Figure 4. Execution Adapter Dashboard view of the workflow execution

Once a cluster is no longer needed, users can fully dismantle it with the DeleteCluster endpoint.
This step undeploys all nodes, shutting down provisioned machines on cloud provider side, and

Funded by bul loud
e/ ExGiS0ati DI www.nebulouscloud.eu
info@nebulouscloud.eu 21

D4.2 NebulOusS Secure Cross-Cloud
Ne b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

removes the cluster definition from the system, preventing unnecessary resource usage. This final
action is especially useful during iterative testing or when clusters are meant for temporary
demonstration or experimentation purposes.

Altogether, NebulOuS offers a modular and developer-friendly environment for deploying
Kubernetes clusters across heterogeneous infrastructures. By combining flexible definition
mechanisms, script-based customization, and comprehensive monitoring tools, the Deployment
Manager deployment process ensures both adaptability and traceability for complex distributed
systems.

Once a Kubernetes cluster has been successfully deployed, users can seamlessly proceed to
application deployment through the ManageApplication endpoint. This endpoint allows
developers and use case partners to define application configurations using a YAML-based descriptor
(appFile) and deploy them using tools such as KubeVela [23]. The deployment definition includes
specifications like container images, CPU/memory allocations, environment variables, scaling traits,
and deployment workflows. With a simple POST request, the Deployment Manager engine wraps the
application definition into an Execution Adapter job and submits it to the targeted cluster, returning
a unique job ID for status tracking.

The deployment is fully observable through the Execution Adapter Dashboard, where the submitted
job can be monitored in real time using the returned Job ID via the getJobState endpoint. This
ensures full traceability from cluster setup to application execution. Moreover, since the cluster nodes
are labelled during this process (based on the app_component_name in the YAML), resource
targeting and application placement within the cluster are automatically handled. This approach
provides a clean and declarative way to manage applications post-deployment, combining
infrastructure-level automation with fine-grained control over service behavior, making the entire
DevOps loop transparent and manageable through the Deployment Manager framework.

2.2.5 Cluster Reconfiguration

Cluster reconfiguration in the Deployment Manager enables dynamic and responsive management of
Kubernetes clusters and deployed applications. These operations support both scaling out and
scaling in the cluster and are orchestrated through dedicated Deployment Manager endpoints. The
process fully leverages Kubernetes-native capabilities, such as label-based scheduling, declarative
replica management, and node provisioning, while abstracting their complexity within Execution
Adapter workflows.

When scaling out an application, the first step is to dynamically expand the Kubernetes cluster using
the ScaleOut endpoint. This adds new worker nodes based on existing node templates, increasing
the overall processing capacity of the cluster. Once deployed, these new nodes are labeled using the
LabelNode endpoint, which marks them as eligible for scheduling application workloads. Labels
follow a structured key-value format and allow fine-grained control over which nodes are targeted
by specific application components. Finally, the ManageApplication endpoint is used to increase
the number of application replicas. This ensures that the application takes full advantage of the newly
added resources by deploying instances on the freshly labeled nodes.

Conversely, when scaling in an application, the process begins with updating the labels on specific
nodes to indicate that they should no longer be targeted for new application workloads. This label
change, performed via the LabelNode endpoint, prepares the nodes for safe removal. The application
replicas are then reduced accordingly through the ManageApplication endpoint, which ensures

Funded by bul loud
the European Union vaw.ne ulouscioud.eu
info@nebulouscloud.eu 22

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

that workloads are drained from the targeted nodes. Once the nodes are no longer hosting active
application components, the ScaleIn endpoint is invoked to remove them from the cluster entirely.

Throughout this process, the Deployment Manager ensures compatibility with Kubernetes
conventions and exploits its built-in features to manage workload distribution and node lifecycle. The
orchestration of these operations is handled through Execution Adapter workflows, which enable
automation, logging, and safe execution. As a result, platform benefit from a high-level, cloud-agnostic
interface for cluster and application reconfiguration, minimizing manual intervention while
maximizing control and scalability. This makes the Deployment Manager particularly well-suited for
managing dynamic, multi-cloud, or edge environments where resources and workloads are in
constant flux.

2.3 EXECUTIONWARE DEPLOYMENT ARCHITECTURE AND LIFECYCLE
MANAGEMENT

In the NebulOuS platform, the Execution Adapter and the Deployment Manager are automatically
deployed as Kubernetes pods to simplify installation, maintenance, and scaling.

2.3.1 Fully Automated NebulOuS Deployment Pipeline

During the initial development phase of NebulOusS, the Execution Adapter was deployed as a separate
server installation. This Linux-based setup, installed on an Ubuntu 22.04 server, served as a shared
execution backend for multiple NebulOuS sandbox environments. Deployment Manager was
deployed in this environment as a Kubernetes pod, establishing connection to the Execution Adapter
from each instance. However, following feedback from Open Call participants, who found the
standalone server setup too complex, the final NebulOusS release shifted to a dynamic Kubernetes-
based deployment of Execution Adapter which is to be provided with a second release of NebulOuS
platform.

In this improved deployment, Execution Adapter is installed as a set of Kubernetes pods (see Figure
5). Ready-to-use Kubernetes configuration was provided, allowing automated deployment on on-
premises Kubernetes clusters. The key components deployed as pods include:

(Optional) PostgreSQL database pod [24]
(Optional) Static nodes pods [25]

The ProActive server pod [26]

(Optional) Static nodes pods [27]
(Optional) Dynamic nodes pods [27]
(Optional) PostgreSQL database pod [27]

Funded by bul loud
the European Union Www'ne utouscioud.eu
info@nebulouscloud.eu 23

NebulOuS

D4.2 NebulOusS Secure Cross-Cloud

and Fog Applications deplovment & Orchestration based on smart contracts

ProActive Postgres ProActive Dynomic
l = pleer SAL Tmage
ProActive Installation Packa "
> T prsAstive - re—— SAL Installation Package
o d Scheduler | EF ! =
HELM E__]l TR Nede Tmage Hm E_Jl
" i / NebulOus NebulOus W)
Helwm Conby Prodctive | iy SAL | @t | Nebulous YAML
Templa‘te.s Inputs Regls‘tm// Reglstry =% Helm Charts o(eph/men‘t
-v 3 v Seript
Cluster Nodes Cluster Node Cluster Node
e -l _—
/ L) cheduler | /
‘ Node Pod > — ~ SAL ol
7 |
Node | oo [|- _ Prodctive SAL } |
Servi o =)| Scheduler 4 = Siia > &
ervice (Y \ ‘ 2 ervice
SIS > T Service L — |
2 DB Service DB Service
[\ 4
| Wode Pod Vi
' S ~ Postgres Pod | MariaDB Pod
® | ™
__» _—
) 4
| ProActive PostgresDB SAL MariaDB
Persistent storage] Persostent S‘to{‘o‘ﬁe

Figure 5. Execution Adapter (ProActive) and Deployment Manager (SAL) deployment in NebulOuS Kubernetes

The installation is managed via Helm [28], a Kubernetes package manager. A dedicated Helm chart is
configured using a values.yaml file where users specify deployment parameters, such as cluster
type, image repositories, credentials for the private Docker Registry, resource limits, and persistence
volumes. The images were moved regularly for the testing purposes to the dedicated Nebulous
repositories [24][25][26][27] To ensure proper operation, particularly on-premises, persistent
volumes are configured for the server and database pods, with storage paths predefined on
Kubernetes nodes.

To upgrade ProActive, users simply update the values.yaml with the new image versions and run a
Helm upgrade command, with the pods automatically recreated to reflect the new release. This
Kubernetes-based dynamic deployment simplifies setup and maintenance, eliminates manual server
provisioning, and aligns with cloud-native practices expected by users of the NebulOuS platform.

The Deployment Manager is packaged as a Docker image. During the development phase the image
was automatically published in the public ActiveEon repository [29] at each new release. The
Nebulous CI/CD pipeline detects new date-tagged images and automatically upgrades the Nebulous
sandbox environment by deploying the updated SAL pod. Developers can also manually deploy the
latest Deployment Manager image to a Kubernetes cluster by applying the provided sal.yaml
manifest [2], which defines the deployment, service exposure, environment variables, and persistent
volumes necessary for operation. For releases and well tested
SAL version, corresponding SAL image was moved to SAL Nebulous repo [30].

All runtime configuration for Deployment Manager, including the connection to the Execution
Adapter, is dynamically injected into the Kubernetes deployment via environment variables defined
in Nebulous Helm Charts [31]. This setup enables secure, flexible connectivity without hardcoding
endpoints, credentials, or environment-specific parameters into the application image or deployment

Funded by
the European Union

www.nebulouscloud.eu
info@nebulouscloud.eu 24

D4.2 NebulOusS Secure Cross-Cloud
Ne b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

manifests. Developers can easily update connection settings or override them temporarily by editing
the environment variable configuration in the deployment.

Developers have full control over Deployment Manager lifecycle operations in Kubernetes. They can
restart the Deployment Manager service via a rolling deployment update (kubectl rollout
restart), manually delete and recreate pods, or scale the deployment to zero and back up for a
complete reset. Logs are accessible both at the Kubernetes pod level and inside the container’s
filesystem, providing visibility into scheduling activity, runtime errors, and internal processing states.
Kubernetes' built-in tools (kubectl top pods, kubectl describe pod) also allow developers to
monitor resource utilization, pod health, and diagnose deployment issues.

The Deployment Manager deployment exposes a dedicated debugging service, configurable through
sal.yaml. Developers can use Kubernetes port-forwarding to map the internal debugging port to
their local machine, enabling remote JVM debugging. This allows setting breakpoints, inspecting
variables, and tracing execution paths live inside the running Deployment Manager instance. In
parallel, developers are encouraged to monitor the Deployment Manager runtime logs for additional
context during debugging sessions.

2.3.2 Persistence and Cleanup Mechanisms

The Deployment Manager includes a set of dedicated endpoints for managing persistence and
ensuring the integrity of its internal state across deployments, particularly during development and
maintenance activities. These persistence operations are primarily intended for NebulOuS
developers and project mentors who need to validate that resources such as clusters, clouds, and
edge devices have been properly undeployed and removed from both the Deployment Manager and
the underlying Execution Adapter server or cloud providers.

To support this, the Deployment Manager exposes several endpoints [3]: CleanAll,
CleanAllClusters, CleanAllClouds, CleanAllEdges, and CleanSALDatabase. Each of these
targets specific resource types, and collectively they serve to eliminate inconsistencies between the
Deployment Manager's internal state and the actual infrastructure. The most comprehensive of these
is the CleanAll endpoint, which performs a full system cleanup, removing all registered resources
from the Deployment Manager, the Execution Adapter server, and any external environments to
which the Deployment Manager has deployed nodes. This is particularly useful after testing scenarios
or when resetting a development environment.

The Deployment Manager database itself is backed by a Persistent Volume (see Figure 5), ensuring
that data persists across Deployment Manager restarts. However, there are cases where this
persistence can lead to issues, particularly when the database schema evolves or an unrecoverable
error occurs, such as a Hibernate exception or SQL-level corruption. In such scenarios, a restart of the
PVC may be necessary to reset the persistence layer.

An important nuance is that the Deployment Manager's persistence management also intersects with
the Execution Adapter’s own execution and resource metadata. For instance, the Deployment
Manager maintains its state independently, but resources like cloud providers and cluster nodes also
have corresponding entries within the Execution Adapter server. If only the Deployment Manager
database is wiped, without invoking full cleanup operations, those Execution Adapter-side records
remain intact. This can result in misleading and potentially hazardous behaviour. For example, if a
cloud provider was previously added via the Deployment Manager, but then the Deployment
Manager's database is reset without cleaning the Execution Adapter state, re-adding a cloud with the
same name may connect to the original Execution Adapter resource, regardless of whether the new

Funded by bul loud
the European Union vaw.ne ulouscioud.eu
info@nebulouscloud.eu 25

D4.2 NebulOusS Secure Cross-Cloud
Ne b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

configuration differs. This leads to unpredictable behaviour and may result in applications being
deployed to an unintended environment.

Similar complications may arise with clusters. If the Deployment Manager attempts to deploy a
cluster node but fails, due to cloud connectivity issues, for example, the node might be partially
registered or misrepresented in the Execution Adapter. If not properly removed, subsequent
operations involving that cluster could fail silently or produce errors that are difficult to trace. These
challenges illustrate the importance of using the resource deregistration endpoints consistently,
especially during testing or error recovery workflows.

In sum, the Deployment Manager's persistence operations are designed not only to support long-
term state retention, but also to ensure that environments can be safely and consistently cleaned up.
Proper use of these endpoints prevents state divergence between the Deployment Manager and
Execution Adapter, ensures predictable deployment behaviour, and supports the broader system goal
of secure and fault-tolerant orchestration across distributed cloud and edge environments.

2.3.3 Automated Testing Support

The Deployment Manager in the NebulOusS platform is supported by an automated testing workflow
[31] designed to validate its behaviour under a realistic, repeatable deployment scenario. These tests
are implemented using Postman collections [32], which differ from traditional API test sequences by
incorporating scripted logic through pre- and post-request scripts. These scripts are used not only to
validate the response of each API call but also to dynamically control the flow of the test based on the
results received, enabling fully automated execution without manual intervention.

To execute these automated tests from the command line, the NebulOusS platform relies on Newman
[33], a CLI utility specifically designed to run Postman collections. This allows the test suite to be
integrated into local development environments or automated CI/CD pipelines. Newman requires a
JavaScript execution environment and thus depends on the installation of Node.js [34] and the Node
Package Manager (npm) [35]. These tools can be installed from the official website, after which
developers can install Newman globally via npm. Once installed, Newman is accessible from the
terminal and can be used to execute test runs against a deployed Deployment Manager instance.

