

D4.1 INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY
NETWORK DEPLOYMENT

[20/02/2024]

A META OPERATING SYSTEM FOR BROKERING
HYPER-DISTRIBUTED APPLICATIONS ON

CLOUD COMPUTING CONTINUUMS

Ref. Ares(2024)1312648 - 20/02/2024

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

1

Grant Agreement No. 101070516

Project Acronym/ Name NebulOuS - A META OPERATING SYSTEM FOR BROKERING HYPER
DISTRIBUTED APPLICATIONS ON CLOUD COMPUTINGCONTINUUMS

Topic HORIZON-CL4-2021-DATA-01-05

Type of action HORIZON-RIA

Service CNECT/E/04

Duration 36 months (starting date 1 September 2022)

Deliverable title INITIAL ORCHESTRATION LAYER & SECURITY-ENABLED OVERLAY
NETWORK DEPLOYMENT

Deliverable number D4.1

Deliverable version 1.0

Contractual date of delivery 31 January 2024

Actual date of delivery 20 February 2024

Nature of deliverable OTHER

Dissemination level Public

Work Package WP4

Deliverable lead UBI

Author(s)
Christos-Alexandros Sarros, Nikos Papageorgopoulos, Giorgos Kitsos
(UBITECH), Michael Benguigui, Ankica Barišić (Activeeon), Radosław
Piliszek, Jan Marchel (7Bulls)

Abstract Early results of task T4.1, and T4.2, on the deployment and management
of distributed applications on the cloud-to-edge continuum, particularly
focusing on resource pool management. Besides traditional cloud-native
workloads, we also present our plan to accommodate serverless
applications on the compute continuum. We introduce the details of our
mechanism for the automatic establishment of secure overlay networks
between the distributed compute resources (T4.4) and detail our
approach to provide fine-grained policy-controlled access control
mechanisms on the provisioned clusters (T4.5).

Keywords
cloud-edge continuum, fog computing, orchestration, networking, vpn,
security, access control, kubernetes.

DISCLAIMER

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and
do not necessarily reflect those of the European Union or Directorate-General for Communications
Networks, Content and Technology. Neither the European Union nor the granting authority can be held
responsible for them.

COPYRIGHT

© NebulOuS Consortium, 2022
This document may not be copied, reproduced, or modified in whole or in part for any purpose without
written permission from the NebulOuS Consortium. In addition to such written permission to copy,
reproduce, or modify this document in whole or part, an acknowledgement of the authors of the document
and all applicable portions of the copyright notice must be clearly referenced.

All rights reserved.

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

2

CONTRIBUTORS

Name Organization

Christos-Alexandros Sarros UBITECH

Nikos Papageorgopoulos UBITECH

Giorgos Kitsos UBITECH

Michael Benguigui Activeeon

Ankica Barišić Activeeon

Radosław Piliszek 7Bulls

Jan Marchel 7Bulls

PEER REVIEWERS

Name Organization

Paweł Skrzypek 7bulls

Mario Reyes EUT

REVISION HISTORY

Version Date Owner Author(s) Changes to previous version

0.1 12/12/23 UBITECH Christos-Alexandros Sarros Table of Contents, document
outline

0.2 22/12/23 UBITECH Christos-Alexandros Sarros Input on Security Policies

0.3 5/1/23 UBITECH Christos-Alexandros Sarros Input on Secure Overlay
Networks

0.4 12/1/23 Activeeon Michael Benguigui Input on Deployment and
Orchestration

0.5 17/1/23 7Bulls Radosław Piliszek, Jan Marchel Input on Serverless

0.6 19/1/23 UBITECH Nikos Papageorgopoulos,
Giorgos Kitsos

Refined input on Security
Policies and Secure Overlay
Networks

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

3

0.7 26/1/23 UBITECH Christos-Alexandros Sarros 1st full draft

0.8 6/2/23 7Bulls Paweł Skrzypek, Radosław
Piliszek, Jan Marchel

Reviewers feedback

0.9 15/2/23 UBITECH,
Activeeon

Christos-Alexandros Sarros,
Michael Benguinui, Ankica
Barišić

Revised sections based on
reviewers feedback.

Extension of the Deployment
Manager for cluster
deployment/redeployment

1.0 20/2/23 UBITECH Christos-Alexandros Sarros Formatting and minor
corrections for final version

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

4

TABLE OF ABBREVIATIONS AND ACRONYMS

Abbreviation/Acronym Open form

AE Activeeon

ABAC Attribute-Based Access Control

AMD64 AMD 64-bit x86 instruction set architecture

API Application Programming Interface

ARM Advanced RISC Machines

AWS Amazon Web Services

CNCF Cloud Native Computing Foundation

CNI Container Network Interface

CPU Central Processing Unit

CRD Custom Resource Definitions

CRUD Create, Read, Update, Delete

DNS Domain Name Service

EC2 Amazon Elastic Compute Cloud

EU European Union

GUI Graphical User Interface

HTTP HyperText Transfer Protocol

IaaS Infrastructure-as-a-Service

IP Internet Protocol

IPSec Internet Protocol Security protocol suite

JSON JavaScript Object Notation format

K8s Kubernetes

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

5

LDAP Lightweight Directory Access Protocol

(Meta-)OS (Meta-)Operating System

ONM Overlay Network Manager

PA ProActive

PERM Policy, Effect, Request, Matchers

R&D Research and Development

RAM Random Access Memory

RBAC Role-Based Access Control

RDBMS Relational Database Management System

REST Representational State Transfer

RM Resource Manager

SAL Scheduling Abstraction Layer

scp Secure Copy

SSH Secure Shell protocol

TLS Transport Layer Security

UDP User Datagram Protocol

VM Virtual Machine

VPC Virtual Private Cloud

VPN Virtual Private Network

WG WireGuard

WP Work Package

XACML eXtensible Access Control Markup Language

YAML Yet Another Markup Language

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

6

TABLE OF CONTENTS

EXECUTIVE SUMMARY.. 7

1 INTRODUCTION ..8

1.1 Deliverable objectives .. 8

1.2 Relation to other Deliverables and WPs .. 8

1.3 Deliverable structure ... 8

2 DEPLOYMENT AND ORCHESTRATION IN HETEROGENEOUS ENVIRONMENTS9

2.1 Approach overview .. 10

2.2 Implementation .. 11

2.2.1 Deployment Manager ... 11

2.2.2 Execution Adapter...13

3 SECURE NETWORK OVERLAY ... 16

3.1 Approach overview .. 16

3.2 Implementation .. 17

3.2.1 WireGuard VPN ... 17

3.2.2 Software components ...21

3.2.3 Overlay setup .. 23

4 SECURITY POLICIES .. 27

4.1 Approach overview .. 27

4.1.1 Access Control in Kubernetes ... 27

4.1.2 Policy Engine .. 28

4.1.3 Casbin k8s-gatekeeper policies .. 29

4.2 Implementation ... 32

4.2.1 Security and Privacy Manager .. 32

5 CONCLUSIONS ...34

6 REFERENCES .. 35

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

7

LIST OF FIGURES

Figure 1: The Deployment Manager and Execution Adapter components, within the NebulOuS architecture 10

Figure 2. NebulOuS resource management .. 11

Figure 3 Cloud provider registration sequence diagram ... 11

Figure 4 Node candidates sequence diagram .. 12

Figure 5 Proactive Architecture.. 14

Figure 6 NebulOuS architecture, secure overlay networking components highlighted ..17

Figure 7 Overlay network in a NebulOuS cluster ..20

Figure 8: High-level view of NebulOuS overlay network management ... 21

Figure 9: Overlay network creation - sequence diagram .. 23

Figure 10: Flowchart depicting the Overlay Network Manager component's internal logic 24

Figure 11 Access Control in Kubernetes ... 27

Figure 12. Kubernetes Dynamic Admission Control using external policy engines: flow of an API request28

Figure 13. K8s-gatekeeper as a Validating Admission Webhook ..30

EXECUTIVE SUMMARY

NebulOuS is a novel Meta-Operating System designed for hyper-distributed applications on the cloud-to-
edge continuum. Our vision is to allow for optimal deployment, provisioning and reconfigurations of user
applications in resource pools that encompass resources from the far edge to public and private clouds.
Leveraging cloud and fog brokerage capabilities, NebulOuS aims to allow for the formation of ad-hoc cloud
continuums that are created on-demand and seamlessly exploit edge and fog nodes, in conjunction with
multi-cloud resources.

In this context, D4.1 is focused on the initial orchestration layer and security-enabled overlay network
deployment of the Meta-OS. Regarding each aspect, we present both the overall approach being followed in
NebulOuS and the technical details on its implementation in the context of NebulOuS. In this context, this
deliverable reports the first version of the respective software components that implement this functionality
(as developed up until M17).

In the rest of the document, we initially dive into the details of deployment and management of distributed
applications on the cloud-to-edge continuum, particularly focusing on resource pool management. Besides
traditional cloud-native workloads, we also present our plan to accommodate serverless applications on the
compute continuum. Moreover, we provide extensive details on networking and security aspects our
platform. In particular, we describe the automatic establishment of secure overlay networks between the
distributed compute resources and detail our approach to support the creation, deployment and
enforcement of user-defined access control policies that secure the provisioned clusters.

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

8

1 INTRODUCTION

1.1 DELIVERABLE OBJECTIVES

The main goal of D4.1 is to report on the main aspects related to deployment and orchestration for hyper-
distributed applications in the cloud-edge continuum, as realized by the NebulOuS Meta-OS. To this end,
we present our prototype system along with its documentation.

In particular, D4.1 details our approach regarding the deployment and management of microservice-based
applications and serverless workloads, the formation and bootstrapping of secure overlay networks that
enable connectivity between the disparate resources and application components, as well the attribute-
based access control mechanisms that we leverage to secure the cloud/edge resources along with the
application components.

For each aspect, we delve into the techniques and tools that we use to realize our vision, while also providing
details on the implementation of the relevant NebulOuS software components that were developed to
provide each functionality.

1.2 RELATION TO OTHER DELIVERABLES AND WPS

This deliverable is part of WP4 “Cross-Cloud and Fog Applications deployment”, reporting on the early
results of tasks T4.1 “Deployment & Orchestration in heterogeneous environments”, T4.2 “Serverless
support”, T4.4 “Automatic deployment of secure network overlay” and T4.5 “Security and privacy-by-
design in data streams propagation”. D4.2 “NebulOuS Secure Cross-Cloud and Fog Applications
deployment & Orchestration based on smart contracts” - delivered in M30 - will provide the final iteration
of the mechanisms described in the present deliverable, after the introduction of smart contracts in the
application deployment process.

With respect to the work carried out in other WPs, the present deliverable reports on the implementation of
functionalities and software components that are part of the NebulOuS reference architecture, as specified
and reported in D2.1 “Requirements and Conceptual Architecture of the NebulOuS Meta-OS”. The
deliverable is also related to D6.1 “1st Release of the NebulOuS Integrated Platform & Use Case Planning” (to
be delivered in M18). While the present report focuses on the internal logic of each component that
implements the corresponding functionality, D6.1 will report on the implementation of the integrated
platform (placing more focus on the interactions between the various platform components).

1.3 DELIVERABLE STRUCTURE

The present report conforms to the following structure:

• Section 1 introduces the objectives of D4.1, as well as its relation to the project Work Packages, Tasks
and other Deliverables.

• Section 2 is concerned with application deployment and orchestration, documenting the resource
provisioning layer of NebulOuS. It presents our current approach and provides implementation details
regarding the relevant software components, i.e. the ‘Deployment Manager’ and ‘Execution Adapter’.
In addition, it outlines our approach to also support the deployment of serverless applications.

• Section 3 focuses on the establishment of secure overlay networks between the heterogeneous
resources that form a NebulOuS cluster. In this section, we provide details on the general approach
followed and open-source tools being used (e.g. WireGuard), while also reporting on the development

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

9

of all relevant NebulOuS software components that implement this functionality, namely the ‘Overlay
Network Manager’ and ‘Overlay Network Agent’.

• Section 4 describes the incorporation of user-defined security policies in NebulOuS. We first outline our
general approach on Kubernetes cluster access control1, presenting the open-source tools being used
(Casbin, k8s-gatekeeper). Subsequently, we report on the implementation of the respective software
component – the NebulOuS ‘Security Manager’ - that allows for seamless policy management and
deployment across all clusters that are provisioned by NebulOuS.

• Section 5 concludes the document.

2 DEPLOYMENT AND ORCHESTRATION IN HETEROGENEOUS
ENVIRONMENTS

The NebulOuS Meta-OS allows users to compose, deploy and provision hyper-distributed applications in
the cloud-edge continuum. We focus on containerized applications and use Kubernetes (k8s) [1] as our
container orchestration technology of choice to deploy the applications on top of the underlying
infrastructure. Kubernetes was introduced with application scalability in mind. It emerged as yet another
open-source orchestration engine, but it grew to dominate the Cloud market. This can be attributed to its
highly flexible framework, capable of deploying, managing, and scaling containerized applications across
distributed environments. In other words, it provided a systematic way of deploying the whole ecosystem
of a containerized application with attention to portability and interoperability.

We differentiate between two interrelated, but discrete aspects with respect to the NebulOuS application
deployment and orchestration functionality: resource pool management and application resource
management. We use the term ‘resource pool management’ to refer to the management of the VMs and
physical nodes within a compute cluster, and the term ‘application resource management’ to refer to the
management of the containerized workloads.

In NebulOuS, application resource management is handled by Kubernetes which provisions the
containerized workloads on top of the underlying compute resources. After a user describes its application
graph, the application components are deployed in Kubernetes clusters in the form of containers (k8s Pods).
The workloads themselves within a single cluster are, thus, provisioned by Kubernetes which makes sure
that the deployments adhere to the desired state at any time. For this reason, this ‘local’ application
orchestration functionality is not depicted by a discrete component in the NebulOuS conceptual
architecture since k8s takes over this role.

Resource pool management is the management of cloud and edge compute resources (physical or virtual)
that form the resource pool over which NebulOuS applications are deployed. This includes spinning up and
managing VMs in cloud providers, onboarding and provisioning edge nodes and private cloud infrastructure
to NebulOuS, setting up Kubernetes clusters on top of the available infrastructure offerings and managing
them (e.g. scaling the clusters themselves, by adding or removing nodes to a k8s cluster). Since Kubernetes
itself has no way to provision the underlying infrastructure, this functionality is implemented by the
NebulOuS ‘Deployment Manager’ and ‘Execution Adapter’ components. The former receives the optimal
setup for a deployment by the ‘Optimizer’ component while the latter executes the actual plan using the
available underlying resources.

The optimization details (e.g. placement) for each user application are decided by the ‘Optimizer’
component by considering all the globally available resources and the application requirements and

1 Specifically, we focus on dynamic admission control, which allows users to enforce custom policies that allow or disallow cer tain actions on a
Kubernetes cluster (https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/)

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

10

constraints; after settling on an optimal setup, the deployment itself is enacted by the ‘Deployment
Manager’ and ‘Execution Adapter’ components. Currently, we assume that each user application will be
deployed in a different cluster.

At this point, we note that when we refer to a ‘single’ NebulOuS cluster, this does not equate single-cloud
deployments. Instead, NebulOuS can pool resources from different providers to form multi-cloud and cloud-
to-edge k8s clusters that span different locations. This is achieved by forming a secure overlay network
between those resources, bringing VPC-like functionality to the cloud-to-edge continuum (the process is
described in Section 3).

The rest of this Section focuses on presenting the details of the ‘Deployment Manager’ and ‘Execution
Adapter’ components, which have implemented the aforementioned functionality in the context of Task 4.1
“Deployment & Orchestration in heterogeneous environments”. We conclude the section by outlining our
plan to include support for the deployment of serverless applications in the next release, based on the results
of Task 4.2 “Serverless support”.

2.1 APPROACH OVERVIEW

Figure 1: The Deployment Manager and Execution Adapter components, within the NebulOuS architecture

The NebulOuS deployment and orchestration layer builds on Activeeon’s ProActive Workflows and
Scheduling technology [2]. In particular, the two NebulOuS components that realize this functionality (the
‘Execution Adapter’ and ‘Deployment Manager’ components are implemented by Activeeon’s ProActive
technology and Scheduling Abstraction Layer (SAL) [3].

ProActive, handling the ‘Execution Adapter’ role, is the component operating directly with the cloud
provider APIs to deploy and manage resources. It allows for the management of heterogeneous resources
(Cloud, On-Premise, Edge) thanks to ProActive nodes, offering a homogenization layer between the
infrastructure and the component executions. Thanks to that, to orchestrate a multi component application
across heterogeneous resources, most of the efforts are required at the ProActive node deployment level
instead of at the application submission level. This deployment is achieved thanks to one of the ProActive
microservice named IaaS Connector, which includes the main REST endpoints to deploy and manage nodes
on any infrastructure.