At present, the test suite focuses on a single-cloud deployment for each cloud, a multi-cloud and
cloud-to-edge scenario, covering the full lifecycle of resource and cluster operations in a controlled
environment. The workflow begins with the registration of a resources, followed by the discovery of
node candidates based on specified criteria. A cluster is then defined and deployed alongside an
application using one replica. The cluster is subsequently scaled to accommodate two application
replicas, then scaled back down to a single replica, simulating realistic elasticity scenarios. After these
operations, the application is removed, the cluster deleted, and the cloud provider deregistered,
completing the full deployment lifecycle and cleanup phase.

Before executing the test, users must edit the provided postman collection for testing [32]. This file
includes all necessary API calls and the logic that drives the test. In particular, users need to ensure
that the AddCloud or RegisterNewEdgeNode request contains the appropriate cloud parameters, and
that the FindNodeCandidates calls are updated with any necessary filters for master and workers
node selection. The DefineCluster call includes a set of pre-defined environment variables that
must be correctly configured to reflect the target NebulOuS test environment. These include
parameters such as application ID, message broker configuration, and AMPL license keys, all injected
dynamically via the associated Postman environment file.

Funded by bul loud
the European Union vaw.ne ulouscioud.eu
info@nebulouscloud.eu 26

[D4.2 NebulOusS Secure Cross-Cloud
Ne b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

The Postman environment file serves as the context for test execution and contains the actual values
for environment variables referenced throughout the test collection. Testers are advised to update
this file to match their specific test environment, including credentials and host details. To avoid
conflicts during collaborative testing, it is recommended to rename all variables to user-specific
values, particularly when multiple testers operate on shared infrastructure.

+ deleteCluster

<+ RemoveClouds

executed
1
52
52
y3
61
total run duration: 28m 56.8s

total data received: 107.38kB (approx)

average response time: 606ms [min: 56ms, max: 6.U4s, s.d.: 1181ms]

Figure 6. Results and interface of automated test successful execution

Once the configuration is complete, the test is executed by first establishing a connection to the
Deployment Manager, typically through a local port-forward setup. Newman is then used to run the
test collection with the selected environment configuration. Developers are free to rename the test
files to suit their workflows, if the names are correctly referenced in the Newman execution
command. This automated testing setup offers a reliable, repeatable method to validate Deployment
Manager behaviour under real-world usage patterns and plays an essential role in maintaining the
robustness of the NebulOusS platform as it evolves.

3 FROM SLA TO SMART CONTRACTS

3.1 BACKGROUND

Blockchain is a distributed ledger, which consists of a series of chronologically ordered blocks that
are appended to the ledger and connected with each other in a linked-list data-structure. To provide
integrity and immutability of data in the ledger, the blockchain prevents any updates in the committed
blocks. To ensure this, each block contains the hash of the previous block, and the ledger is replicated
across peers that participate in the network. A block usually contains a set of timestamped

Funded by
the/ Exifopean Ui www.nebulouscloud.eu
info@nebulouscloud.eu 27

D4.2 NebulOusS Secure Cross-Cloud
Ne b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

transactions that are bundled together. To ensure adequate security, blockchain systems adopt
various cryptographic primitives such as hashing algorithms, digital signatures, and Public key
infrastructure (PKI) protocols. In the blockchain systems, there are two key types of participants:
those that generate the transactions, and those that validate and store them in the ledger.

A blockchain network runs on a peer-to-peer topology where each node is expected to store the same
copy of the ledger. The network consists of a set of nodes or organizations that do not have a
preexisting trust relationship among them. Therefore, to ensure that each peer node has the same
copy of the ledger at any given time, the new valid block that will be appended in the ledger is selected
by executing a consensus mechanism. In particular, a consensus mechanism (e.g., Proof-of-Work
(PoW), Proof-of-Stake (PoS), or Practical Byzantine Fault Tolerance) is a protocol that ensures
synchronization among all network peers (i.e., nodes that maintain the ledger and might also process
the transactions) about the transactions that are valid and that are about to be added to the
blockchain [36][37].

Therefore, the mentioned consensus mechanisms are pivotal for the correct functioning of blockchain
and need to be tested properly before their use in real-world applications. The key components and
functionalities of a blockchain system enable some unique features including immutability,
decentralization, consensus, provenance, and finality, which makes it a promising solution in many
application domains [38][39][40][41][42].

Typically, blockchains are categorized based on their permission model. Based on this categorization,
blockchain can either be permissionless or permissioned and can also be divided into public, private
or consortium ledgers. In relevant literature, public and permissionless blockchains are considered
equivalent and used interchangeably. However, these two categories are concerned with different
authentication and authorization mechanisms.

A permissionless blockchain (e.g., Bitcoin! and Ethereum?) allows anyone to become a participant
and perform activities such as taking part in a consensus mechanism, sending new transactions
throughout the network, and maintaining the ledger state. In a permissioned blockchain (e.g.,
Hyperledger Fabric3), on the other hand, the participation is constrained, and only the pre-verified
parties with an established identity are allowed to join the network. Permissioned blockchains
require a minimum level of trust among the participants of the consortium and hence, nodes need
identities and mutual authentication to participate in the network.

Different types of blockchains do not inherently offer advantages over one another. Each type can be
optimized for performance and usability based on the specific requirements and the implementation
environment.

required number of transactions per second, transaction commit latency, and service availability [43].
There are other benefits and drawbacks for each of the blockchain types, apart from the trust among
the participants, e.g., scalability [44], security and privacy [45], and degree of decentralization. These
should be taken into account when making a choice to utilize the efficient blockchain platform.

1 Bitcoin is a decentralized digital currency and the first implementation of a permissionless blockchain. It allows anyone to participate in the
network, validate transactions, and maintain the ledger through a consensus mechanism known as Proof of Work.

2 Ethereum is a permissionless blockchain platform that supports more than just a cryptocurrency. It enables the creation and execution of
smart contracts—self-executing agreements with terms written in code.

3 Hyperledger Fabric is a permissioned blockchain framework designed for enterprise use. It restricts participation to pre-verified entities,
allowing only trusted parties to join the network, validate transactions, and access the ledger.

Funded by bul loud
the European Union vaw.ne ulouscioud.eu
info@nebulouscloud.eu 28

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

3.1.1 Smart Contracts

The term Smart Contract (SC) was coined in 1990s by cryptographer Nick Szabo [46]. He defined SC
as “a set of promises, specified in digital form, including protocols within which the parties perform
on the other promises”. However, practical applications of SCs did not emerge until the evolution of
distributed ledger technologies (DLTs) such as Bitcoin and Ethereum, in which the immutable and
distributed nature of the blockchain and consensus protocols made it feasible to implement SCs.
Generally speaking, a SC can be seen as a computer program that digitally allows the verification and
enforcement of contracts between parties in a blockchain system.

Typically, SCs are deployed on and protected by blockchain, and they possess certain unique
characteristics and provide a number of advantages. First, since the SCs are deployed and verified on
blockchain ledger, the code implementing the SCs is immutable due to the tamper-resistant feature
of blockchain. Second, the execution of SCs is done by consensus nodes without mutual trust in a
decentralized manner. Third, an SC enables automation of tasks. For instance, it could automatically
initiate a transfer of digital assets between involved parties when certain predefined conditions
specified in the contract are met or a trigger is sent via a transaction.

Bitcoin was the first cryptocurrency to facilitate the use of SC for sending and receiving bitcoins via a
simple scripting language. However, Bitcoin's scripting language has limitations concerning the
logical, arithmetic, and cryptographic operations that it supports, which are not suitable for
expressing complex business logic.

Ethereum became the first public blockchain platform that supports SCs with advanced and
customized logic by using its Turing-complete Ethereum Virtual Machine. In Ethereum, SCs can be
seen as accounts which are controlled by program code, unlike the user accounts which are controlled
by user's private key. Both contract and user accounts can hold and send/receive Ether. Ethereum
supports development of SCs in several high-level languages such as Solidity and Serpent, and
regardless of the language, the SC code is compiled to create the corresponding Ethereum virtual
machine bytecode which is then deployed for execution on the underlying blockchain. The blockchain
along with the SCs provides a suitable platform for the design of various types of Decentralized
Applications, e.g., games, gambling, supply chain management, voting, and crowdfunding.

Since the SCs usage are at early stages, and these contacts deal with the asset management and
transfer, they are a promising target for cybercriminals. Hence, advanced techniques and tools are
required to ensure that the SCs are tested for various security vulnerabilities before their deployment
on a blockchain platform. Apart from Ethereum, there are many open-source popular blockchain
platforms such as Hyperledger-fabric and Corda%, that support the execution of complex SCs and
facilitate the creation of decentralized applications.

3.1.2 SLA to Smart Contract Transformation

The Smart Contract Encapsulator (SCE) plays a central role in the SLA lifecycle within the system. It
is assumed that an SLA has been formally agreed upon between the service provider and the

4 Corda is an open-source permissioned blockchain platform designed for enterprise use, particularly in industries like finance. It supports smart
contracts, known as CorDapps, which automate business processes and manage assets. Unlike permissionless platforms like Ethereum, Corda
restricts participation to authorized parties, enhancing privacy and security.

Funded by bul loud
the European Union Www'ne ulouscioud.eu
info@nebulouscloud.eu 29

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

consumer, and that the SLA generator module has successfully generated the SLA. In NebulOus, the
transformation of SLAs into smart contract functions is performed in an automatic manner.

The SCE is responsible for retrieving new SLAs from the AMQP server, converting them into smart
contracts by invoking the generic SLA chaincode with extracted parameters, and committing these
smart contracts to the Hyperledger Fabric ledger via the Fabric Gateway (FGW) for secure storage. In
terms of compliance monitoring, the SCE processes real-time monitoring data received from the
AMAQP server. Upon receiving such data, the SCE invokes predefined functions to process the relevant
actions. It then publishes these events back to the AMQP server, enabling other services in the system
to consume and act upon them as needed.

Figure 7 illustrates the architecture of the SCE. The SCE is composed of several key components, each
responsible for handling different aspects of SLA management, blockchain interaction, and system
communication.

slaManagement
createSLA(slaData)

getSLA(slald)
SLA QUEUE SLA Processing updateSLA(slald, slaData)
l Module & terminateSLA(slald)
> slaViolations
PR record Violation(slald, violData)
Monitoring QUEUE s lf\wﬂgg:lzrlng < > <+ getViolationsBySLA(slald)

getAllViolations)

slaNotifications

Event Handler
Module publishNewSLA(slald)

Violation Queue

Smart Contract Encapsulator(SCE)
AMQP Server Smart Contract

Figure 7. Smart Contract Encapsulator (SCE): Workflow and Module Communication

The AMQP Client Module is responsible for communication between the SCE and the AMQP server. It
subscribes to two main queues: the SLA Queue, which receives messages containing new SLAs, and
the Monitoring Queue, which receives performance data messages. In addition to receiving data, the
module also publishes SLA-related updates. When the SCE processes violation or penalty data, it
sends these updates to the AMQP server, where they can be accessed by other services for further
processing.

The Blockchain Gateway Client handles the interaction with the blockchain network, specifically
Hyperledger Fabric. It uses the Fabric Gateway to establish a secure connection, enabling the SCE to
create and store SLA smart contracts on the ledger.

The SLA Processing Module parses and validates incoming SLA data, formats it appropriately, and
then sends it through the Fabric Gateway to smart contract functions such as createSLA in the
slaManagement module.

The SLA Monitoring Module processes incoming monitoring data from the AMQP server’s Monitoring
Queue, which includes SLA violation or penalty data from external sources. Upon receiving such data,
itinvokes predefined smart contract functions in the SLA violation handling chaincode to process the
relevant actions associated with the affected SLAs on the blockchain.

Funded by bul loud
e/ ExGiS0ati DI www.nebulouscloud.eu
info@nebulouscloud.eu 30

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

3.1.2.1 Off-chain Service Monitoring

Smart contracts operate on the principle of determinism - always producing the same output given
the same input and state. This characteristic guarantees transparency, consistency, and security,
preventing tampering or manipulation of their execution. However, this deterministic nature imposes
limitations, as smart contracts are confined to the data and events within the blockchain network.

Oracles act as vital bridges, where smart contracts get access to real-world information or off-chain
data to trigger predefined actions [47]. Technically, an oracle is a middleware service or component
that facilitates communication between a blockchain and external data sources. It is responsible for
fetching data from off-chain systems (such as RESTful APIs, web services, [oT devices, or databases),
validating its integrity and authenticity, and securely transmitting it to the on-chain environment.
Cloud service providers implement monitoring systems that collect real-time data from their
infrastructure. The monitoring system, through the oracle, transmits the collected data to smart
contracts deployed on the blockchain. Oracles can also perform processing or aggregation steps. For
instance, if the SLA involves a requirement for average response times, the oracle aggregates this data
before sending it back to the smart contract.

Oracles can appear in different types:

Input Oracles: The most widely recognized type of oracle today is known as an “input oracle,” which
fetches data from the real-world (off-chain) and delivers it onto a blockchain network for smart
contract consumption. As an example, an input oracle fetches real-time performance data from
cloud servers, such as uptime, response times, and resource utilization, and delivers this data
onto the blockchain. The SLA smart contract then uses this data to check if the cloud service
provider is meeting its performance targets. If not, penalties may be automatically applied to the
provider. An input oracle for our case is the Event Management System [48].