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

11

The ‘Deployment Manager’, also known as SAL, directly interacts with the ‘Execution Adapter’ via ProActive
REST API to order the resource retrieval according to user constraints (RAM, CPU, cores). It handles the job
definition to be submitted, defines the per-task node selection, manages the node candidate caching, and
performs additional tasks. This twinning is depicted in Figure 1.

Figure 2: NebulOuS resource management

2.2 IMPLEMENTATION

2.2.1 Deployment Manager

The NebulOuS ‘Deployment Manager’ component is implemented using Activeeon’s SAL. SAL is a Java
project exposing the main REST endpoints used to handle the lifecycle of a cluster dedicated to a specific
user application. Each endpoint definition is exposed in SAL documentation [3]. For the application
developer to run his application on top of NebulOuS, the definition of Cloud providers should be defined via
the platform GUI.

The first, preliminary, step when using SAL is to establish a connection to the ‘Execution Adapter’
(ProActive) via SAL. This is performed using a connection endpoint, to retrieve a sessionId according to the
user credentials specified. A cloud provider can then be registered using the add cloud endpoint. The
corresponding sequence diagram is presented in Figure 3:

Figure 3: Cloud provider registration sequence diagram

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

12

At this stage, the node candidate list can be asynchronously retrieved using the get node candidates
endpoint which acts according to some user restrictions (e.g. available hardware and their number of cores
and memory size, the images, and the regions) and is saved in the local database, as presented in Figure 4.

When calling filter node candidates endpoint, feasible combinations will be considered consisting of a
combination of hardware, an image, and a region provided by ‘Optimizer’ component. All the node
candidates are feasible, meaning that the hardware is compatible with the image and can be deployed in the
selected region. For instance, EU west 3 can't be used with hardware from EU-west-1, arm64 architecture
can’t be used with an amd64 image.

Figure 4 Node candidates sequence diagram

A further idea is to use define cluster endpoint, to set how we use node candidates for creating master and
worker nodes for a Kubernetes cluster deployment. At a higher representation level, “Cluster.java” is a
persisted representation of a cluster in SAL, and includes cluster information: cluster name, the master node
name, and a list of ClusterNodeDefnition. ClusterNodeDefinition is a persisted representation of a node
linked to a job to be executed with associated tasks. This representation includes the node name, related
node candidate id with its cloud id, related job name and task name.

Each node source centralizes at ProActive level the required information to start VMs and deploy nodes. The
REST query body of task flow for deployment is defined following a JSON format [4]. Among other
parameters, this JSON describes the provided/required ports, the installation scripts (network
configuration, tools installation, etc.) and an application script for each task.

After the cluster is defined, the SAL provides the deploy cluster endpoint which creates the cluster and
deploys it node by node. At this moment the ‘Execution Adapter’ (ProActive) executes the bootstrapping
script which sends a REST request to the ‘Overlay Network Manager’ component (see Section 3) to install
and configure virtual private network (VPN) [5]. Thanks to the generic approach for cluster deployment, the
redeployment mechanism is enabled over the scale-in and scale-out endpoints with support of ‘Overlay
Network Manager’ component.

Creating Kubernetes clusters manually involves several intricate steps which are being automatized using
NebulOuS ‘Deployment Manager’ (SAL). Initially, one must provision cloud machines, ensuring they meet
Kubernetes' minimum requirements. Subsequently, Kubernetes and its dependencies such as kubeadm,
kubelet, kubectl, kubernetes-cni, and a container runtime like Docker engine need to be installed. Network
configuration is vital, requiring nodes to communicate either within the same subnet or via configured

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

13

network routes, security group rules, and firewalls. The control plane is initialized using "kubeadm init" on
the master node, followed by connecting worker nodes using "kubeadm join" with appropriate
authentication tokens. Kubernetes networking must be set up using solutions like Flannel, Weave, or Calico.
Benchmarking ensures proper cluster functionality with commands like "kubectl get nodes" and "kubectl
get pods" before finally deploying applications using YAML files. This process demands meticulous
attention and a deep understanding of Kubernetes' architecture due to its complexity.

In this solution, we consider the Kubernetes cluster as the application that will be overseen by NebulOuS,
which will undertake the provisioning and monitoring of the cluster nodes. To achieve that we define three
software components in the deployment type model: “KubeMasterComponent” defining a Kubernetes
cluster master provisioned from an OpenStack private cloud, a “KubeWorkerComponent_OS” defining a
Kuberenetes worker node provisioned from the same private cloud and finally,
“KubeWorkerComponent_aws” defining another Kubernetes worker node provisioned using Amazon Web
Services (AWS). The components are defined along with their respective scripts and configurations. We
establish the necessary definitions, such as WorkerOSToMaster and WorkerAwsToMaster, to enable
communication between workers and the master node.

In addition to the complexity of creating the cluster, Kubernetes is also limited by the scale of this cluster, as
it does not provide tools to automatically scale up or down the number of allocated nodes following a surge
or a drop in the workload. As a result, sysadmins responsible for managing the cluster are required to
manually repeat the previously mentioned steps and then manually add the new node to the cluster. This
manual approach creates two significant drawbacks: the first is the operation cost, since the nodes are not
removed automatically once the cluster encounters a lower load, this leads to the provision of idle nodes and
consequently a financial loss. At the same time, the under-provisioning of the nodes may lead to an
overloaded cluster and consequently, performance degradation and service disruptions.

2.2.2 Execution Adapter

The ‘Deployment Manager’ (SAL) communicates with the ‘Execution Adapter’ (ProActive) thanks to IaaS
Connector: a ProActive microservice. This microservice provides on-demand access to computing resources
such as servers, storage, and networking, offering more direct control over cloud-based systems. More
precisely, IaaS Connector enables to perform CRUD operations on different public or private clouds (AWS
EC2 [6], Openstack [7], VMWare [8], Docker [9], etc), and offers REST endpoints to communicate with these
infrastructure interfaces, to manage the virtual machines lifecycle. The following schema depicts the global
architecture of ProActive with microservices, the most important of which is Connector-IaaS that will be
discussed below.

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

14

Figure 5: Proactive Architecture

The simplest way to interact with IaaS Connector to allocate compute resources is the ProActive Resource
Manager portal. This latter integrates a Node Source allocation window centralizing all required parameters
for each selected infrastructure. The integration with SAL however relies on the REST API.

The IaaS Connector mainly relies on the jclouds toolkit while implementing three main model classes
(exposing their own REST endpoints):

- Infrastructure: authentication endpoint, management endpoint…

- Instance: image, hardware, network…

- NodeCandidate: cloud, region, price…

The main cloud provider classes (AWSEC2JCloudsProvider, OpenstackJCloudsProvider,
GCEJCloudsProvider) implements the same JCloudsProvider interface including a caching mechanism.

The deployment of ProActive node agents on the compute resources is automatically performed over an SSH
connection and a lightweight node.jar.

SAL Code repository https://github.com/ow2-proactive/scheduling-abstraction-layer

ProActive Project URL https://github.com/ow2-proactive/scheduling

2.3. SERVERLESS COMPUTING SUPPORT

The scope of serverless computing support in NebulOuS takes into account the project’s requirements and
goals. Based on this analysis, we have decided to focus on supporting a cloud-agnostic, edge-friendly
approach that is well integrated with Kubernetes as NebulOuS’s orchestration platform of choice.
Additionally, our approach needs to be embracing NebulOuS’s values, such as the stance on open source and

https://github.com/ow2-proactive/scheduling-abstraction-layer
https://github.com/ow2-proactive/scheduling

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

15

its community aspects. Following these guidelines, we have identified a single base solution that caters to
our needs – Knative [10].

Knative has been accepted to CNCF (Cloud Native Computing Foundation) on March 2, 2022 at the
Incubating maturity level. This is the very same foundation that hosts Kubernetes and a wide landscape of
compatible tools. This already gives Knative a very strong mandate. We have also analysed the licensing and
ecosystem to confirm that indeed it’s a tool that aligns with our goals and does not have any downsides with
respect to potential adoption.

To better understand the role of Knative in NebulOuS, it is good to quote its description page from CNCF:
“Knative is a developer-focused serverless application layer which is a great complement to the existing
Kubernetes application constructs. Knative consists of three components: an HTTP-triggered autoscaling
container runtime called “Knative Serving”, a CloudEvents-over-HTTP asynchronous routing layer called
“Knative Eventing”, and a developer-focused function framework which leverages the Serving and Eventing
components, called "Knative Functions".”. What follows is that it has three main building blocks: Serving,
Eventing, and Functions. Functions integrate the first two as a somewhat higher-level solution. The good
integration with Kubernetes is manifested with the management and use of all Knative boiling down to the
application of relevant resource manifests which declaratively configure the necessary behind-the-scenes
machinery in the Kubernetes-typical control loop fashion. Indeed, we have not found another solution being
this “Kubernetes-native” as far as serverless computing solutions go2.

Due to the time schedule, the first release of NebulOuS does not include full support for serverless
computing. Thus, this subsection describes our vision for the adoption and integration of the chosen
solution – Knative. Because of the planned character of this, the actual details may change and will be
reported in a later deliverable.

The integration of Knative will span both design-time and runtime aspects of NebulOuS. Firstly, in the
design-time scope, the existing application modelling approach based on KubeVela will be enhanced to
include the possibility to model serverless components of the application – the scale-to-zero functions. This
modelling will then be realised at runtime by the extensions to the KubeVela platform to instantiate proper
Knative resources. Additionally, care will be taken to properly register these instantiations to the rest of the
NebulOuS ecosystem, e.g., monitoring, anomaly detection and security policies.

2 Notable alternatives that we have checked include Apache OpenWhisk, OpenFaaS, Fission, Fn and Kyma.

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

16

3 SECURE NETWORK OVERLAY

Upon selection of the appropriate resources in which the application is deployed, an overlay network is
created to securely interconnect compute resources. Our secure overlay allows for the formation of compute
clusters that are cross-cloud and can encompass resources from the cloud to the edge, supporting our multi-
cloud and cloud-to-edge vision. The secure overlay network that underpins every deployment constitutes
an integral part of the NebulOuS security toolbox, leveraging recent advances in VPN technology to offer
security and privacy for in-transit application data, regardless of where the application components are
deployed. The specific details regarding our approach are outlined below.

3.1 APPROACH OVERVIEW

The NebulOuS Meta-OS interconnects compute resources with one another irrespective of their location,
providing effective support, at the connectivity level, for: i) the creation of distributed compute clusters that
span from the datacenter to the edge, realizing the vision of a cloud-to-edge continuum and ii) multi-cloud
scenarios that can incorporate geo-distributed setups, enabling the seamless management of compute
resources from different providers in a single resource pool.

To achieve this, NebulOuS creates a secure network overlay between those resources. This overlay takes the
form of a (VPN), which assumes two main functionalities: i) it provides connectivity between the NebulOuS
compute resources (physical and/or virtual) and ii) it secures the data in transit by encrypting them.
Moreover, network isolation, segmentation, security and privacy are provided by creating separate
encrypted virtual networks for the individual compute clusters. Combined, those aspects allow NebulOuS
to offer functionality similar to the Virtual Private Clouds (VPC) [11] offered by public cloud providers [12]
[13], but on ad-hoc cloud continuums that are formed by the heterogeneous multi-cloud and cloud-to-edge
compute resources managed by NebulOuS.

The main component that implements this functionality is the Overlay Network Manager which, during the
creation of a new compute cluster by the Execution Adapter, is responsible for bootstrapping the compute
resources into a secure overlay network. An on-demand VPN network is created that provides secure node-
level connectivity (i.e. VMs or bare metal devices) before the deployment of Kubernetes, ensuring that all
intra-cluster traffic will be encrypted for each cluster.

This is especially important, since all communication between the deployed application components within
each cluster is secured and remains private, regardless of where the components are deployed. Since a single
NebulOuS cluster can span across edge locations, public cloud providers and on-premises private clouds,
this arises as a significant consideration. Moreover, the creation of a separate encrypted VPN per-cluster
provides isolation between users’ applications (especially important since different NebulOuS users can
leverage resources from the same providers), offering security and privacy in a multi-tenant, multi-provider
heterogeneous environment.

The Overlay Network Manager is the component that automates the setup and management of the different
overlays, supplemented by a set of setup scripts. The role of the Overlay Network Manager in the overall
NebulOuS architecture is depicted in the Figure below:

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

17

Figure 6: NebulOuS architecture, secure overlay networking components highlighted.

3.2 IMPLEMENTATION

3.2.1 WireGuard VPN

To achieve the on-demand secure overlay creation, we leverage the WireGuard VPN protocol [14] and its
open-source implementation. WireGuard encapsulates IP packets over UDP to create a secure Layer-3
tunnel between the connected resources, physical or virtual. It provides a simple yet powerful solution that
can act as an alternative to both IPsec and TLS-based solutions (e.g. OpenVPN) [15]. This is achieved through
the association of a public key and a tunnel source IP address. Combined with a single-round-trip key
exchange mechanism (based on Noise [16] [17]) and mutual authentication of peers (using pre-shared keys),
WireGuard allows for transparent session creation and an easy, SSH-like setup.

WireGuard creates its own network interfaces. Each interface has a private key and a list of peers, while each
peer has a public key. As a result, each public key is associated with a list of IP addresses that are allowed
inside the tunnel. Once a WireGuard interface is added and configured with the private key and the peers’
public keys, packets can be securely sent across that interface. The keys are included in configuration files;
key distribution is not embedded in the protocol and can be achieved using any out-of-band method – and
this is the case also in this project where our Overlay Network Manager distributes these keys.

3.2.1.1 Configuration example

WireGuard calls this approach “Cryptokey routing”3. An example of a generic server-client configuration,
with respect to the configuration files that are used by the server and client, respectively, is depicted below:

3 https://www.wireguard.com/#cryptokey-routing

https://www.wireguard.com/#cryptokey-routing

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

18

Server configuration file:

[Interface]
PrivateKey = yAnz5TF+lXXJte14tji3zlMNq+hd2rYUIgJBgB3fBmk=
ListenPort = 51820

[Peer]
PublicKey = xTIBA5rboUvnH4htodjb6e697QjLERt1NAB4mZqp8Dg=
AllowedIPs = 10.192.122.3/32, 10.192.124.1/24

[Peer]
PublicKey = TrMvSoP4jYQlY6RIzBgbssQqY3vxI2Pi+y71lOWWXX0=
AllowedIPs = 10.192.122.4/32, 192.168.0.0/16

[Peer]
PublicKey = gN65BkIKy1eCE9pP1wdc8ROUtkHLF2PfAqYdyYBz6EA=
AllowedIPs = 10.10.10.230/32

Client configuration file:

[Interface]
PrivateKey = gI6EdUSYvn8ugXOt8QQD6Yc+JyiZxIhp3GInSWRfWGE=
ListenPort = 21841

[Peer]
PublicKey = HIgo9xNzJMWLKASShiTqIybxZ0U3wGLiUeJ1PKf8ykw=
Endpoint = 192.95.5.69:51820
AllowedIPs = 0.0.0.0/0

In the server configuration, each peer (a client) will be able to send packets to the network interface with a
source IP matching his corresponding list of allowed IPs. For example, when a packet is received by the server
from peer gN65BkIK..., after being decrypted and authenticated, if its source IP is 10.10.10.230, then it's
allowed onto the interface; otherwise, it's dropped.

When the network interface wants to send a packet to a peer (a client), it looks at that packet's destination
IP and compares it to each peer's list of allowed IPs to see which peer to send it to. For example, if the network
interface is asked to send a packet with a destination IP of 10.10.10.230, it will encrypt it using the public key
of peer gN65BkIK..., and then send it to that peer's most recent Internet endpoint.

In the client configuration, its single peer (the server) will be able to send packets to the network interface
with any source IP (since 0.0.0.0/0 is a wildcard). For example, when a packet is received from peer
HIgo9xNz..., if it decrypts and authenticates correctly, with any source IP, then it's allowed onto the
interface; otherwise, it's dropped.

In other words, when sending packets, the list of allowed IPs behaves as a sort of routing table, and when
receiving packets, the list of allowed IPs behaves as a sort of access control list.

3.2.1.2 NebulOuS use

Those features of WireGuard are leveraged in NebulOuS to setup the secure overlay network. For the first
release, we have made the following decisions: First, we currently employ split tunnelling4; instead of

4 https://csrc.nist.gov/glossary/term/split_tunneling

https://csrc.nist.gov/glossary/term/split_tunneling

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

19

forwarding all the traffic of a compute node through the network overlay, we only tunnel Kubernetes traffic.
This ensures the isolation of cloud-native applications and encryption of all their traffic, while also allowing
any other traffic to/from the compute nodes that is not specific to NebulOuS services to go directly through
other interfaces (e.g. the public Internet), instead of routing all traffic via the overlay. This allows i) each
compute node to be able to directly access external resources (e.g. downloading images from public repos)
without forcing the traffic to go through the VPN first, which adds additional latency and ii) in the Bring
Your Own Node scenario, the traffic of non-NebulOuS services running in an edge device are not forced to
go through the NebulOuS cluster VPN. This means that a compute resource with a public IP (e.g. cloud
provider VMs) will still be accessible through the public Internet with the right credentials; however, we do
not expose the node any more than it is already exposed in such a setting. As a result, no additional security
measures are needed other than the ones already applied to secure the host (e.g. access credentials,
public/private key pairs, cloud provider security groups, firewall rules, etc.).