Output Oracles: The opposite of input oracles are “output oracles,” which allow smart contracts to
send commands to off-chain systems that trigger them to execute certain actions, for example,
informing a banking network to make a payment, telling a storage provider to store the supplied
data, or pinging an [oT system to unlock a car door once the on-chain rental payment is made.

Cross-Chain Oracles: Another type of oracles considered the cross-chain oracles that can read and
write information between different blockchains. Cross-chain oracles enable interoperability for
moving both data and assets between blockchains, such as using data on one blockchain to trigger
an action on another or bridging assets cross-chain so they can be used outside the native
blockchain they were issued on.

Compute-Enabled Oracles: A new type of oracle becoming more widely used by smart contract
applications are “compute-enabled oracles,” which use secure off-chain computation to provide
decentralized services that are impractical to do on-chain due to technical, legal, or financial
constraints. For example, computing zero-knowledge proofs to generate data privacy or running
a verifiable randomness function to provide a tamper-proof and provably fair source of
randomness to smart contracts.

3.1.2.2 SLA Evaluation & Enforcement

At predetermined intervals, the smart contract triggers its SLA evaluation function to compare the
current performance data against the agreed-upon SLA thresholds. The smart contract’s function that
is responsible for checking SLA compliance is invoked by an external entity (Event Management
System or another processes). If the service performance falls below the specified levels, the smart

Funded by bul loud
the European Union Www'ne ulouscioud.eu
info@nebulouscloud.eu 31

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

contract automatically triggers the penalty mechanism. For instance, in a cloud storage SLA with a
99.9% uptime guarantee, the smart contract regularly verifies the service's uptime and enforces
penalties, notifies the service provider, and/or reports the breach to anomaly detection system if
uptime drops below the agreed threshold.

3.1.2.3 SLA Termination

Either party can initiate SLA termination using the smart contract. This step involves:

e (Calling the termination function: Invoking the appropriate function within the smart contract
to initiate termination.

e Notifying both parties: Alerting both the computing continuum provider and the consumer
about the termination request.

e Confirming termination: Obtaining confirmation from the requesting party to proceed with
termination.

e Terminating the smart contract: The smart contract ceases monitoring and enforcing the SLA
terms.

3.1.3 Communication between SCE and Other Services

Designing new interfaces and mechanisms for obtaining feedback from the monitoring algorithms
and interacting with off-chain services and other third-party services. What is the interface between
the Event Management System and Smart Contract Encapsulator modules.

Figure 8 illustrates the interactions of the Smart Contract Encapsulator (SCE) with various services
in the system. The SCE interfaces with the blockchain via the Fabric Gateway (FGW), facilitating
secure and efficient communication with the Hyperledger Fabric network. The SLA Generator sends
newly created SLAs to the AMQP server, from which the SCE retrieves them. The SCE then converts
these SLAs into corresponding smart contract and commits them to the blockchain. When the
Brokerage Quality Assurance (BQA) component identifies Service Level Objective (SLO) violations or
applicable penalties, it transmits this information to the AMQP server. In response, the SCE invokes
the appropriate smart contract functions to process the relevant actions associated with the affected
SLAs on the blockchain.

Additionally, the SCE publishes SLA-related updates—both during SLA creation and upon receiving
SLO violations—back to the AMQP server. These updates are consumed by other modules for further
processing and analysis.

SLA Generator

Brokrage Quality Smart Contract
Assurance Encapsulator
(BQA) (SCE)

B
&

Blockchain Network

Al-Driven Anomaly
Detection

Figure 8. SCE Component Interactions

Funded by bul loud
e/ ExGiS0ati DI www.nebulouscloud.eu
info@nebulouscloud.eu 32

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

4 AUTOMATIC DEPLOYMENT OF SECURE NETWORK OVERLAY

Upon selection of the appropriate resources in which the application is deployed, an overlay network
is created to securely interconnect the compute elements involved. Building upon the foundations
established in the initial D4.1 deliverable, we have extended Overlay Network Manager (ONM)
networking capabilities to address connectivity challenges, particularly focusing on Network Address
Translation (NAT) traversal. In particular, we target scenarios where nodes such as edge devices,
virtual machines, or IoT endpoints reside behind one or more layers of NAT or are deployed in
firewall-restricted networks. These conditions hinder traditional VPN setups that require public IP
addresses or direct peer-to-peer reachability. To overcome this, we integrate Headscale/Tailscale5, a
lightweight, WireGuard-based mesh VPN stack that automates key management and NAT traversal.
On the other hand, this approach enables the secure device on-boarding and management as the
communication of the NebulOusS core with the unprovisioned/ unregistered nodes is achieved over
an encrypted network.

4.1 OVERVIEW
As part of the NebulOusS architecture, an Overlay Network Manager has developed targeting to:

e Ensure connectivity between NebulOuS compute resources (physical and virtual).
e Secure data in transit through encryption

This functionality is implemented by the Overlay Network Manager (ONM). During the creation of a
new cluster, initiated by the Execution Adapter, the ONM connects compute resources into a secure
overlay network. The system creates an on-demand VPN network, providing secure node-level
connectivity (e.g., VMs or bare-metal devices) even before Kubernetes deployment. This ensures that
intra-cluster traffic remains encrypted within each cluster.

4.1.1 Technical Implementation

The ONM utilizes the WireGuard VPN protocol, an open-source solution that encapsulates IP packets
over UDP, enabling secure Layer-3 tunneling between physical or virtual resources.

Key components of WireGuard implementation include:
e Public Key Association: Secure communication is established via a public key associated with
a tunnel source IP address.
e Network Interfaces: WireGuard creates its own network interfaces, each with a private key
and a list of peers (public keys).
e Tunnel Rules: Each public key maps to specific IP addresses allowed in the tunnel, ensuring
strict access control.

Once the WireGuard interface is configured with a private key and peers' public keys, data packets
are securely transmitted across the network.

5 https://github.com/juanfont/headscale

Funded by bul loud
the European Union Www'ne utouscioud.eu
info@nebulouscloud.eu 33

[D4.2 NebulOusS Secure Cross-Cloud
Ne b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

4.1.2 Achievements

The ONM implementation resulted in:

e VPN communication across nodes.

e Stable inter-node communication using a WireGuard mesh.

e Reliable pod-to-pod communication in Kubernetes, resolving issues with the Cilium
Container Network Interface (CNI).

e Mitigation of networking disruptions caused by misconfigurations.

e Automation of network configurations for Kubernetes clusters (nodes and master).

e Dynamic integration of Cilium with WireGuard mesh communication via automated scripts.

Overall, these achievements enable NebulOusS to securely and automatically interconnect
distributed resources across multiple clouds, edge nodes, and network domains, ensuring full
interoperability in heterogeneous environments.

4.1.3 Use-case Description performing the main functionalities of ONM in a local
deployment.

The following example demonstrates how pod-to-pod connectivity was achieved and tested in the
deployed environment:

e Pods communicate seamlessly across nodes through a WireGuard mesh.

e WireGuard interfaces (e.g., wg0) were deployed on multiple nodes (e.g., VM2 and VM3).

e Successful connectivity was validated with pings between pods across nodes.

The image below visually represents the WireGuard-based overlay network architecture. It shows:
1. Multiple compute nodes (e.g., VM2 and VM3) are connected through a WireGuard mesh, with
wg0 interfaces on each node.
2. A secure tunnel encapsulating the communication between nodes.
3. Verification of connectivity, as demonstrated by successful pings between pods residing on
different nodes.

vm3@vm3-pc: -

vm1@vm1-pc ~

Figure 9. ONM created WireGuard-based overlay network

4.1.4 Headscale/Tailscale Implementation - Support connectivity for devices behind NAT
or firewalls

The custom ONM mechanism extends the network dynamically; however, the deployment of network
nodes behind NAT introduces significant challenges and high complexity. To overcome these

Funded by
the/ Exifopean Ui www.nebulouscloud.eu
info@nebulouscloud.eu 34

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

complexities, we focused on enhancing ONM's flexibility and adaptability for environments using NAT
traversal.

After investigating the most reliable solutions for NAT traversal, we identified Headscale/Tailscale as
the ideal choice. Headscale/Tailscale is open-source and integrates seamlessly with WireGuard,
utilizing its foundational capabilities while extending its functionality to work in NAT-heavy
environments.
Features of Headscale/Tailscale
o Simplified NAT Traversal: Effortlessly connects devices located behind NATs or firewalls.
e Automatic Configuration: Minimizes manual setup by dynamically configuring nodes for
secure communication.
e WireGuard Integration: Maintains compatibility with the ONM's previous implementation, as
it uses WireGuard as its underlying protocol.

4.1.5 Deployment and Testing

To validate the Headscale/Tailscale solution, we conducted a deployment across three
geographically distributed nodes:
1. Headscale Server: Located in the Ubitech testbed.
2. VM: Hosted in the Thessaloniki testbed, situated behind a double NAT (host machine and
virtual machine).
3. Raspberry Pi: Deployed in the Athens experimentation environment, also positioned behind
NAT.
The setup successfully established a VPN network interconnecting the Thessaloniki and Athens
nodes. The Headscale server, located in a separate Athens environment, automatically configured
the Tailscale clients for secure connectivity.

Kubernetes Cluster Deployment

Following the successful VPN configuration, we deployed a Kubernetes cluster:

e Master Node: Thessaloniki testbed.

e Worker Node: Raspberry Pi in Athens.
We integrated Cilium CNI to ensure compatibility with the broader NebulOuS implementation.
Challenges related to Cilium routing over the Tailscale VPN were addressed, and pod-to-pod
communication across nodes was successfully established.
The following implementation steps and testbed specifications describe the detailed configuration
used for setting up the cluster
Configuring Tailscale on Nodes:

e e.g, tailscale up --login-server https://hs.ubitech.eu --auth-key 2f01a9aba8.....

Testbed Environment Specifications
VM node
e 0S: Ubuntu 24.04.1 LTS
e Resources: 2 vCPUs, 4GB RAM, 20GB disk storage.
Raspberry Pi:
e 0OS:Linux 5.15.0-1070-raspi, Ubuntu 22.04.5 LTS (Jammy Jellyfish).
e Resources: 4 vCPUs, 8GB RAM, 60GB disk storage.

Key Achievements
e Seamless NAT traversal and secure communication between nodes using
Headscale/Tailscale.
Funded by
“ the Europeati Uiloi www.nebulouscloud.eu

info@nebulouscloud.eu 35

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

e Reliable pod-to-pod communication in the Kubernetes cluster, aligning with NebulOuS
project goals.
e Enhanced automation for Kubernetes deployment and networking configurations.

4.1.6 Validation of Kubernetes Pod Communication over Headscale/Tailscale Mesh with
Cilium CNI

Figure 10 illustrates the successful deployment and operation of a Kubernetes cluster utilizing a
WireGuard-based VPN mesh and Cilium CNI based on the deployment described in the previous
subsection. The target was the successful pod-to-pod communication between a the VM located in
Thessaloniki (k8s Master) and the Raspberry pi (k8s Worker) utilizing Headscale/Tailscale VPN
interfaces.

The figure comprises three panels (terminals):

1. Cluster Deployment
The top terminal showcases the output of the kubectl get pods -A -0 wide command, which lists all
running pods across namespaces within the cluster. Key details include:

e Pods in Multiple Namespaces: The default, kube-system, and cilium namespaces are
represented.
e Node Assignments: Pods are distributed between the raspberrypi and vm8-pc nodes.
This confirms that the cluster is operational, with pods running across multiple nodes.

2. Pod-to-Pod Communication Test

The middle terminal demonstrates a successful ICMP communication test between two pods across
the cluster.
e A pod (nginx-arm-6f7f59658b-n9jjq) initiates a ping to another pod with the IP address
10.244.0.91.
e Results show 0% packet loss, with a round-trip time (RTT) averaging around 24.429 ms,
confirming reliable pod-to-pod communication across the WireGuard VPN mesh.

3. Cilium CNI Health Status

The bottom panel displays the health status of the Cilium CNI through the command kubectl exec -ti
cilium-fnmvg cilium-health status.

e The health check confirms that connectivity tests (ICMP and HTTP) between the cluster
nodes (raspberrypi and vim8-pc) are successful.

e The RTT values for ICMP and HTTP are recorded, reflecting low-latency and stable
communication.

To summarize, this figure demonstrates the effectiveness of the Headscale/Tailscale integration and
Cilium CNI in facilitating seamless and secure communication across a Kubernetes cluster. It
highlights:

1. Proper deployment of Kubernetes pods across nodes.

2. Reliable inter-pod communication over a WireGuard VPN mesh.

3. Afully operational Cilium network with stable connectivity between nodes.

Funded by bul loud
the European Union Www'ne ulouscioud.eu
info@nebulouscloud.eu 36

) D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

Figure 10. Headscale/Tailscale integration and Cilium CNI

4.2 SECURE DEVICE ONBOARDING AND MANAGEMENT - INTEGRATION OF
HEADSCALE/TAILSCALE SOLUTION IN NEBULOUS CORE

In scenarios where multiple geographically distributed nodes seek to collaboratively form
Kubernetes clusters, NebulOusS facilitates the automated and secure creation of these clusters while
addressing a set of core requirements.

The Overlay Network Manager (ONM) subsystem is responsible for establishing secure
communication channels between pods across different nodes in the Kubernetes cluster. This is
accomplished through the following mechanisms:

e The ONM utilizes WireGuard to generate cryptographic key pairs (private and public keys)
for each node participating in the cluster.

e These keys are then used to automatically configure secure VPN tunnels between the nodes.

e Generates a WireGuard IP for each node

e Allnode-to-node traffic is encrypted and routed through these secure tunnels, providing end-
to-end encryption.