Second, the VPN is currently set up in a hub-and-spoke topology (following the server-client approach
presented above). This means that in a Kubernetes cluster, the node hosting the k8s Master is configured as
a WireGuard Server, while the node hosting the k8s Worker is configured to act as a WireGuard client. Using
this approach, key management and tunnel establishment are greatly simplified, with the trade-off being
that the Worker nodes’ pod-to-pod k8s traffic always goes through the Master node that acts as a gateway.
Typical pod-to-pod communication within k8s is not altered and the operates as usual, using Cilium[18]
and kube-dns5. While for most cases this approach is sufficient, for the next release we plan to also support
a VPN mesh topology which will allow for the establishment of direct tunnels between Worker nodes
(aligning better with the Cilium network topology and investigating potential performance improvements).

The current setup is depicted in Figure 7:

5 https:// kubernetes.io/docs/concepts/services-networking/dns-pod-service/

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

20

Figure 7: Overlay network in a NebulOuS cluster

From a high-level view, the NebulOuS overlay network management for the various clusters formed by the
compute resources onboarded in NebulOuS (private clouds, public clouds, edge devices) is depicted in
Figure 8 below:

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

21

Figure 8: High-level view of NebulOuS overlay network management

3.2.2 Software components

There are two main software components involved in the automatic overlay network setup:

1. The Overlay Network Manager (ONM) component is part of the NebulOuS backend service and
installed in the control-plane cluster that hosts the NebulOuS platform. The role of ONM is to
initiate the creation of a new overlay network in the compute clusters managed by the Meta-OS,
centrally managing the addition and deletion of new nodes in the existing overlay networks, the
generation and distribution of the respective cryptographic keys, as well as maintaining the overall
status of all VPNs that are provisioned at each time by NebulOuS (e.g. health monitoring of the
overlay networks).

2. The overlay network setup scripts are executed during the initialization process of a compute
cluster. They can be thought of as ‘setup agents’. There is one main bootstrapping script, which is
executed in each NebulOuS-managed resource during its onboarding in NebulOuS. This script
initiates the VPN bootstrapping procedure by sending an API call to the ONM component. The ONM
then handles the bootstrapping process of each new node in the overlay network. This is done by
natively handling issues such as key generation, storage and distribution, also establishing remote
SSH connections to execute secondary scripts that install and configure the WireGuard clients in
the VM/bare metal devices.

Those components are analysed in the following subsections.

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

22

3.2.2.1 Overlay Network Manager.

The Overlay Network Manager is NebulOuS control-plane component that orchestrates the creation, update
and deletion of the different overlays created for the NebulOuS-managed compute clusters, while also
keeping track of their state at any moment. This also includes key generation and distribution functionality
for the WireGuard-based tunnel creation between the peers participating in a VPN. The component itself
consists of a backend service and a database that stores the global overlay state information (number of
nodes that are part of each VPN, their internal and external IPs, VPN health status, their public and private
keys, etc.). The backend service is developed using Java 20 and the Quarkus framework [19] (version
3.2.9.Final), along with a PostgreSQL [20] database. The WireGuard keys are generated using the
BouncyCastle Java library6.

The respective code (both for the scripts and the backend ONM service) is available in the OpenDev project
repo [21].

3.2.2.2 Overlay network setup scripts.

The setup scripts are executed in each resource onboarded in NebulOuS. Their purpose is to bootstrap the
node (physical device/VM) into an on-demand VPN that is created between the nodes that form a specific
compute cluster. A single bootstrapping script is first run by the Execution Adapter component on each
machine that is onboarded to NebulOuS. This script initiates the bootstrapping process and sends a call to
the Overlay Network Manager, which assumes responsibility for the rest of the process. The ONM
establishes remote SSH connections to the specific machines and executes a set of VPN setup scripts.
Different scripts are executed based on the node type (Master or Worker nodes).

The rationale behind our choices is that 1) the ONM is the control plane component that centrally manages
this process, centrally storing the overlay network state, 2) The WireGuard VPN established in each cluster
follows a server/client paradigm with a hub-and-spoke topology, meaning that each VPN consists of a
WireGuard server (installed in the cluster Master Node) and several WireGuard clients (installed in the
cluster Worker Nodes).

What follows this design, is that the WireGuard server is where the clients’ configuration files are generated,
while the WG server is also the only node that has all information about all the other nodes (clients) in the
VPN. This has two consequences: 1) WG clients need to retrieve their own configuration files from the wg
server, and 2) since WireGuard uses mutual authentication to establish communication between two nodes,
creating a new WG client also means that the client needs to be separately registered in the WG server.

To orchestrate this set of actions, we have mainly used SSH tunnels from the ONM to each machine that acts
as a WG server or client to run the necessary scripts in each machine. In a specific case, the script establishes
an scp connection between the WG client and server, so that the client can retrieve its configuration file.

The scripts executed in each NebulOuS compute node are the following:

• All nodes (script executed by Proactive)

▪ nm-bootstrap-script.sh

• Master node (scripts executed by the ONM):

a) Creation of a new overlay network

▪ wg-server-create.sh

6 https://www.bouncycastle.org/

https://www.bouncycastle.org/

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

23

▪ wg-client-create_server.sh

b) Deletion of an overlay network

▪ wg-client-delete_server.sh

• Worker nodes (scripts executed by the ONM):

a) Creation of a new overlay network

▪ wg-client-create_client.sh

b) Deletion of an overlay network

▪ wg-client-delete_client.sh

3.2.3 Overlay setup.

3.2.3.1 Overlay creation steps.

Bootstrapping new NebulOuS nodes in the VPN of the cluster they are part of, is the first step taken during
the node creation workflow of the Execution Adapter component (Proactive).

The overlay network creation flow is depicted in the following Figure:

Figure 9: Overlay network creation - sequence diagram

First, Proactive spins up a new VM. In this VM, it executes the overlay network bootstrapping script. This
script takes several actions, including the creation of an OpenSSH key pair (so that the ONM can establish
an SSH tunnel to the machine to execute the vpn setup scripts). This script then sends a REST call to the
ONM which performs all subsequent setup actions.

After receiving this REST call for the creation or deletion of an overlay network node, the ONM implements
the logic depicted in the following flowchart:

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

24

Figure 10: Flowchart depicting the Overlay Network Manager component's internal logic.

Each step in the entire process is analyzed below:

1. When the Execution Adapter creates a new Node, it first executes the overlay network
bootstrapping script (nm-bootstrap-script.sh) in the Node. This script:

a. Sends a REST call to the Overlay Network Manager, notifying it regarding the new node.
b. Creates an OpenSSH public/private key pair.
c. In the case of a master node, it creates a WireGuard Master Node and in the case of a worker

node, it creates a WireGuard Worker Node.
d. It then adds the node to the correct WireGuard VPN, based on the cluster id (for the 1st

release we deploy 1 application per cluster, so we filter the application UUID).
e. The script uses the following parameters as input, which are provided by Proactive in the

form of environmental variables:
i. ACTION: CREATE/DELETE

ii. NODE_TYPE: MASTER/WORKER
iii. APPLICATION_UUID: e.g. 19393adfkjl-sdfkjkj4234-sdlfjk
iv. ONM_IP: e.g. 1.2.3.4

f. Example:
./nm-bootstrap-script.sh CREATE MASTER 19393adfkjl-sdfkjkj4234-sdlfjk 1.2.3.4

2. After the script is run, the ONM receives a REST call. Depending on the node type (master/worker),
the actions taken by the ONM are the following:

a. In the Master Node case:

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

25

The ONM performs an SSH tunnel to the VM and executes the wg-server-create.sh script.
The script parameters are the following:

i. WG_SERVER_PRIVATE_KEY
This key is created by the ONM and distributed to the node.
It is part of the WireGuard configuration file.

ii. WG_SERVER_PUBLIC_KEY
This key is created by the ONM and distributed to the node.
It is part of the WireGuard configuration file.

iii. WG_SERVER_IP
This is the internal IP of the node that is onboarded in the VPN. It is created by the
ONM and distributed to the node. It is part of the WireGuard configuration file.
By default, the aforementioned script produces the following configuration:

▪ WireGuard Interface Name: wg0
▪ Listen Port: 51820
▪ WireGuard Server IP: 192.168.55.1
▪ WireGuard Server Keys Directory: /etc/wireguard/server_keys
▪ WireGuard Server Configuration File: /etc/wireguard/wg0.conf

b. In the Worker Node case:

The ONM checks in what cluster this node belongs to, using the application UUID. It then:
i. Creates the WireGuard Node public/private key pairs

ii. Updates its database state
iii. Performs two SSH tunnels

1. The first SSH tunnel is established to the WireGuard Server, to create the
configuration file for the WireGuard Client (i.e., the new worker node) and
update its own configuration (adding information about the new wg
client). This can be done by executing the wg-client-create_server.sh script
on the server node, with the following arguments:

a. WG_CLIENT_NAME
Configuration Parameter for the WireGuard Client Configuration
file.

b. WG_CLIENT_PRIVATE_KEY
Configuration Parameter for the WireGuard Client Configuration
file.

c. WG_CLIENT_PUBLIC_KEY
Configuration Parameter for the WireGuard Client Configuration
file.

d. SSH_USERNAME
Username to perform the SSH Tunnel.

e. WG_SERVER_PUBLICKEY
WG Public key of the Server, needed to create the communication
link between the server and client WireGuard nodes.

f. SERVER_IP:SERVER_PORT
Configuration Parameter for the WireGuard Client Configuration
file.

g. CLIENT_VPN_IP
Configuration Parameter for the WireGuard Client Configuration
file.

h. ALLOWED_IPS
Configuration Parameter for the WireGuard Client Configuration
file.

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

26

2. The second SSH tunnel is established to the WireGuard Client, to run the
wg-client-create_client.sh script. This script performs an scp command to
the WireGuard Server Node to get the client node’s configuration file
which was generated by the server. The conf file is needed to initiate
WireGuard communication inside the overlay. The script needs the
following arguments:

a. WORKER_SSH_USERNAME
Username to perform the SSH Tunnel

b. OPENSSH_PRIVATE_KEY
Master Node OpenSSH Private Key, to perform the SCP command

c. SERVER_IP
Server IP of the master node, necessary since it provides in which
server to perform the SCP command

d. CLIENT_NAME
WireGuard Client Name. It is the name of the configuration file
located on the Master Node.

e. MASTER_SSH_USERNAME
Username of the Master Node. Needed for the SCP Command

3.2.3.2 Overlay deletion steps.

3. When the Execution Adapter deletes a Node, it executes the overlay network bootstrapping script
(nm-bootstrap-script.sh) in the Node, setting value of the ACTION argument to ‘DELETE’.This
triggers the following actions:

a. The script sends a REST call to the ONM
b. The ONM checks whether the Node in question is a Master or Worker Node.
c. Based on the node type, it triggers one of the two flows:

i. In the Master Node case, it performs one SSH tunnel to the node:
1. This SSH tunnel is established to execute the wg-server-delete.sh script in

the machine. This script stops the WireGuard systemd service, removes the
WireGuard utilities and configuration files from the machine. After those
steps, the machine stops being a part of the cluster’s WireGuard overlay
network.
- The script takes the following parameters:

a. SSH_USERNAME
Used to perform the SSH Tunnel

b. WG_INTERFACE_NAME
This is the name of the systemd service running the WG interface,
which
needs to be stopped and disabled.

ii. In the Worker Node case, it performs two SSH tunnels:
1. The first one is for the WireGuard Client, to execute the wg-client-

delete_client.sh script in the machine. This script stops the WireGuard
systemd service, removes the WireGuard utilities and configuration files
from the machine. After those steps, the machine stops being a part of the
cluster’s WireGuard overlay network.
- The script takes the following parameters:

a. SSH_USERNAME
Used to perform the SSH Tunnel

b. WG_INTERFACE_NAME
This is the name of the systemd service running the WG interface,
which
needs to be stopped and disabled.

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

27

The second one is for the WireGuard Server, to execute the wg-client-delete_server.sh script in the machine.
This script updates the WireGuard Server configuration regarding which clients it is communicating with.
It also removes the configuration file of the client that is being deleted. Finally, it restarts its systemd service
to apply the aforementioned reconfiguration.

4 SECURITY POLICIES

The second pillar of the NebulOuS security and privacy mechanisms focuses on policy-based access control.
This approach allows users to define arbitrary security policies which can then be enforced to control access
to resources. Since the NebulOuS Meta-OS uses Kubernetes for container orchestration purposes, our focus
is placed on securing access to the Kubernetes clusters.

4.1 APPROACH OVERVIEW

4.1.1 Access Control in Kubernetes

Access Control in Kubernetes is practically realized by controlling access to the Kubernetes API7. Kubernetes
(k8s) provides a well-structured way to achieve fine-grained cluster access control, using “admission
controllers”.

Figure 11: Access Control in Kubernetes

In k8s, every communication goes through the API Server. Changes that come through the API server are
persisted into etcd.

An Admission Controller is code that runs after API server requests are authenticated and authorized, and
before the request results in a change to etcd8. They intercept inbound mutation requests. An admission
controller can, thus, mutate or reject the requests based on user-defined policies.

7 https://kubernetes.io/docs/reference/access-authn-authz/
8 It should be noted that admission controllers do not respond to Kubernetes read operations, like get, watch and list. To prevent those
operations, we will use RBAC AuthZ.

https://kubernetes.io/docs/reference/access-authn-authz/

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

28

Although there are build-in admission controllers in k8s, external admission plugins can also be run as
webhooks configured at runtime to achieve Dynamic Admission Control9. Dynamic Admission Controllers
are made possible by loading the MutatingAdmissionWebhook and ValidatingAdmissionWebhook
compiled admission controllers when the API server starts.

Admission webhooks in K8s are HTTP callbacks that receive 'admission requests' and do something with
them. There are two types of admission webhooks: Validating Admission Webhook and Mutating Admission
Webhook. Mutating admission webhooks are invoked first; they can modify objects sent to the API server to
enforce custom defaults.

After all object modifications are complete, and after the incoming object is validated by the API server,
validating admission webhooks are invoked and can reject requests to enforce custom policies. This
webhook calls out to a configured policy engine service to have the current payload validated by any policies
that match. If the validation results in false return, then the request stops and the status is immediately
returned back to the calling client, by the API server.

With these two admission controllers running, we can configure extensions to the API server request flow
at runtime, using services running on data plane nodes. This means that after the API server is up and the
cluster is running, we can add policy engine services to the data plane at runtime and configure them to be
called by API server webhooks.

NebulOuS offers the definition and enforcement of arbitrary, custom security policies by its users leveraging
the aforementioned native Kubernetes mechanisms. This way, we allow for fine-grained control on who is
allowed to perform what actions on Kubernetes clusters, under a particular context.

In the case of Dynamic Admission Control, the exact flow of an API request is depicted below:

Figure 12: Kubernetes Dynamic Admission Control using external policy engines: flow of an API request

4.1.2 Policy Engine

There are several policy engines that can act as admission controllers for Kubernetes (Kyverno [22], Open
Policy Agent [23], jsPolicy [24], KubeWarden [25], etc.). In NebulOuS, we are using the Casbin policy engine,
specifically its official implementation for Kubernetes (k8s-gatekeeper [26]).

9 https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/

https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

29

Casbin [27] is an open-source access control policy engine that provides support for enforcing authorization
based on various access control models. The main reason for our choice is its flexible support of various
models (including RBAC and ABAC), even allowing for the definition of custom user-defined models. It can
also support the use of XACML-compliant policies via an official translator10.

Casbin can be used in flows where we want a certain object or entity to be accessed by a specific user or
subject. The type of access, i.e. action, can be read, write, delete, or any other action. This is called the
"standard" or classic { subject, object, action } flow. Casbin is also capable of handling many complex
authorization scenarios other than the standard flow. There can be addition of roles (RBAC), attributes
(ABAC), etc.

To define the access control model, Casbin uses configuration files. The model file stores the access model,
while the policy file stores the specific user permission configuration. An enforcer also needs to be created,
which loads the model and policy conf files. Following this model, enforcing a set of rules in Casbin is
achieved via:

A policy file, which lists subjects, objects, and the desired allowed action (or any other format based on the
user needs).

A model file, in which the user sets the layout, execution, and conditions for authorization.

An Enforcer, which is provided by Casbin for validating an incoming request based on the policy and model
files given to the Enforcer.

Following this approach, an access control model is abstracted into a CONF file based on the PERM
metamodel (Policy, Effect, Request, Matchers). These foundations describe the relationship between
resources and users.

Switching or upgrading the authorization mechanism is performed simply by modifying a configuration.
Custom access control models can be created by users by combining the available models. For example, one
can combine RBAC roles and ABAC attributes together inside one model and share one set of policy rules.