Funded by bul loud
the European Union WWW.ne ulouscloud.eu
info@nebulouscloud.eu 37

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

=
Unprovisioned eadscale Server Execution Overlay Network
Nodes behind NAT Adapter Manager (ONM)
1 I L]

User Onboarding]

1
1
1
1
1
Request to join in 0
Tailscale NetowurkL

L

1
1
1
1
1
1
A

Configure Tailscale
Mesh Network

H

Tailscale0 Interfaces
Created

Request for cluster | initiation through API

Request for WireGuard
iPs and Keys creation

»>

A 4

[Generate Cryptographic Material]

Return the WireGuard'
subnet values
Configure WireGuard VPN Mesh among nodes €=

wgO Interfaces Created

Create Kubernetes Masters and Workers

Agents Deployed

-———

Figure 11. NebulOuS - Cluster Initiation Procedures integrating ONM functionalities

The Execution adapter is the foundation component which enables the secure registration,
configuration, and management of distributed Kubernetes clusters. NebulOus components deployed
as pods (e.g, the ONM and Resource Manager Pod) with a Tailscale sidecar container ensuring that
traffic remains encrypted and authenticated. The system exposes a REST API through which users
can initiate cluster creation by providing necessary node information in a structured JSON format.
This information includes IP addresses, SSH credentials (username and password/key), and cluster
configuration parameters. Upon receiving this information, the Nebulous initiates a multi-stage
workflow, as illustrated in Figure 11:

1. User Onboarding: Users are first authenticated and onboarded into the Nebulous secure
network using Tailscale. This is accomplished by executing <tailscale up --login-server
<headscale server> --auth-key <auth-key>"> on their unprovisioned nodes. The Headscale
server URL and authentication key are provisioned by Nebulous system administrators,
ensuring only authorized users can access the VPN network.

2. Node Registration and VPN Overlay Initialization. After user authentication, the Execution
Adapter triggers the ONM to establish the secure VPN mesh between cluster nodes. This

Funded by bul loud
e/ ExGiS0ati DI www.nebulouscloud.eu
info@nebulouscloud.eu 38

) D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

process involves generating cryptographic material and establishing secure tunnels between
participating nodes, as detailed in next Subsection.

3. ONM Kubernetes Cluster Bootstrapping. Once secure communication is established, the
system deploys the required Kubernetes components on the designated nodes. This is
accomplished through SSH-based remote execution, where bootstrap scripts are transferred
to the target nodes and executed with appropriate parameters. The bootstrapping process
designates master and worker nodes according to the user-defined configuration and
initializes the Kubernetes control plane.

Figure 12. Created Interfaces on edge cloud node (Raspberry Pi)

The core components of NebulOuS, alongside the ONM, and the Kubernetes Cluster creation
(bootstrap scripts), and the Tailscale solution, have been tested both locally and across multiple
clusters within the broader framework of the NebulOuS project. Specifically, (i) the NebulOuS pods
provide communication over Tailscale for exposed ports; while (ii) the ONM with Kubernetes Cluster
creation [onmgithub] are main components of the project and have been extensively tested in
multiple scenarios with geographically distributed nodes.

Figure 12 illustrates the created network interfaces on a Raspberry Pi device configured through
Nebulous. The image shows: (i) the Tailscale IP through which the Raspberry Pi communicates with
the Execution Adapter, the ONM, as well as (ii) the ONM-created interface that enables
communication among Kubernetes nodes via a WireGuard-based VPN mesh network.

The main components of the Overlay Network Manager (ONM) and its supporting scripts are
publicly available:

Funded by bul loud
the European Union WWW.ne ulouscloud.eu
info@nebulouscloud.eu 39

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

e Overlay Network Manager (ONM) - Java service:
https://github.com/eu-nebulous/overlay-network-manager
Orchestrates the overlay network setup and manages the global state in a Postgres DB.

e Overlay bootstrap script - Bash script:
https://github.com/eu-nebulous/sal-scripts/tree /main/installation-scripts-onm
Executed by SAL/Proactive on infrastructure resources to initiate VPN bootstrapping by
contacting ONM.

e WireGuard configuration scripts - Bash scripts:
https://github.com/eu-nebulous/overlay-network-manager/tree /main/network-
manager/bootstrap-agent-scripts /wireguard
Executed by ONM on infrastructure resources to install and configure the WireGuard VPN.

4.3 SUMMARY OF TECHNICAL CONTRIBUTIONS AND CHALLENGES

The presented system combines several protocols and tools to enable fully automated deployment of
secure overlay networks across distributed Kubernetes clusters. The integration of WireGuard with
Headscale/Tailscale provides robust VPN connectivity, even in complex environments with NAT or
firewall restrictions. At the same time, the automation of the entire process through the Overlay
Network Manager (ONM) ensures that clusters can be dynamically extended with minimal manual
configuration.

The solution addresses multiple challenges such as NAT traversal, secure device onboarding, inter-
node encryption, dynamic key management, and integration with Kubernetes networking (e.g.,
Cilium CNI). By combining lightweight VPN mesh capabilities, automation scripts, and container-
native deployment, the system achieves secure cluster formation across heterogeneous and
geographically distributed infrastructures. This allows NebulOuS to support cloud-to-edge
deployments while maintaining end-to-end encrypted communication between nodes and pods.

5 SECURE AND PRIVACY-BY-DESIGN IN DATA STREAMS PROPAGATION

The second pillar of the NebulOusS security and privacy mechanisms focuses on policy-based access
control. This allows users to define and enforce rules that control who can access specific resources.
In addition to access control, the system also includes network policies and real-time observability
and enforcement to monitor and react to security events. Policies for controlling how data propagates
across components are also supported. Since the NebulOuS Meta-0S uses Kubernetes for container
orchestration, securing access to Kubernetes clusters is a key focus. Finally, NebulOuS imposes
measures to secure the communication between the NebulOuS control plane and the application’s
cluster master.

5.1 APPROACH OVERVIEW

5.1.1 Access Control In Kubernetes

Access Control in Kubernetes is practically realized by controlling access to the Kubernetes API [49].
Kubernetes (k8s) provides a well-structured way to achieve fine-grained cluster access control, using
“admission controllers”.

Funded by bul loud
the European Union Www'ne utouscioud.eu
info@nebulouscloud.eu 40

https://github.com/eu-nebulous/overlay-network-manager
https://github.com/eu-nebulous/sal-scripts/tree/main/installation-scripts-onm
https://github.com/eu-nebulous/overlay-network-manager/tree/main/network-manager/bootstrap-agent-scripts/wireguard
https://github.com/eu-nebulous/overlay-network-manager/tree/main/network-manager/bootstrap-agent-scripts/wireguard

D4.2 NebulOusS Secure Cross-Cloud

N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts
1 3 3
—
» —
L]
—
4
-
—
Authentication Authoerization Admission
Control
Kubernetes

Figure 13. Access Control in Kubernetes

In k8s, every communication goes through the API Server. Changes that come through the API server
are persisted into etcd..

An Admission Controller is code that runs after API server requests are authenticated and
authorized, and before the request results in a change to etcdé. They intercept inbound mutation
requests. An admission controller can, thus, mutate or reject the requests based on user-defined
policies.

Although there are build-in admission controllers in k8s, external admission plugins can also be run
as webhooks configured at runtime to achieve Dynamic Admission Control [50]. Dynamic Admission
Controllers are made possible by loading the MutatingAdmissionWebhook and
ValidatingAdmissionWebhook compiled admission controllers when the API server starts.

Admission webhooks in K8s are HTTP callbacks that receive 'admission requests' and do something
with them. There are two types of admission webhooks: Validating Admission Webhook and Mutating
Admission Webhook. Mutating admission webhooks are invoked first; they can modify objects sent
to the API server to enforce custom defaults.

After all object modifications are complete, and after the incoming object is validated by the API
server, validating admission webhooks are invoked and can reject requests to enforce custom
policies. This webhook calls out to a configured policy engine service to have the current payload
validated by any policies that match. If the validation results in false return, then the request stops
and the status is immediately returned back to the calling client, by the API server.

With these two admission controllers running, we can configure extensions to the API server request
flow at runtime, using services running on data plane nodes. This means that after the API server is

51t should be noted that admission controllers do not respond to Kubernetes read operations, like get, watch and list. To prevent those
operations, we will use RBAC.

Funded by bul loud
e/ ExGiS0ati DI www.nebulouscloud.eu
info@nebulouscloud.eu 41

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

up and the cluster is running, we can add policy engine services to the data plane at runtime and
configure them to be called by API server webhooks.

NebulOuS offers the definition and enforcement of arbitrary, custom security policies by its users
leveraging the aforementioned native Kubernetes mechanisms. This way, we allow for fine-grained
control on who is allowed to perform what actions on Kubernetes clusters, under a particular
context.

In the case of Dynamic Admission Control, the exact flow of an API request is depicted below:

\ r o
[APIRoquost]—{AumNMuch HM‘"‘:;"W, *-{ °°¢°'| rA]—’ ,,,‘”Hul H[etcd]
7 \ >

Policy Engine Policy Engine
| Controlier
Policy Policy

Figure 14. Kubernetes Dynamic Admission Control using external policy engines: flow of an API request

5.1.2 Policy engine

There are several policy engines that can act as admission controllers for Kubernetes (Kyverno [51],
Open Policy Agent [52], jsPolicy [53], KubeWarden [54], etc.). In NebulOuS, we are using OPA
Gatekeeper [55], which is the official Kubernetes-native integration of the Open Policy Agent (OPA).

OPA Gatekeeper is an open-source policy engine that enforces fine-grained access and security rules
across Kubernetes resources. It uses constraint-based policies to define what is allowed within the
cluster. These policies are written in a declarative way and are enforced automatically when any
resource is created or updated.

Gatekeeper supports both role-based and attribute-based access controls and allows for building
custom rules that reflect specific organizational or application needs. Policies can restrict actions
based on the resource type, labels, namespaces, user identity, or other Kubernetes metadata.

Gatekeeper works by:

e Constraints, which define what rules must be followed.

¢ ConstraintTemplates, which define the logic behind the rules.

e A built-in controller, which checks incoming API requests and blocks those that violate defined
constraints.

This model allows flexible and consistent enforcement of policies across clusters. Changes to

authorization behavior can be made by simply updating or adding constraints, without modifying the

application logic or cluster setup.

OPA Gatekeeper also integrates with auditing tools, enabling the detection of policy violations even if

enforcement is not active. This helps with gradually adopting policies in a safe, observable way.

Funded by bul loud
the European Union Www'ne utouscioud.eu
info@nebulouscloud.eu 42

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

5.1.3 OPA Gatekeeper Policies

OPA Gatekeeper is used for policy enforcement in Kubernetes through its integration as a Validating
Admission Webhook [56]. This means it checks every API request to the Kubernetes cluster, such as
creating or updating resources, and decides whether the action should be allowed based on defined
policies. These policies help prevent operations that don't meet organizational or security
requirements.

When a user sends a request to perform an action in the cluster, like deploying a pod or creating a
service, Gatekeeper evaluates that request against all active constraints. If any policy is violated, the
request is rejected before the change takes effect. This allows administrators to define clear rules
about what is allowed in the cluster, such as disallowing certain container images, enforcing naming
conventions, or requiring labels on resources.

OPA Gatekeeper makes it possible to manage policies declaratively, review violations through audit
logs, and ensure consistent enforcement across environments [57].

/ Policy apiserver \

Template |
CRD Eodl [[Mngrees AuthZ Admission
Policy Service Deploy Webhook Controller

Instance
CRD Config CRD

Admission
Review

\

» OPA '
‘ Gatekeeper | /

Figure 15. OPA Gatekeeper as a Validating Admission Webhook

Audit
results

&Jbemetes

5.1.3.1 Examples

Replicate

For example to restrict container images to trusted sources, NebulOuS uses OPA Gatekeeper to
enforce repository-based constraints. The policy below ensures that only images pulled from specific,
approved repositories [58] (e.g., nebulousrepo/) can be used in Pod definitions.

This enforcement is useful for securing workloads and preventing the use of unverified or
unauthorized container images.

First comes the definition of a ConstraintTemplate named “k8sallowedrepos”:

apiVersion: templates.gatekeeper.sh/vl
kind: ConstraintTemplate
metadata:
name: k8sallowedrepos
annotations:
metadata.gatekeeper.sh/title: "Allowed Repositories"
metadata.gatekeeper.sh/version: 1.0.2
description: >-
Requires container images to begin with a string from the specified list.
spec:
crd:
spec:
names:
kind: K8sAllowedRepos

Funded by bul loud
the European Union Www'ne ulouscioud.eu
info@nebulouscloud.eu 43

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

validation:
openAPIV3Schema:
type: object
properties:
repos:
description: The list of prefixes a container image is allowed to have.
type: array
items:
type: string
targets:
- target: admission.k8s.gatekeeper.sh
rego: |
package k8sallowedrepos

violation[{"msg": msg}] {
container := input.review.object.spec.containers[]
not strings.any prefix match(container.image, input.parameters.repos)
msg := sprintf("container <%v> has an invalid image repo <%v>, allowed repos are %v",
[container.name, container.image, input.parameters.repos])

}

violation[{"msg": msg}] {

container := input.review.object.spec.initContainers|[]

not strings.any prefix match(container.image, input.parameters.repos)

msg := sprintf("initContainer <%v> has an invalid image repo <%v>, allowed repos are
%v", [container.name, container.image, input.parameters.repos])

}

violation[{"msg": msg}] {
container := input.review.object.spec.ephemeralContainers[]
not strings.any prefix match(container.image, input.parameters.repos)
msg := sprintf ("ephemeralContainer <%v> has an invalid image repo <%$v>, allowed repos
are %v", [container.name, container.image, input.parameters.repos])

}

Then the Constraint that follows the set of the above rule is defined:

apiVersion: constraints.gatekeeper.sh/vlbetal
kind: K8sAllowedRepos
metadata:
name: repo-is-openpolicyagent
spec:
match:
kinds:
- apiGroups: [""]
kinds: ["Pod"]
namespaces:
- "default"
parameters:
repos:
- " nebulousrepo/"

This constraint will allow only Pods in the default namespace to use container images starting with
nebulousrepo/.