4.1.3 Casbin k8s-gatekeeper policies

Casbin can also be used for policy enforcement in Kubernetes, using the k8s-gatekeeper implementation.
K8s-gatekeeper is an admission webhook for k8s which Casbin to apply arbitrary user-defined access
control rules to prevent any operation on k8s which the administrator does not desire. It is a Validating
Admission Webhook, which means that it decides whether to accept or reject an admission request (an
HTTP request describing an operation on specified resources of k8s, such as creating or deleting a
deployment).

10 https://github.com/casbin/xacml-to-casbin-translator/tree/master

https://github.com/casbin/xacml-to-casbin-translator/tree/master

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

30

Figure 13: K8s-gatekeeper as a Validating Admission Webhook

4.1.3.1 Examples

For example, when somebody wants to create a deployment containing a pod running nginx, K8s will
generate an admission request, e.g.:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 selector:
 matchLabels:
 app: nginx
 replicas: 1
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.14.1
 ports:
 - containerPort: 80

This request will go through all the middleware shown in the picture, including K8s-gatekeeper. K8s-
gatekeeper can detect all the Casbin enforcers stored in k8s's etcd, created and maintained by the user (via
kubectl or a client). Each enforcer contains a Casbin model and a Casbin policy. The admission request will
be processed by every enforcer, one by one, and only by passing all enforcers can a request be accepted by
this K8s-gatekeeper.

For example, if for some reason the administrator wants to forbid the appearance of image 'nginx:1.14.1'
while allowing 'nginx:1.3.1', an enforcer containing the following rule and policy can be created:

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

31

Rule:
[request_definition]
r = obj

[policy_definition]
p = obj,eft

[policy_effect]
e = !some(where (p.eft == deny))

[matchers]
m = r.obj.Request.Namespace == "default" && r.obj.Request.Resource.Resource =="deployments" &&
\
access(r.obj.Request.Object.Object.Spec.Template.Spec.Containers , 0, "Image") == p.obj

Policy:
p, "nginx:1.13.1",allow
p, "nginx:1.14.1",deny

By creating an enforcer containing the model and policy above, the previous admission request will be
rejected by this enforcer. This means that k8s won't create this deployment.

4.1.3.2 Creating models and policies

When K8s-gatekeeper is authorizing a request, the input is the go object of the Admission Request. This
AdmissionReview object is defined by k8s’ official go API11. Therefore, for any model used by k8s-gatekeeper,
the [request definition] part of a model will always be in the following form:

[request_definition]
r = obj

Any name other than obj can be used, as long as it is consistent with the name used in the [matchers] part.

The ABAC feature of Casbin is used to write down rules. To overcome some limitations present in the
expression evaluator integrated in Casbin12, k8s-gatekeeper provides various extensions13 in the form of
“Casbin functions”14 that implement these features.

Using Casbin’s basic grammar, policies and models can be created. In K8s-gatekeeper, a Casbin model is
stored in a Kubernetes CRD called 'CasbinModel'. Similarlyοπ, a Casbin Policy is stored in a Kubernetes CRD,
called ‘CasbinPolicy’. The definitions of the respective model and policy CRDs are provided in the following
files: config/auth.casbin.org_casbinmodels.yaml15, config/auth.casbin.org_casbinpolicies.yaml16.

Once a CasbinModel and CasbinPolicy file is created, they can be deployed and put into effect using kubectl
apply -f <filename>.

Thus, the enforcement of access control rules in a Kubernetes cluster comes down to creating two relevant
objects: a CasbinModel and CasbinPolicy, which define the access model and policy. Several enforcers can
be created, meaning that several rules (in the form of model/policy file pairs) can co-exist at the same time.

11 https://pkg.go.dev/k8s.io/api/admission/v1#AdmissionReview
12 Specifically, there is no support for indexing in maps, arrays (slices) or array expansion.
13 https://github.com/casbin/k8s-gatekeeper#421-externsion-functions
14 https://casbin.org/docs/function/
15 https://github.com/casbin/k8s-gatekeeper/blob/master/config/auth.casbin.org_casbinmodels.yaml
16 https://github.com/casbin/k8s-gatekeeper/blob/master/config/auth.casbin.org_casbinpolicies.yaml

https://pkg.go.dev/k8s.io/api/admission/v1#AdmissionReview
https://github.com/casbin/k8s-gatekeeper#421-externsion-functions
https://casbin.org/docs/function/
https://github.com/casbin/k8s-gatekeeper/blob/master/config/auth.casbin.org_casbinmodels.yaml
https://github.com/casbin/k8s-gatekeeper/blob/master/config/auth.casbin.org_casbinpolicies.yaml

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

32

A request that causes a change in the cluster must satisfy all of the rules encoded in the different enforcers,
before it is persisted in etcd and applied to the cluster.

4.2 IMPLEMENTATION

4.2.1 Security and Privacy Manager

The respective models and policies deployed in NebulOuS clusters are provided by admin users via the
NebulOuS GUI. The GUI provides a text editor to write the respective models and policies, which are then
serialized in JSON form and sent to the Security and Privacy Manager – the latter is ultimately responsible
for deploying them to the cluster.

The NebulOuS Security and Privacy Manager component is implemented by a backend service written in
Java. This service consists of a client that communicates with the k8s-gatekeper policy engines deployed in
each k8s cluster, to offer the necessary functionality for Create/Read/Update/Delete policy operations. It
also consists of a PostgreSQL database that stores some pre-defined policies, along with additional
information necessary to deploy and manage policies in the NebulOuS-managed clusters (e.g. keep track of
which policies are deployed in which cluster, store kubeconfig files necessary for cluster access, etc.).

In general, there are two options to create/update Casbin models and policies using the k8s-gatekeeper
engine: either via the CLI (using kubectl) or using a k8s-gatekeeper client implementation. Since the
admission policies are managed by the NebulOuS control plane component, we wrote a Java client using
Java 17 and Quarkus 3.6.1.

For the first release, the Security and Privacy Manager supports CRUD operations for cluster admission rules
(Casbin models and policies), using the following methods:

• createOrUpdateCasbinModel (CasbinModelDTO casbinModelDTO)
• listCasbinModels (String namespace)
• deleteCasbinModel (String casbinModelName, String namespace)
• createOrUpdateCasbinPolicy (CasbinPolicyDTO casbinPolicyDTO)
• listCasbinPolicies (String namespace)
• deleteCasbinPolicy (String casbinPolicyName, String namespace)

The aforementioned methods can be found in the CasbinPolicyResource.java and
CasbinModelResource.java files. The DTO used in certain methods can be found in CasbinModelDTO.java,
and consists of the following fields:

public class CasbinModelDTO {

 private String name;

 private boolean enabled;

 private String modelText;

 private String namespace;

}

The createOrUpdateCasbinModel method is used to create a Casbin model to be applied by k8s-
gatekeeper in a specific k8s cluster, by specifying i) the model name, ii) whether the model is enabled, iii)

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

33

the actual Casbin model text (using Casbin’s PERM meta-model format) and iv) the k8s namespace in which
the model will be deployed. The same approach is followed by the createOrUpdateCasbinPolicy method.

The listCasbinModels and listCasbinPolicies methods are used to list all the Casbin models and
policies in a k8s cluster, under a particular namespace (by specifying this namespace).

The deleteCasbinModel and deleteCasbinPolicy methods are used to delete a Casbin mode or
policy, respectively, by specifying its name and the k8s namespace in which it is applied.

The way our implementation works is the following: when the k8s-gatekeeper policy engine is installed in
a k8s cluster, it installs Custom Resource Definitions (CRDs) for the Casbin policies and models. These CRDs
extend the default k8s API by enabling Casbin models and policies to be registered and viewed by k8s as
Custom Resources, allowing k8s to create respective Objects that can be accessed and manipulated using its
API. The Security and Privacy Manager component implements a client that communicates with the k8s API
(and, indirectly, with k8s-gatekeeper), allowing it to create such resources on a k8s cluster. After their
creation, the models and policies are consumed and enforced by the k8s-gatekeeper policy engine that is
installed in each cluster. The code for the Security and Privacy Manager component is available in the
project’s OpenDev repo.