The following Pod uses an image from an unauthorized source and will be denied:

apivVersion: vl
kind: Pod
metadata:

name: unauthorized

namespace: default
spec:

containers:

- name: nginx
image: unauthorizedrepo/nginx:1.14.2

OPA Gatekeeper will reject this request with a message indicating that the image repository is not
allowed.

Funded by bul loud
the European Union Www'ne utouscioud.eu
info@nebulouscloud.eu 44

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

This Pod complies with the policy and will be admitted:

apivVersion: vl
kind: Pod
metadata:

name: authorized

namespace: default
spec:

containers:

- name: nginx
image: nebulousrepo/nginx:1.14.2

Because the image starts with the allowed prefix, the admission request passes the policy check.

5.1.3.2 Creating Constraints

When OPA Gatekeeper authorizes a request, it evaluates the full Kubernetes AdmissionReview object,
which contains details about the resource being created or modified. This request is processed
against any active policies defined in Gatekeeper.

As part of its setup, Gatekeeper installs a set of predefined ConstraintTemplates from the official
OPA Policy Library. These templates provide ready-to-use rules for enforcing common security and
operational practices, such as disallowing privileged containers, requiring specific labels, or
restricting image registries.

In NebulOusS, these templates are not only applied to standard resources like Pods and Deployments,
but more importantly, they are extended to validate Application resources. This is especially relevant
because NebulOuS adopts the Open Application Model (OAM), where the Application resource is a
central abstraction. By enforcing constraints at the Application level, we ensure policies are applied
directly to user-defined workloads, regardless of their internal structure.

As with all Gatekeeper policies, these ConstraintTemplates and their corresponding Constraints are
defined as YAML or JSON files and can be deployed using standard Kubernetes tooling, such as:

kubectl apply -f <filename>

5.1.4 Cilium Network Policies

Kubernetes supports network policies that control how pods talk to each other and to the outside
world. These policies help define what kind of traffic is allowed into or out of a pod. However, the
built-in Kubernetes network policies are limited. They can't easily handle things like DNS-based rules
or identity-aware filtering.

To improve this, NebulOuS uses Cilium for network security. Cilium is built on eBPF, a Linux feature
that lets the system enforce rules directly in the kernel, without adding extra software. This makes
policy enforcement fast and efficient [59].

Cilium adds its own type of network policy, called a CiliumNetworkPolicy. These policies let us write
more detailed rules than standard Kubernetes policies. For example, Cilium policies can allow or
block traffic based on the labels of pods (rather than IP addresses), the port or protocol being used,
or even the domain name being accessed. This is useful in dynamic cloud environments, where IP
addresses change often.

In NebulOuS, we use Cilium to control how application components talk to each other, especially
those defined using the Open Application Model (OAM). Cilium helps enforce strict separation

Funded by bul loud
the European Union Www'ne ulouscioud.eu
info@nebulouscloud.eu 45

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

between applications, limit outgoing traffic, and block unwanted network access. This supports the
platform’s goal of strong, built-in security.

The example below shows a simple Cilium policy that blocks all incoming traffic to pods with the label
app: my-service on port 8080. It stops any pod or external client from connecting to that
port.[60]

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:

name: block-port-8080
namespace: default
spec:
endpointSelector:
matchLabels:
app: my-service
ingress:
- toPorts:
- ports:
- port: "8080"
protocol: TCP
fromCIDRSet:
- cidr: "0.0.0.0/0"

This policy applies to any pod in the default namespace with the label app: my-service. It
blocks TCP traffic on port 8080 from all sources (0.0.0.0/0). The policy is defined in YAML, like
any other Kubernetes resource, and enforced automatically by Cilium.

5.1.5 Security Observability and Logging

While policy enforcement at admission time (e.g., through OPA Gatekeeper) prevents non-compliant
resources from being created, runtime enforcement s critical to detect and respond to security events
that occur during execution.

Tetragon? represents a significant advancement in Kubernetes runtime security enforcement for
several theoretical and practical reasons:

Tetragon is implemented as an eBPF-based security observability and runtime enforcement solution.
Unlike traditional monitoring tools that rely on system calls or log analysis, Tetragon leverages eBPF
(extended Berkeley Packet Filter) technology to observe system activities at the kernel level with
minimal performance impact.

The theoretical advantages of Tetragon include:

e Kernel-Level Visibility: Tetragon operates at the kernel level, providing visibility into all
system activities, including process executions, file accesses, and network connections.

e Low Overhead Monitoring: eBPF technology allows for efficient filtering and processing of
events directly in the kernel space, significantly reducing the performance impact compared
to traditional monitoring approaches.

e Real-Time Enforcement: Tetragon can detect and respond to security violations as they occur
during application runtime, enabling immediate threat mitigation.

7 https://tetragon.io/

Funded by bul loud
the European Union Www'ne ulouscioud.eu
info@nebulouscloud.eu 46

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

e Granular Observability: Tetragon can observe fine-grained activities such as specific system
calls, process creations, file operations, and network connections, providing a comprehensive
view of application behavior.

Tetragon's architecture is built around its ability to monitor and enforce security at the kernel level
through eBPF programs. The workflow follows these key steps:

1. eBPF Programs Attachment: Tetragon attaches eBPF programs to kernel hooks, intercepting
system events such as process executions, file operations, and network connections.

2. Event Generation: When observed activities match predefined patterns or policies, Tetragon
generates structured events that include detailed contextual information about the activity.

3. Policy Evaluation: These events are evaluated against security policies defined as
TracingPolicy or RuntimePolicy resources in Kubernetes.

4. Response Actions: Based on policy evaluation, Tetragon can trigger various response actions,
including logging, alerting, or actively blocking the operation through eBPF enforcement
mechanisms.

5. Integration with Security Tools: Tetragon forwards security events to a centralized collection
system, Elasticsearch serves as the repository for these events, enabling long-term storage,
correlation, and analysis.

Implementation of centralized data collection and observability through tetragon could be achieved
with a pipeline built on Tetragon, Filebeat8, Elasticsearch?, and Kibana??:

1. Tetragon agents on each node capture kernel-level events through eBPF programs.

2. Filebeat collects these security events and forwards them reliably to centralized storage.

3. Elasticsearch indexes all events, providing scalable storage and efficient querying
capabilities.

4. Kibana enables visualization and analysis through customizable dashboards.

5.1.6 Data Stream Propagation Control

While the original NebulOusS architecture, as reported in D6.1 - 1st Release of the NebulOusS Integrated
Platform and Use Case Planning section 2.3. GROUNDED ARCHITECTURE, had most components
running on the NebulOusS control plane (as depicted in Figure 16), a new iteration of the architecture
has been introduced, with several key components moved to the application cluster master (Figure
17).

8 https://www.elastic.co/beats/filebeat
? https://www.elastic.co/elasticsearch
10 https://www.elastic.co/kibana

Funded by bul loud
the European Union Www'ne ulouscioud.eu
info@nebulouscloud.eu 47

D4.2 NebulOusS Secure Cross-Cloud
N e b u | O u S and Fog Applications deplovment & Orchestration based on smart contracts

Application Cluster (Cloud-to-Edge)

Public/ Service Provider Edge User Edge

S Private cloud
NebulOuS ’{ R & N7 % o
Control Plane ‘Cloud VM (Master) i Service Provider Edge VM (Worker) User Edge device (Worker)
Kubernetes Kubemetes Kubernetes
\ [App companent (container)] [‘App component (container)]

Cloud/Cn-prem VMs.

Application Cluster (multi-cloud)

AWS

/_ Gloud VM (Worker)
(

App component (container)

OpenStack

7
Gloud VM (Warker)

[Kubernetes
App component (container)

Cloud VI (Master)

Kubemnetes

Application Cluster (Edge)
Service Provider Edge User Edge User Edge

(=)
@’ User Edge devics (Worker) " User Edge device (Worker)
| = [Kubernetes

. App component (container) [

Figure 16. NebulOusS old architecture (deployment view)

$ ‘Service Provider Edge VM (Master)

App component (container)]

Application Cluster (Cloud-to-Edge)

N
R

Kubernetes S Provider Edge User Edge
NebulOuS 0 VM (Workar) A
Service Provider User Edge device (Worker)
Control Plane ubernetes Kubernetes
Cloud/On-prem VMs [

Application Cluster (multi-cloud)
\
Cloud VM (Master)

Kubernetes

AWS

-
{
Cloud VM (Worker)

Kubemetes

[Kubernetes _

App component (container) 1

y,

=
@ Service Provider Edge VM (Master)
| Kubeineles

Application Cluster (Edge)
User Edge User Edge

- User Coge devica Yorkw) . e e
1 Kubemetes ubemeles
- - - |

S
App component (container) [App component (container)]

/PN

Figure 17. NebulOuS new architecture (deployment view)

Funded by bul loud
the Euircpeaii Ui W.ne ulouscloud.eu
info@nebulouscloud.eu 48

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

The components now deployed on the application cluster master include: Metric prediction systems
(forecasters and orchestrator); SLO violation detection (SLOViD); Anomaly detection and Time series
database and message broker (AMQP Broker) supporting these operations.

This architectural restructuring significantly reduces message passing between the application
cluster master and the NebulOuS control plane, as metrics collected by applications no longer need
to be sent to the control plane. However, this change necessitates the deployment of a message broker
in the application cluster master, similar to the one in NebulOuS core. This local message broker
facilitates communication between NebulOuS components running on the application cluster master,
primarily enabling the EMS to send metrics to the prediction mechanism and SLO violation detection
components.

While the architectural changes reduce overall communication overhead, essential interactions
between the NebulOusS control plane and application cluster master remain necessary. These include
control plane operations such as the Optimizer controller sending AMPL files to the solver and metric
lists to EMS, as well as reverse communications where the solver sends reconfiguration requests back
to the optimizer controller.

To enable this distributed communication model, two specialized plugins for Apache ActiveMQ
Artemis (the message broker) have been developed: The control plane bridge plugin intercepts
cluster definition messages from the optimizer controller to SAL, configuring the control plane
message broker to automatically forward specific messages to the broker at the application cluster
master. Complementarily, the application cluster master bridge plugin establishes connectivity
with the control plane message broker upon startup and manages upstream message forwarding.
The system implements a bidirectional bridge between the application cluster and control plane, with
robust security measures in place. In one hand all messages received by the control plane broker
coming from a bridge users session are validated to confirm that the application ID property
(embedded in all messages) matches the user's identity. This verification mechanism ensures
message isolation between applications, preventing cross-application interference - for instance,
ensuring that only Application A can transmit messages pertaining to its own operations.
Furthermore, both brokers utilise a unique set of credentials, meaning that credentials to
communicate brokers for Application A are different than these used by Application B.

Source code for the application cluster plugin and the control plane bridge plugin can be found in the
project GitHub!1.

5.2 IMPLEMENTATION

5.2.1 Security and Privacy Manager

The NebulOusS Security and Privacy Manager is implemented as a backend service in Java 17, using
the Quarkus 123.6.1 framework. It provides full support for managing admission control and
network security policies across multiple Kubernetes clusters from the control plane.

11 https://github.com/eu-nebulous/iot-dpp-orchestrator/tree/iot-pipelines/iot_dpp/src/main/java/eut/nebulouscloud/bridge
12 https://quarkus.io/

Funded by bul loud
the European Union Www'ne ulouscioud.eu
info@nebulouscloud.eu 49

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

The service uses the Fabric8 13Kubernetes Java client to communicate with the Kubernetes API of
each cluster. This client allows the service to create, update, and delete Kubernetes-native resources
such as Gatekeeper policies and Cilium network policies. Cluster access credentials (in the form of
kubeconfig or k3s configuration files) are mounted as a Kubernetes ConfigMap 1*during installation.
This removes the need for external storage or databases to manage connectivity. All policy definitions
and their state are stored directly within the Kubernetes clusters, using Custom Resource Definitions
(CRDs)?s.

When OPA Gatekeeper is installed, it registers standard policy enforcement CRDs. The Security and
Privacy Manager interacts with these CRDs via Fabric8 to manage ConstraintTemplates and
Constraints. In addition to admission policies, the component now also integrates with Cilium,
enabling the definition and enforcement of network-level security policies.

This unified approach supports policy management across both the application and network layers,
using Kubernetes-native tools and interfaces.