Moreover, to resolve some issues with the original implementation of k8s-gatekeeper, we forked the code
and made some minor modifications in the configuration files17, since the default configurations resulted in
installation errors. In particular, our fork includes an installation script (createGatekeeper.sh) that
automatically sets up k8s-gatekeeper in each cluster as an internal webhook. In this script, we make a copy
of the managed cluster‘s kubeconfig file and create a configmap from this kubeconfig, The
webhook_deployment.yaml file was modified; we added the created configmap as a volume, which is then
mounted by the k8s-gatekeeper Deployment. Last, we modified the webhook_internal.yaml file which
defines a ValidatingWebhookConfiguration object, changing its default name from
"webhook.domain.local“ to “casbin-webhook-svc.default.svc“ so that it matches the default Certificate
Authority (CA). bundled with the default webhook configuration provided by the original repo. We have
also updated the README file to keep it up to date.

For the next release, we plan to extend our Security and Privacy Manager by adding support for: i) managing
policies in multiple k8s clusters and ii) deploying and managing network security policies, using Kubernetes
CNI plugins (such as Cilium).

The first extension aims to support NebulOuS’ vision of a Meta-OS for the cloud-edge continuum which can
deploy and manage applications over different resource pools. In this context, the Security and Privacy
Manager control-plane component needs to be able to support multiple applications by multiple users,
which are deployed in multiple clusters. With this extension, this single control plane component will be
able to keep track of the state of all the different policies deployed in each one of the managed clusters and
provide fine-grained security management by communicating with the admission controllers deployed in
each cluster.

The second extension aims at extending the range of security policies that can be deployed, leveraging the
Cilium CNI plugin. By integrating network policy management into our Security and Privacy Manager, a user
will be able to not only manage cluster access control (controlling what is being admitted to a cluster), but
also govern network security specifics. This greatly enriches the NebulOuS security capabilities by providing
fine-grained control over pod communication, e.g. isolating specific workloads from outside reachability,
directing traffic to specific endpoints, etc.

17 The refined code of the k8s-gatekeeper engine that is deployed in the NebulOuS clusters is available in the following k8s-gatekeeper repository.

https://github.com/npapageorgopoulos12/k8s-gatekeeper

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

34

5 CONCLUSIONS

In this deliverable, we presented the initial orchestration and deployment layer of the NebulOuS Meta-OS,
along with the relevant networking and security aspects. We outlined the general approach and delved into
the technical details for each aspect, providing the first version of the respective software components. The
components that are documented in this report are included in the first release of the platform.

We first focused on the deployment and management of distributed applications across the continuum from
cloud to edge. A particular emphasis was placed on resource pool management, detailing our support for
creating and provisioning the available resources in the cloud-edge continuum. We described our approach
for deploying microservice-based applications and presented our plans to accommodate serverless
workloads. We dived into the specifics of automatically establishing secure overlay networks over those
resources and concluded the report by unveiling our approach to define and enforce fine-grained security
policies in the provisioned clusters.

Our next steps include enhancements and improvements to the components described in the present report.
We are going to refine the Deployment Manager endpoints and Execution Adapter implementation as a
result of the integration testing with Overlay Network Manager and Optimizer components, with a focus on
better supporting Kubernetes cluster scaling actions and serverless support. The Overlay Network Manager
and overlay setup scripts will be refined to include support for peer-to-peer VPN topologies, making the
overlay more aligned with certain intra-cluster pod-to-pod communication patterns. Last, the Security and
Privacy Manager will be enhanced to also allow for the deployment of Kubernetes Network Policies that can
control pod traffic to secure the workloads from external actors, as well as offer support for the deployment
of pre-defined ABAC and RBAC policies that can be used as baked-in solutions to improve the clusters’
overall security posture.

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

35

6 REFERENCES

[1] ‘Kubernetes’. [Online]. Available: https://kubernetes.io/
[2] ‘ProActive from Activeeon’. Accessed: Feb. 20, 2024. [Online]. Available:
https://proactive.activeeon.com/
[3] ‘ow2-proactive/scheduling-abstraction-layer’. ProActive, Feb. 21, 2023. Accessed: Feb. 20, 2024.
[Online]. Available: https://github.com/ow2-proactive/scheduling-abstraction-layer
[4] ‘JSON’. Accessed: Feb. 20, 2024. [Online]. Available: https://www.json.org/json-en.html
[5] H. Abbas et al., ‘Security Assessment and Evaluation of VPNs: A Comprehensive Survey’, ACM
Computing Surveys, vol. 55, no. 13s, pp. 1–47, 2023.
[6] ‘Cloud Compute Capacity - Amazon EC2 - AWS’, Amazon Web Services, Inc. Accessed: Feb. 20,
2024. [Online]. Available: https://aws.amazon.com/ec2/
[7] ‘Open Source Cloud Computing Infrastructure’, OpenStack. Accessed: Feb. 20, 2024. [Online].
Available: https://www.openstack.org/
[8] ‘Explore VMware Cloud Solutions’, VMware. Accessed: Feb. 20, 2024. [Online]. Available:
https://www.vmware.com/cloud-solutions.html
[9] ‘Home’, Docker Documentation. Accessed: Feb. 20, 2024. [Online]. Available:
https://docs.docker.com/
[10] ‘Home - Knative’. Accessed: Jan. 26, 2024. [Online]. Available: https://knative.dev/docs/
[11] ‘Virtual Private Cloud - an overview | ScienceDirect Topics’. Accessed: Jan. 26, 2024. [Online].
Available: https://www.sciencedirect.com/topics/computer-science/virtual-private-cloud
[12] ‘Private Cloud - Amazon Virtual Private Cloud (VPC) - AWS’, Amazon Web Services, Inc. Accessed:
Jan. 26, 2024. [Online]. Available: https://aws.amazon.com/vpc/
[13] ‘Google Virtual Private Cloud (VPC)’, Google Cloud. Accessed: Jan. 26, 2024. [Online]. Available:
https://cloud.google.com/vpc
[14] J. A. Donenfeld, ‘Wireguard: next generation kernel network tunnel.’, presented at the NDSS, 2017,
pp. 1–12.
[15] S. Mackey, I. Mihov, A. Nosenko, F. Vega, and Y. Cheng, ‘A performance comparison of WireGuard
and OpenVPN’, presented at the Proceedings of the Tenth ACM Conference on data and application
security and privacy, 2020, pp. 162–164.
[16] T. Perrin, ‘The noise protocol framework’, PowerPoint Presentation, 2018.
[17] S. Ho, J. Protzenko, A. Bichhawat, and K. Bhargavan, ‘Noise: A Library of Verified High-Performance
Secure Channel Protocol Implementations’, in 2022 IEEE Symposium on Security and Privacy (SP), Feb.
2022, pp. 107–124. doi: 10.1109/SP46214.2022.9833621.
[18] ‘Cilium - Cloud Native, eBPF-based Networking, Observability, and Security’. Accessed: Jan. 26,
2024. [Online]. Available: https://cilium.io
[19] ‘Quarkus - Supersonic Subatomic Java’. Accessed: Jan. 26, 2024. [Online]. Available:
https://quarkus.io/
[20] P. G. D. Group, ‘PostgreSQL’, PostgreSQL. Accessed: Jan. 26, 2024. [Online]. Available:
https://www.postgresql.org/
[21] nebulous, ‘overlay-network-manager’, OpenDev: Free Software Needs Free Tools. Accessed: Jan.
26, 2024. [Online]. Available: https://opendev.org/nebulous/overlay-network-manager
[22] ‘Kyverno’. Accessed: Jan. 26, 2024. [Online]. Available: https://kyverno.io/
[23] ‘open-policy-agent/gatekeeper’. Open Policy Agent, Jan. 26, 2024. Accessed: Jan. 26, 2024.
[Online]. Available: https://github.com/open-policy-agent/gatekeeper
[24] ‘Easier & Faster Kubernetes Policies | jsPolicy’. Accessed: Jan. 26, 2024. [Online]. Available:
https://www.jspolicy.com/
[25] ‘Kubewarden: Kubernetes Dynamic Admission at your fingertips’. Accessed: Jan. 26, 2024.
[Online]. Available: https://www.kubewarden.io/
[26] ‘casbin/k8s-gatekeeper’. Casbin, Oct. 26, 2023. Accessed: Jan. 26, 2024. [Online]. Available:
https://github.com/casbin/k8s-gatekeeper
[27] ‘Casbin · An authorization library that supports access control models like ACL, RBAC, ABAC |
Casbin’. Accessed: Jan. 26, 2024. [Online]. Available: https://casbin.org/

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

36

 CONSORTIUM

www.nebulouscloud.eu
info@nebulouscloud.eu
DX.X [Title]

D4.1 [INITIAL ORCHESTRATION LAYER &
SECURITY-ENABLED OVERLAY NETWORK]

]DEPLOYMENT]

37

A META OPERATING SYSTEM FOR BROKERING
HYPER-DISTRIBUTED APPLICATIONS ON

CLOUD COMPUTING CONTINUUMS