For the second release, the Security and Privacy Manager support CRUD operations for cluster
admission rules, using some of the core methods:

e createOrUpdateConstraint (ConstraintDTO constraintDTO)
e listConstraints (String namespace)
e deleteConstraint (String name, String namespace)

The aforementioned methods can be found in the ConstraintService.java file. The DTO used in this
method can be found in ConstraintDTO.java, and consists of the following fields:

public class ConstraintDTO {
private String name;
private String namespace;
private List<Kind> kinds;
private List<String> namespaces;
private List<String> repos;
private List<Range> ranges;
private List<String> tags;
private List<String> exemptlImages;

}

createOrUpdateConstraint (ConstraintDTO constraintDTO) creates or updates a
Constraint resource that applies a specific template to a resource type (e.g., Pods, Applications) and
namespace, including any required parameters.

listConstraints (String namespace) returns all active Constraints in the specified
namespace. This provides visibility into which policies are currently enforced on cluster resources.

deleteConstraint (String name, String namespace) deletes a specific Constraint
instance, stopping the enforcement of its associated policy for the targeted resources.

3 https://fabric8.io/
1 https://kubernetes.io/docs/concepts/configuration/configmap/
15 https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

Funded by bul loud
the European Union Www'ne ulouscioud.eu
info@nebulouscloud.eu 50

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

In addition to Gatekeeper policies, the Security and Privacy Manager supports the creation and
management of CiliumNetworkPolicy resources. These policies provide identity-aware, fine-grained
control over network traffic at the L3 /L4 level and are enforced by Cilium using eBPF.

The service uses the Fabric8 client to interact with the Kubernetes API and manage these network
policies in a Kubernetes-native way. All operations are performed without requiring direct user
access to the cluster or Cilium tooling.

e createOrUpdateCiliumPolicy (CiliumPolicyDTO ciliumPolicyDTO)
e listCiliumPolicies (String namespace)
¢ deleteCiliumPolicy (String name, String namespace)

The aforementioned methods can be found in the CiliumPolicyService.java file. The DTO used in these
operations is defined as follows:

public class CiliumPolicyDTO {
private String name;
private String namespace;
private String policySpec;
}

createOrUpdateCiliumPolicy(CiliumPolicyDTO, ciliumPolicyDTO) creates or updates a
CiliumNetworkPolicy resource in the specified namespace, using the provided specification.

listCiliumPolicies(String namespace) retrieves all active Cilium policies in a given namespace.

deleteCiliumPolicy(String name, String namespace) deletes the specified policy from the cluster,
removing the associated network rules.

5.2.2 EFK Logging Stack

NebulOusS includes a centralized logging and observability system to collect, store, and analyze logs
from all clusters in the platform. Elasticsearch functions as the central search and analytics engine
(log store) for collected logs, Kibana provides a web-based interface to query and visualize the log
data, and Fluentd!é serves as the log collector that gathers logs and forwards them to Elasticsearch
for indexing [61]. In the NebulOuS platform’s logging architecture, Elasticsearch and Kibana are
deployed in the core cluster (central logging infrastructure), while Fluentd runs on every node of each
application cluster and on NebulOuS Core to capture node-level logs and send them to the centralized
Elasticsearch for indexing and analysis. Monitoring these security-relevant logs continuously is
crucial for early threat detection [62].

In the NebulOuS platform, the EFK stack is deployed in a centralized yet distributed manner to gather
logs from across the cloud continuum. Elasticsearch (with its data nodes) and Kibana are deployed
on the NebulOusS core cluster, providing a central repository and user interface for all logs. Meanwhile,
Fluentd is deployed on each node of every application cluster, as well as on NebulOusS Core, typically
via a container DaemonSet. This means a Fluentd agent runs on every node to capture container and
system logs locally and forward them to the Elasticsearch cluster on NebulOuS Core. The centralized
Elasticsearch instance indexes and stores these aggregated logs, and Kibana on the enables engineers
to search and visualize the logs through a web dashboard. Collecting and monitoring security relevant

16 https://www.fluentd.org/

Funded by bul loud
the European Union Www'ne ulouscioud.eu
info@nebulouscloud.eu 51

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

logs is crucial for early detection of suspicious activities and threats, serving as a first line of defense
in protecting the system.

5.2.3 Tetragon Integration

In this section, we describe the observability within a Kubernetes cluster using Tetragon. As shown
in Figure 18, there is a central point where data is collected from the observability tool. For example,
in the Nebulous cluster, each node contains Tetragon agents with Filebeat sidecars that send data to
Elasticsearch (central point in Nebulous core). Through Kibana, custom rules are implemented in
Elasticsearch to detect malicious activities such as process-level threats. These include attempts of
privilege escalation within containers, such as unauthorized usage of commands like sudo or su.

Figure 19 illustrates the central data collection in Elasticsearch located in Nebulous. This image
shows the Elasticsearch/Kibana interface displaying logs from a Cilium and Tetragon monitoring
system. The interface is being accessed through a browser at kibana.test.nebulouscloud.eu. The main
panel shows a log viewer with "logs-cilium_tetragon.log-default” selected as the data view. The
timeline graph at the top displays log event frequency over a period from May 3 to May 18, 2023, with
a 12-hour interval auto-refresh setting. Each log entry contains detailed information about Cilium
and Tetragon process events, including:

agent_ephemeral_id

agent_id agent_name (showing "tetragon-hk5sg")

agent_type (showing "filebeat")

agent_version (showing "8.13.3")

cilium_tetragon_log_node_name (showing "wsp-pc")

process information including parent and exit process data process flags (showing values like
"proctx aufs rootcwd")

e process init_tree status (showing "false") process execution IDs

Figure 20 shows the Elastic Security interface displaying security alerts. The alert originated from
the host "vm2-pc" (showing 100% of alerts coming from this host), which corresponds to the VM2-
Worker node shown in the previous architecture diagram. The alert has a risk score of 73, indicating
it's considered a significant security threat and is labeled "Bash Shell Execution in Metasploitable2
Container" which indicates a potential security breach where someone has executed a bash shell
inside a Metasploitable2 container.

Funded by bul loud
the European Union Www'ne ulouscioud.eu
info@nebulouscloud.eu 52

NebulOuS

D4.2 NebulOusS Secure Cross-Cloud
and Fog Applications deplovment & Orchestration based on smart contracts

Custom-based Rules

K kibana % e elastic

—>

Intrution Detection
Custom-based rules

?fh \

v

JSON

Mitigation Actions

{: \\ Fag ~ 7
1 JSON - S~
VM1 - ' Master k° ‘. VM2- Worker
/ Pods \ / Pods \
kube-apiserver | [cilium |

kube-controller-
manager

etcd

cilium

[
[
[kube-sheduler
[
[
[
[

)
I
coredns]
l
]
]

cilium-envoy

[cilium-operator]

[tetragon-agent |

| tetragon-operator |

-

[cilium-envoy]

[tetragon-agent |

[metasploitable2 |
| application |

JSON

~. RaspberryPi- Worker

\

-

[cilium]

Pods

[cilium-envoy]

[tetragon-agent |

[application |

[application |

N

= = = = » Monitoring Data

:]Users' Applications

Legend

- = = = » Mitigation Actions

D Networking

C]Control Plane Components B Observability

Figure 18. Kubernetes Cluster Security Architecture with Tetragon-based Observability

Dataview logs-cilum tetragonlog-defautt v = @

€ Fiser your data using KOL symiex

B O Search lield names. T 0 M Aueinterval v Nobreskdean v
- Papuse ey .
o araganseg saerame

[E——. =

Documents (10,836) Field statistics
@timestam €
2 ey 1, 73S 8 14:12:24. 30

I o ey 16, 20es @ 122433 o

TyESIGL Inspect Aleriz

B~ LastiSdays

© Refrash

Figure 19. Elasticsearch Kibana Dashboard Displaying Tetragon Security Logs

Funded by
the European Union

www.nebulouscloud.eu
info@nebulouscloud.eu

53

D4.2 NebulOusS Secure Cross-Cloud

N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts
@ clastic A e o
= . Securlty Alerts MLjob settings ~ [@ Add integrations ~ Dataview | Alerts
¥ Security ey | @ g QL B~ Today Refresh
Dashboards L Alerts
Rules 88
Alerts Status open i~ severty v User ~ Host ARG
Attack discovery
Findings ~ Trend Counts Treemap

Cases

Severity levels Top alerts by hestname ~

Timelines

Count & @©
Intelligence Levels Count host.name ©

vm2-pe 100%

Y = g 1
Explore E y

[Columns 12 T Sortfields 1 Talert [D Fields fated 20 seconds ago Additional filters v Grid view ~ Oroupalertsby:None v M = [

| Actions. @timestomp ™ Assignees Severity Risk Score Reason hostname

] S f o e May 18, 2025 @ 22:48:02.272 Bash Shell Execution In Met... high 73 event on wn2-pe created high alert Bash Shell Execution in Metasploitable... vm2-pe

Figure 20. Elastic Security Alert Dashboard Showing Detected Security Threat

6 DIGITAL TWINS ORCHESTRATION IN CLOUD COMPUTING
CONTINUUM

Task 4.6 of NebulOuS focuses on advancing the orchestration of digital twins in a way that transcends
traditional monolithic models. By developing a framework capable of dynamically aggregating and
composing digital twins according to the needs of specific applications and the characteristics of the
underlying environment, the project enables a more adaptive and efficient use of cloud and edge
resources. This orchestration capability is closely interconnected with the developments of Tasks 4.1,
4.2, and 3.3, forming a foundational part of the NebulOuS platform’s vision for seamless, intelligent
deployment across heterogeneous infrastructures.

6.1 CHALLENGES OF TRADITIONAL DIGITAL TWINS

Traditional digital twin (DT) concepts originated in industries like manufacturing, automotive, and
aerospace, where their primary role is to model and monitor physical assets—such as machines,
vehicles, or industrial systems—through real-time data streams capturing physical state, operational
parameters, and lifecycle metrics. However, as recent surveys highlight, this paradigm has notable
limitations when transposed to digital entities like application deployments. [63][64]

Firstly, traditional DTs typically assume a monolithic structure—a single, well-bounded asset
modelled through a static digital replica. Sharma et al. comment that such monolithic reference
frameworks “lack a universal reference framework” and demonstrate “domain dependence,” making
it difficult to repurpose these twins across varied contexts [65]. Modern applications, in contrast, are
modular, distributed, and ephemeral: microservices may scale in and out dynamically, be deployed
across cloud and edge infrastructure, and update continuously. Static, single-object models therefore
fail to accurately represent these shifting topologies.

Secondly, the limited flexibility of classical DTs presents a challenge. As reviewed by Wu et al. (2023),
conventional twins are built for known, well-defined scenarios and do not adapt easily to changing

Funded by bul loud
e/ ExGiS0ati DI www.nebulouscloud.eu
info@nebulouscloud.eu 54

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

conditions [64]. In dynamic contexts such as cloud-edge, new microservices or replicas may appear
unpredictably, requiring an adaptable twin that can grow, shrink, and reconfigure at runtime.
Traditional twins lack this agility.

Thirdly, the physical-centric focus of legacy DTs — emphasizing sensor readings like temperature,
vibration, or wear — makes them ill-suited for software deployments. Liu et al. identify key DT
features as physical mapping and co-evolution over an asset’s lifecycle; such features are largely
irrelevant when monitoring deployment-level concerns such as latency, resource utilization, message
throughput, or service energy usage [66].

Lastly, conventional twins often rely on static or slow-rate data sources (e.g., fixed [oT sensors),
whereas digital systems generate highly volatile, dynamic data streams. Knebel et al. (2020) highlight
that real-time DTs require careful distribution across cloud-fog hierarchies to cope with latency and
scale, pointing to the mismatch between static sensors and dynamic software environments. [67]
Service replicas may start and stop rapidly, network conditions shift, and workloads spike
unpredictably—static modeling fails to capture these realities.

Taken together, these structural mismatches—a monolithic architecture, limited adaptability,
physical-centric data focus, and static sourcing—make traditional digital twins ill-suited for the
runtime properties of distributed software deployments. This necessitates a reconceptualization,
where twins become modular, data-driven, digitally-native entities capable of reflecting dynamic
system architecture, software-specific metrics, and high-frequency events. This transformation is
critical for enabling intelligent, context-aware orchestration in platforms like NebulOus.

6.2 DIGITAL TWINS IN THE NEBULOUS PLATFORM

In the NebulOusS platform, the digital twin concept is reimagined to meet the demands of dynamic,
distributed, and context-sensitive digital application deployments. Key adaptations include:

e Modularity and Aggregation: Instead of a single, static twin, the NebulOuS framework
supports the aggregation of multiple partial digital twins into a composite representation.
Each partial twin can model a specific aspect (e.g., a microservice, a data processing pipeline)
of an application, and be dynamically combined based on the deployment context.

e Focus on Digital Metrics: The digital twins are tailored to monitor and model application-
specific performance indicators such as resource consumption patterns, response time
variability, service dependencies, and workload elasticity, rather than physical properties.

e Dynamic and Context-Aware Evolution: NebulOuS digital twins are designed to evolve
alongside their real-world counterparts. They adapt to runtime changes in the deployment
environment, such as resource availability, user demand shifts, or failures in the underlying
infrastructure.

e Integration with Optimisation and Orchestration: Unlike traditional twins that passively
mirror their physical counterparts, NebulOuS digital twins actively feed data into the
platform’s optimisation mechanisms. They enable continuous learning and decision-making,
supporting self-optimising deployments across cloud and edge resources.

By embracing these adaptations, the NebulOuS project ensures that the digital twin paradigm not
only remains relevant but becomes a core enabler for the efficient orchestration of next-generation
distributed applications.

In the context of NebulOuS, a digital twin is a dynamic, data-driven digital representation of a

Funded by bul loud
the European Union Www'ne ulouscioud.eu
info@nebulouscloud.eu 55

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

deployed application within the cloud-edge continuum. Unlike traditional digital twins that focus on
modeling physical assets or static systems, the digital twins in NebulOuS are primarily concerned
with capturing and feeding performance data from applications to the platform’s optimisation
components.

The primary role of the digital twin is to provide real-time and historical performance information
about deployed applications to the optimiser developed in Task 3.3. This optimiser uses the data
collected by the digital twins to train and refine optimisation models, enabling better resource
allocation, deployment adaptation, and performance tuning across heterogeneous cloud and edge
environments.

6.2.1 Digital Twin Architecture

The classical structure of a digital twin (see Figure 21) is typically composed of three main layers:
System State, System Design and Configuration, and System Behaviour. The System State captures
real-time data reflecting the current condition of the physical asset. The System Design and
Configuration layer holds the models, parameters, and static configuration data that define the
system. Finally, the System Behaviour layer focuses on analysing, simulating, and predicting the
asset’s behaviour over time. Together, these components support a variety of digital twin services,
such as condition monitoring, failure prediction, optimisation analysis, and operational guidance.

- - - - - —
' I
: Digital Twin : Exemplary Digital Twin Services
\ H
H E Monitoring
E Svstem State E (Condition, Energy, Performance, etc.)
Data H
H - + Failure Analysis and Prediction
' I
I
' I
Asset — !
: System Design and Configuration f—b Analysis for Optimisation
: Models, Parameters :
'
' I
H b Behaviour Analysis for User Operation Guide
' '
\ H
H System Behaviour 1
I . . .
H Models, Analysis, Simulation, Prediction H Virtual Maintenance/Operations
' '
e

Figure 21. Traditional Digital Twin Architecture [68]

In adapting this general digital twin structure to the needs of dynamic application deployments
managed by the NebulOuS platform, the three main parts — System State, System Design and
Configuration, and System Behaviour — are still valid as shown in Figure 22.

The System State represents the live operational snapshot of the deployed application and the
underlying infrastructure. In NebulOuS, this includes real-time infrastructure metrics collected
automatically by the platform, such as CPU usage, RAM utilization, disk 1/0, and network latency
across the cloud-to-edge resources brokered by NebulOusS. In addition, service-level metrics provided
by the applications themselves — for example, request processing times and throughput for REST
APIs — contribute to describing the application's current performance. These metrics are collected
via NebulOuS's integrated monitoring framework, which aggregates both infrastructure metrics and
application-specific metrics from the deployed instances and Kubernetes clusters.

The System Design and Configuration layer captures the intended architecture and operational
setup of the application. Within NebulOusS, this design is specified by the application owner using the
Open Application Model (OAM), which describes the service graph, infrastructure requirements,
Quality of Service (QoS) targets, and deployment preferences. The OAM definitions include details

Funded by bul loud
the European Union Www'ne utouscioud.eu
info@nebulouscloud.eu 56

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

such as required CPU and RAM resources, geographical preferences, data locality constraints, and
scaling configurations (e.g, minimum and maximum number of service replicas). These
specifications are interpreted and processed by NebulOuS modules to determine an optimal
deployment plan, considering both the organizational preferences managed by the Organization
Admin and the resource offers provided by Resource Providers.

System Behaviour
evolution and response to dynamic conditions
Application Utility Functions
SLO definitions and violations

rF—_——_——_——_—_——_—— e ————————— —— 1
1 |
: NebulOusS Digital Twin !
1 |
1 |
' System State |
: live operational snapshot of deployed application :
1 real-time infrastructure metrics & 1
User : application specific service levelmetrics : NebulOuS
Application : ! Optimiser
._,: System Design and Configuration —»
. . I 1
1 architecture and operational setup of application . :
orchestrated 1 Open Application Model (OAM) definition & : trained via
via NebulOuS : Application specific metric model 1 Digital Twin
|
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
L 1

Figure 22: NebulOusS Digital Twin Architecture

The System Behaviour describes how the deployed application responds to dynamic conditions and
how it evolves over time. In NebulOuS, this behaviour is observed through continuous QoS
monitoring performed after deployment. The platform evaluates compliance with SLA objectives,
detects QoS violations, and triggers re-optimisation when needed. Behavioural insights include
autoscaling decisions (when applications scale out or in), application migrations across nodes (in
response to changing conditions), and proactive reconfigurations triggered by predictive QoS
degradation models. Furthermore, NebulOuS's optimisation engine (linked to Task 3.3) refines its
models based on the monitored data, learning to anticipate resource needs, select better resource
placements, and predict future SLA violations. The optimisation-feedback loop ensures that system
behaviour is not static but progressively adaptive and aligned with user-defined goals.

6.2.2 Nebulous Digital Twin Application Traces

To enrich the digital twin with fine-grained, execution-level insights, NebulOuS introduces a
structured system of application traces. These traces are emitted directly by the deployed application
at runtime and are captured via the NebulOuS log collection framework. Designed to provide deep
visibility into the dynamic execution of distributed services, these traces complement monitoring and
configuration data by adding causal and temporal context to application-level events.

Each trace entry adheres to a standardised schema, capturing key dimensions of an event in the
system:

{
"CompName" : "string", // Kubevela Component Name
"ReplicalID": "string", // Unique ID per Component Replica
"EventType": "in", // Type of Event: in / out / ack
"EventTime": 123456789, // Timestamp in milliseconds
"PayloadSize": 123, // Message payload size in bytes
"ActivityID": "string", // End-to-end consistent identifier

for flow tracking

Funded by bul loud
the European Union Www'ne ulouscioud.eu
info@nebulouscloud.eu 57

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

"RemoteCompName": "string" // Remote Kubevela Component name
involved in the event

}

These traces are produced at various logical points in the application workflow — for example, when
a component receives a message (in), sends data (out), or acknowledges receipt (ack). By associating
each event with a ReplicalD, the system can distinguish between individual instances of the same
component, enabling fine-grained behavioural analysis. The inclusion of a globally consistent
ActivityID allows the digital twin to reconstruct end-to-end execution paths, thereby capturing
distributed call flows and the causal relationships between events across components.

Traces also capture payload characteristics and communication patterns by logging PayloadSize and
RemoteCompName, offering insights into service interactions, data volumes, and potential
bottlenecks or latency contributors. Because each event is timestamped (EventTime), the system can
analyse temporal properties such as message transit times, inter-component delays, or execution
latencies.

By integrating these application-level traces into the digital twin, NebulOuS gains the ability to:
e Reconstruct execution flows across multiple components and replicas.
e Analyse causal dependencies and identify delays or failures in distributed interactions.

e Correlate application logic with infrastructure metrics, closing the loop between abstract
execution and physical resource behaviour.

e Support performance debugging, optimisation, and root-cause analysis in real-time or post-
mortem evaluation.

Overall, this trace-driven extension enhances the digital twin’s ability to not only reflect the state of
the deployed application, but also understand how it executes, why it behaves in a certain way, and
how its performance and interactions evolve over time.

To enable detailed insight into application execution flows and inter-component interactions, the
NebulOuS platform supports a structured mechanism for collecting digital twin application traces.
These traces are emitted by the application itself as log entries and are ingested through a centralised
logging pipeline for indexing, querying, and analysis.

6.2.3 Logging Interface: Emitting Traces

Applications are expected to emit digital twin trace events to standard output (stdout) using a
consistent and identifiable log prefix. Each trace log line must begin with the keyword DTTRACE,
followed by a structured, JSON-formatted message containing the trace fields. This approach ensures
compatibility with containerised application environments and avoids introducing complex
dependencies within the application code.

DTTRACE {"CompName" : "payment-service", "ReplicalID":"payment-5£678c909d-
abcl2","EventType":"in", "EventTime":1714971615000, "PayloadSize":2048, "Acti
vityID":"txn-12345", "RemoteCompName" :"frontend"}

This log line format satisfies several key criteria:
e Human-readable and machine-parseable, thanks to the JSON structure.
e Easily filterable via the DTTRACE keyword by the logging agent.

e Structured metadata captures the core event properties for downstream indexing and
analysis.

Funded by bul loud
the European Union Www'ne ulouscioud.eu
info@nebulouscloud.eu 58

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

To collect and manage these logs, NebulOuS leverages a combination of Fluentd and Elasticsearch:

Fluentd acts as the log aggregation and parsing layer. Running as a daemonset or sidecar in the
Kubernetes environment, Fluentd collects stdout logs from application pods, identifies entries
containing the DTTRACE prefix, and parses the embedded JSON content into structured fields.

Upon parsing, Fluentd applies a transformation pipeline that:
e Tags and categorizes the log event (e.g. as digitaltwin.trace)
e Validates the structure and required fields
e Optionally enriches the log with metadata such as pod name, namespace, and cluster ID

Elasticsearch serves as the central repository for storing and indexing the parsed traces. This
mechanism ensures that application-generated traces are collected efficiently and integrated
seamlessly into the broader digital twin analytics pipeline within NebulOusS.

The definitions and examples of the NebulOuS Digital Twin are curated in the GitHub repository
reachable at https://github.com/eu-nebulous/digital-twin/, while the NebulOuS digital twin
integration into the NebulOuS Optimiser is curated in the following repository:
https://github.com/eu-nebulous/optimiser-digital-twin.

7 CONCLUSIONS

This deliverable marks the final iteration of Work Package 4, presenting the complete architecture,
implementation, and validation of NebulOuS mechanisms for secure deployment and orchestration
of applications across heterogeneous cross-cloud and fog environments. The work detailed in D4.2
reflects the project’'s commitment to delivering an intelligent, secure, and automation-driven
orchestration layer, aligned with the overarching vision of the NebulOuS Meta-Operating System.

The advancements achieved in this phase can be summarised as follows:

¢ Robust and Flexible Deployment Architecture: The Executionware stack—comprising the
Deployment Manager (SAL) and the Execution Adapter (ProActive)—has matured into a fully
automated, scriptable, and cloud-native orchestration layer. It supports seamless deployment
across public clouds, private infrastructures, and edge devices, offering high modularity,
traceability, and operational resilience.

e Smart Contract Integration for SLA Management: The deliverable introduces a novel
mechanism to transform formal SLAs into blockchain-based smart contracts. This enables
automated, transparent, and verifiable SLA enforcement across trusted and untrusted
infrastructures, paving the way for decentralized trust in application lifecycle management.

e Secure Overlay Networking and Device Onboarding: The Overlay Network Manager
(ONM), now enhanced with Headscale/Tailscale capabilities, successfully addresses the
challenges of secure communication and NAT traversal across distributed nodes. This
solution ensures encrypted data exchanges and reliable pod-to-pod communication even in
constrained environments.

e Privacy-by-Design and Runtime Observability: Through the integration of Kubernetes-
native policy enforcement mechanisms (OPA Gatekeeper, Cilium) and eBPF-based runtime
observability (Tetragon), the platform enforces security policies at both admission and
execution time. This two-tiered model strengthens the platform’s trustworthiness and
supports compliance with evolving regulatory and operational requirements.

Funded by bul loud
the European Union Www'ne ulouscioud.eu
info@nebulouscloud.eu 59

https://github.com/eu-nebulous/digital-twin/
https://github.com/eu-nebulous/optimiser-digital-twin

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

o Digital Twin-Oriented Orchestration: Finally, the adoption of a modular, adaptive digital
twin framework for application deployment introduces a new layer of contextual intelligence.
This dynamic monitoring and feedback mechanism enables real-time optimisation, failure
anticipation, and behaviour-aware adaptation across the deployment continuum.

With these developments, WP4 has successfully delivered a production-ready orchestration
backbone for the NebulOuS platform. The outcomes of D4.2 will directly feed into the final integration
activities in WP6 and the forthcoming validation and demonstration tasks involving project use cases
and third-party Open Call adopters.

Future work will focus on integrating these components into the NebulOuS second platform release,
enhancing interoperability across project layers, and refining the orchestration logic based on real-
world application feedback. These next steps will reinforce NebulOuS’s ambition to become a
reference architecture for hyper-distributed application deployment in European cloud-edge
ecosystems.

Funded by bul loud
the European Union Www'ne utouscioud.eu
info@nebulouscloud.eu 60

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

8 REFERENCES

[1] D4.1 - Initial Orchestration Layer & Security-enabled Overlay Network Deployment, Christos-
Alexandros Sarros, Nikos Papageorgopoulos, Giorgos Kitsos (UBITECH), Michael Benguigui,
Ankica Barisi¢ (Activeeon), Radostaw Piliszek, Jan Marchel (7Bulls), 20.02.2024

[2] Scheduling Abstraction Layer (SAL), Activeeon, GitHub repository, https://github.com/ow2-
proactive/scheduling-abstraction-layer (accessed May 30, 2025)

[3] NebulOuS Deployment Manager (SAL), EU NebulOuS Project, GitHub repository,
https://github.com/eu-nebulous/sal (accessed May 30, 2025)

[4] ProActive, Activeeon, GitHub repository, https://github.com/ow2-proactive/ (accessed May 30,
2025)

[5] ProActive documentation, Activeeon, https://doc.activeeon.com/main.html (accessed May 30,
2025)

[6] ProActive, Activeeon, https://proactive.activeeon.com/ (accessed May 30, 2025)

[7] Kubernetes (k8s), Cloud Native Computing Foundation, GitHub repository,
https://github.com/kubernetes/kubernetes (accessed May 5, 2025)

[8] K3s, Rancher Labs, GitHub repository, https://github.com/k3s-io/k3s (accessed May 30, 2025)

[9] IAAS connector, Activeeon, GitHub repository, https://github.com/ow2-proactive/connector-
iaas (accessed May 30, 2025)

[10] NebulOuS GUI, EU NebulOuS Project, GitHub repository, https://github.com/eu-
nebulous/gui (accessed May 30, 2025)

[11] Google Compute Engine (GCE), Google, Official website, https://cloud.google.com/compute
(accessed May 30, 2025)

[12] Amazon EC2 (Elastic Compute Cloud), Amazon, Official website,
https://aws.amazon.com/ec2/ (accessed May 30, 2025)

[13] OpenStack, Open Infrastructure Foundation, Official website, https://www.openstack.org/
(accessed May 30, 2025)

[14] Apache jclouds, Apache Software Foundation, GitHub repository,
https://github.com/apache/jclouds (accessed May 5, 2025)

[15] Microsoft Azure, Microsoft, Official website, https://azure.microsoft.com/ (accessed May 30,
2025)

[16] Azure SDK for Java (Azure API), Microsoft, GitHub repository,
https://github.com/Azure/azure-sdk-for-java (accessed May 5, 2025)

[17] AMD64 Architecture, AMD, Official documentation,
https://www.amd.com/en/technologies/64-bit-computing (accessed May 30, 2025)

[18] ARMv7 Architecture, Arm Ltd., Official documentation,
https://developerarm.com/documentation/ddi0406/latest (accessed May 30, 2025)

[19] ARMvS8 Architecture, Arm Ltd., Official documentation,
https://developerarm.com/documentation/ddi0487 /latest (accessed May 30, 2025)

Funded by bul loud
the European Union Www'ne ulouscioud.eu
info@nebulouscloud.eu 61

https://www.google.com/url?q=https://github.com/eu-nebulous/sal&sa=D&source=docs&ust=1746436172262170&usg=AOvVaw1F4gg2SDa_d2qx4tweZ_Ic
https://www.google.com/url?q=https://doc.activeeon.com/main.html&sa=D&source=docs&ust=1746436335625389&usg=AOvVaw1rDgm64ZoZblvl5SpE8Rko
https://www.google.com/url?q=https://proactive.activeeon.com/&sa=D&source=docs&ust=1746436335625410&usg=AOvVaw2XzZMV1X1ktg0RoXQF5f6S
https://github.com/ow2-proactive/connector-iaas
https://github.com/ow2-proactive/connector-iaas
https://www.openstack.org/
https://github.com/apache/jclouds
https://azure.microsoft.com/
https://github.com/Azure/azure-sdk-for-java

D4.2 NebulOusS Secure Cross-Cloud
Ne b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

[20] NebulOuS Resource Manager, EU NebulOuS Project, GitHub repository,
https://github.com/eu-nebulous/resource-manager (accessed May 30, 2025)

[21] NebulOuS Optimiser Controlley EU NebulOuS Project, GitHub repository,
https://github.com/eu-nebulous/optimiser-controller (accessed May 30, 2025)

[22] NebulOuS SAL scripts, EU NebulOuS Project, GitHub repository, https://github.com/eu-
nebulous/sal-scripts (accessed May 30, 2025)

[23] KubeVela, Open Application Model (OAM) Project, Official website, https://kubevela.io/
(accessed May 30, 2025)

[24] Postgres-PA Container Image, EU NebulOuS Project, Quay.io repository,
https://quay.io/repository/nebulous/postgres-pa (accessed May 30, 2025)

[25] ProActive K8s Node Container Image, EU NebulOuS Project, Quay.io repository,
https://quay.io/repository/nebulous/proactive-k8s-node (accessed May 30, 2025)

[26] ProActive Scheduler Container Image, EU NebulOuS Project, Quay.io repository,
https://quay.io/repository/nebulous/proactive-scheduler (accessed May 30, 2025)

[27] ProActive K8s Dynamic Node Container Image, EU NebulOuS Project, Quay.io repository,
https://quay.io/repository/nebulous/proactive-k8s-dynamic-node (accessed May 30, 2025)

[28] Helm, CNCF - Cloud Native Computing Foundation, GitHub repository,
https://github.com/helm/helm (accessed May 30, 2025)

[29] Activeeon SAL Image, Activeeon, DockerHub repository,
https://hub.docker.com/r/activeeon/sal (accessed May 30, 2025)

[30] NebulOuS SAL Container Image, EU NebulOuS Project, Quayio repository,
https://quay.io/repository/nebulous/sal (accessed May 30, 2025)

[31] NebulOuS Helm Charts, EU NebulOuS Project, GitHub repository, https://github.com/eu-
nebulous/helm-charts (accessed May 30, 2025)

[32] Postman Collection, Postman, https://www.postman.com (accessed May 30, 2025)

[33] Newman, Postman, GitHub repository, https://github.com/postmanlabs/newman (accessed
May 30, 2025)

[34] Node.js, Open]S Foundation, Official website, https://nodejs.org/ (accessed May 30, 2025)

[35] Node Package Manager (npm), npm, Inc., Official website, https://www.npmjs.com/
(accessed May 30, 2025)

[36] Xiao, Yang and Zhang, Ning and Lou, Wenjing and Hou, Y. Thomas, A Survey of Distributed
Consensus Protocols for Blockchain Networks, IEEE Communications Surveys & Tutorials,
2020.

[37] Tabatabaei, Mohammad Hossein and Vitenberg, Roman and Veeraragavan, Narasimha
Raghavan, Understanding blockchain: definitions, architecture, design, and system comparison,
arXiv preprint arXiv:2207.02264, 2022.

[38] Envisioned UAV Communication Using 6G Networks: Open issues, Use Cases, and Future
Directions, IEEE Internet of Things Journal, 2020.

[39] ggarwal, Shubhani and Kumar, Neeraj and Tanwar, Sudeep, Blockchain

Funded by bul loud
the European Union vaw.ne ulouscioud.eu
info@nebulouscloud.eu 62

https://github.com/eu-nebulous/sal-scripts
https://github.com/eu-nebulous/sal-scripts
https://www.postman.com/

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

[40] Wu, Mingli and Wang, Kun and Cai, Xiaogin and Guo, Song and Guo, Minyi and Rong,
Chunming, A comprehensive survey of blockchain: From theory to IoT applications and beyond,
IEEE Internet of Things Journal, 2019.

[41] Merlina, Andrea and Vitenberg, Roman and Setty, Vinay, A general and configurable
framework for blockchain-based marketplaces, Proceedings of the 37th ACM/SIGAPP
Symposium on Applied Computing, 2022.

[42] Zhang, Kaiwen and Vitenberg, Roman and Jacobsen, Hans-Arno, Deconstructing Blockchains:
Concepts, Systems, and Insights, DEBS, 2018.

[43] Belotti, Marianna and Bo{\v{z}}i{\'c}, Nikola and Pujolle, Guy and Secci, Stefano, A
vademecum on blockchain technologies: When, which, and how, IEEE Communications Surveys
\& Tutorials, 2019.

[44] Xie, Junfeng and Yu, F Richard and Huang, Tao and Xie, Renchao and Liu, Jiang and Liu, Yunjie,
A survey on the scalability of blockchain systems,IEEE Network, 2019.

[45] Zhang, Rui and Xue, Rui and Liu, Ling, Security and privacy on blockchain, ACM Computing
Surveys (CSUR), 2019.

[46] Szabo, Nick, Formalizing and securing relationships on public networks, First monday, 1997.

[47] Pierro, G. A, Tonelli, R, & Marchesi, M. (2019). Blockchain oracles: A framework for
blockchain-based applications. In Business Process Management: Blockchain and Central and
Eastern Europe Forum (pp. 19-34). Springer, Cham. https://doi.org/10.1007/978-3-030-30429-
42

[48] D5.2 “Final Mechanisms for Autonomous Reconfigurations in ad-hoc Cloud Computing
Continuums” (ICCS, M33)

[49] Kubernetes Access Control Documentation, Kubernetes Project, Official documentation,
https://kubernetes.io/docs/reference/access-authn-authz/ (accessed May 30, 2025)

[50] Extensible Admission Controllers, Kubernetes Project, Official documentation,
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/
(accessed May 30, 2025)

[51] Kyverno, Nirmata, GitHub repository, https://github.com /kyverno/kyverno (accessed May
30, 2025)

[52] Open Policy Agent (OPA), Open Policy Agent Project, Official website,
https://www.openpolicyagent.org/ (accessed May 30, 2025)

[53] jsPolicy, jsPolicy Project, GitHub repository, https://github.com/loft-sh /jspolicy (accessed
May 30, 2025)

[54] KubeWarden, KubeWarden Project, Official website, https://kubewarden.io/ (accessed May
30,2025)

[55] Gatekeeper - Policy Controller for Kubernetes, Open Policy Agent Project, GitHub repository,
https://github.com/open-policy-agent/gatekeeper (accessed May 30, 2025)

[56] Open Policy Agent (OPA), “Customizing Admission Behavior” (Gatekeeper v3.19
Documentation). OPA Gatekeeper Docs. Available: open-policy-
agent.github.io/gatekeeper/website/docs/customize-admission. [Accessed: May 30, 2025].

[57] Open Policy Agent (OPA), “How to use Gatekeeper”. OPA Gatekeeper Docs. [Online].
Available: open-policy-agent.github.io/gatekeeper/website/docs/howto. [Accessed: May 30,
2025].

Funded by bul loud
the European Union Www'ne ulouscioud.eu
info@nebulouscloud.eu 63

https://doi.org/10.1007/978-3-030-30429-4_2
https://doi.org/10.1007/978-3-030-30429-4_2

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

[58] Open Policy Agent Gatekeeper, “Allowed Repositories (Constraint Template from Policy
Library). OPA Gatekeeper Library Docs. [Online]. Available: open-policy-
agent.github.io/gatekeeper-library/website/validation/allowedrepos. [Accessed: May 30, 2025]

[59] Cilium Project, “cilium/cilium - eBPF-based Networking, Security, and Observability”.
[Online]. Available: github.com/cilium/cilium. [Accessed: May 30, 2025]

[60] Cilium Project, “Network Policy (CiliumNetworkPolicy CRD)”. [Online]. Available:
docs.cilium.io/en/stable/network/kubernetes/policy/.

[61] Red Hat, “Understanding Red Hat OpenShift Logging,” OpenShift Container Platform 4.8
Documentation. [Online]. Available: https://docs.openshift.com/container-
platform/4.8/logging/cluster-logging.html. [Accessed: May 30, 2025].

[62] “The Importance of Security Logs in Cybersecurity,” CarPen Rebuild, Jan. 29, 2025. [Online].
Available: https://carpen-rebuild.hr/en/the-importance-of-security-logs-in-cybersecurity/.
[Accessed: May 30, 2025].

[63] Fuller, A, Member, S., Fan, Z., Day, C., & Barlow, C. (n.d.). Digital Twin: Enabling Technologies,
Challenges and Open Research. https://doi.org/10.1109/ACCESS.2020.2998358

[64] Wu, H, Ji, P, Ma, H,, & Xing, L. (2023). A Comprehensive Review of Digital Twin from the
Perspective of Total Process: Data, Models, Networks and Applications. Sensors (Basel,
Switzerland), 23(19), 8306. https://doi.org/10.3390/523198306

[65] Sharma, A, Kosasih, E., Zhang, |, Brintrup, A., & Calinescu, A. (2020). Digital Twins: State of
the Art Theory and Practice, Challenges, and Open Research Questions. Journal of Industrial
Information Integration, 30. https://doi.org/10.1016/].jii.2022.100383

[66] Yao,].F, Yang, Y, Wang, X. C., & Zhang, X. P. (2023). Systematic review of digital twin
technology and applications. Visual Computing for Industry, Biomedicine, and Art 2023 6:1,
6(1), 1-20. https://doi.org/10.1186/S42492-023-00137-4

[67] Knebel, E P, Wickboldt, |. A., & de Freitas, E. P. (2020). A Cloud-Fog Computing Architecture
for Real-Time Digital Twins. Submitted to Journal of Internet Services and Applications.
https://arxiv.org/abs/2012.06118v3

[68] Hribernik, K, Cabri, G., Mandreolj, F,, & Mentzas, G. (2021). Autonomous, context-aware,
adaptive Digital Twins—State of the art and roadmap. Computers in Industry, 133, 103508.
https://doi.org/10.1016/j.compind.2021.103508

Funded by bul loud
the European Union Www'ne utouscioud.eu
info@nebulouscloud.eu 64

https://doi.org/10.1109/ACCESS.2020.2998358
https://doi.org/10.3390/S23198306
https://doi.org/10.1016/j.jii.2022.100383
https://doi.org/10.1186/S42492-023-00137-4
https://arxiv.org/abs/2012.06118v3
https://doi.org/10.1016/j.compind.2021.103508

D4.2 NebulOusS Secure Cross-Cloud
N e b u I O u S and Fog Applications deplovment & Orchestration based on smart contracts

CONSORTIUM

SOUTH-EAST

222 UBITECH a abulls.com AcTiveeon

RESEARCH SCALE BEYOND LIMITS

CENTRE

)

AUGMENTA ubiwhere eurecal 9 mercabarna
\CC § %@{é

2 7=
mze™ existanze

&’ TTAnalysis @ fire .E. Telefonica BIBA

Funded by bul loud
the European Union Www'ne ulouscioud.eu
info@nebulouscloud.eu 65

" NebulOuS

A META OPERATING SYSTEM FOR BROKERING
HYPER-DISTRIBUTED APPLICATIONS ON
CLOUD COMPUTING CONTINUUMS

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not
Funded by ;)) o
the E Uni necessarily reflect those of the European Union or Directorate-General for Communications Networks, Content
& European Union and Technology. Neither the European Union nor the granting authority can be held responsible for them.

