

D3.1

INITIAL NEBULOUS BROKERAGE &
RESOURCE MANAGEMENT

21/02/2024

A META OPERATING SYSTEM FOR BROKERING
HYPER-DISTRIBUTED APPLICATIONS ON

CLOUD COMPUTING CONTINUUMS

Ref. Ares(2024)1347751 - 21/02/2024

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

1

Grant Agreement No. 101070516

Project Acronym/ Name NebulOuS - A META OPERATING SYSTEM FOR BROKERING HYPER
DISTRIBUTED APPLICATIONS ON CLOUD COMPUTINGCONTINUUMS

Topic HORIZON-CL4-2021-DATA-01-05

Type of action HORIZON-RIA

Service CNECT/E/04

Duration 36 months (starting date 1 September 2022)

Deliverable title Initial NebulOuS Brokerage & Resource Management

Deliverable number D3.1

Deliverable version 2.0

Contractual date of delivery 31 December 2023

Actual date of delivery 21 February 2024

Nature of deliverable Other

Dissemination level Public

Work Package WP3

Deliverable lead University of Oslo

Author(s) Geir Horn (Editor, University of Oslo),

Abstract This deliverable is the textual enclosure to the resource management
software produced for the first release of the NebulOuS platform. It
intends to provide an overview and background of the implementation
emphasising on the theoretical foundations and architecture of the
software. It therefore serves as a necessary first introduction for a user
of NebulOuS leaving the details and implementational details to the
open-source code itself and the software wiki.

Keywords
Graphical User Interface, Resource Brokerage, Service ranking, Service
Level Agreement, Optimisation, Workflow management

DISCLAIMER

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and
do not necessarily reflect those of the European Union or Directorate-General for Communications
Networks, Content and Technology. Neither the European Union nor the granting authority can be held
responsible for them.

COPYRIGHT

© NebulOuS Consortium, 2024

This document may not be copied, reproduced, or modified in whole or in part for any purpose without
written permission from the NebulOuS Consortium. In addition to such written permission to copy,
reproduce, or modify this document in whole or part, an acknowledgement of the authors of the document
and all applicable portions of the copyright notice must be clearly referenced.

All rights reserved.

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

2

CONTRIBUTORS

Name Organization

Geir Horn University of Oslo

Marta Różańska University of Oslo

Rudolf Schlatte University of Oslo

Yiannis Verginadis ICCS

Dimitris Apostolou ICCS

Gregory Koronakos ICCS

Fotis Paraskevopoulos EXZ

Simeon Veloudis SEERC

Ferran Diego Andilla Telefónica

PEER REVIEWERS

Name Organization

Fotis Paraskevopoulos EXZ

Mario Reyes Eurecat

REVISION HISTORY

Version Date Owner Author(s) Comments

1.0 04/02/2024 UiO Geir Horn Integration of contributions

1.1 10/02/2024 EXZ Fotis Paraskevopoulos Review

2.0 21/02/2024 UiO Geir Horn Finalisation

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

3

TABLE OF ABBREVIATIONS AND ACRONYMS

Abbreviation/Acronym Open form

AHP Analytic Hierarchy Process

AMPL A Mathematical Programming Language

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

ASET Adaptive Scheduling of Edge Tasks

BQA Brokerage Quality Assurance

CAMEL Cloud Application Modelling and Execution Language

CC Cloud Continuum

CLI Command-Line Interface

CMS Content Management System

CPU Central Processing Unit

DAG Directed Acyclic Graph

DEA Data Envelopment Analysis

DRL Deep Reinforcement Learning

DSL Domain Specific Language

GUI Graphical User Interface

IO Input-Output

IoT Internet of Things

JSON JavaScript Object Notation

MAPE-K Monitor-Analyse-Plan-Execute with Knowledge

MCDM Multiple-Criteria Decision Making

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

4

Abbreviation/Acronym Open form

MDS Metadata Schema

MOP Multi-Objective programming

OM Ontology Module

ORM Object-Relational Mapping

OWL Web Ontology Language

QoS Quality of Service

RAM Random-Access Memory

RBAC Role-Based Access Control

REST REpresentational State Transfer

RL Reinforcement learning

SAL Scheduling Abstraction Layer

SLA Service Level Agreement

SLO Service Level Objective

SMI Service Measurement Index

SOA Service Oriented Architecture

SPA Single Page Application

UI User Interface

UX User Experience

YAML Yet Another Markup Language [deprecated]

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

5

TABLE OF CONTENTS

EXECUTIVE SUMMARY ... 8

1 INTRODUCTION .. 9

2 GRAPHICAL USER INTERFACE ... 11

2.1 Prototyping and Implementation Architecture ... 11

2.2 User Interface Walkthrough .. 12

2.2.1 User Management ... 12

2.3 Controller ... 17

2.4 Future steps ... 17

3 CLOUD CONTINUUM BROKERAGE .. 18

3.1 Purpose .. 18

3.2 Internal architecture & Interfaces .. 18

3.3 Implementation .. 21

3.4 Future steps .. 27

4 BROKERAGE QUALITY ASSURANCE ... 27

4.1 Introduction.. 27

4.2 Internal Architecture and Interfaces .. 28

4.3 Implementation .. 31

4.4 Determining Compliance .. 32

4.5 State-of-the-art and Beyond ... 32

4.5.1 BQA Mechanism Extensions ... 32

5 OPTIMISER ... 33

5.1 Introduction.. 33

5.2 Internal Architecture and interfaces .. 33

5.3 Implementation ... 37

5.4 State-of-the-art and beyond ... 38

6 WORKFLOW EXECUTION .. 39

6.1 Introduction.. 39

6.2 Approach ... 39

7 CONCLUSIONS ... 42

8 REFERENCES .. 43

9 APPENDIX: NEBULOUS CC ATTRIBUTE MODEL ... 46

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

6

LIST OF FIGURES

Figure 1 The component interaction diagram showing the components of the NebulOuS platform with the
components developed in WP3 and introduced in this deliverable marked in green.10

Figure 2 Figure 1 GUI Architecture .. 12

Figure 3 UI Login ... 13

Figure 4 Application List .. 13

Figure 5 Resources Manager.. 14

Figure 6 The KubeVela application model view .. 15

Figure 7 Resource Selection ... 15

Figure 8 The step defining the metric model and the problem constraints. ... 16

Figure 9 Expression Editor - defining utility functions ... 17

Figure 10. NebulOus CC Brokerage Architecture .. 19

Figure 11. Methodology .. 21

Figure 12 NebulOus CC Attribute Model ... 22

Figure 13: Criteria Selection via Broker component... 25

Figure 14: Preference Elicitation via Broker component ... 26

Figure 15: BQA mechanism – internal structure and external interactions .. 29

Figure 16: Ontologically capturing application constraints and meta-constraints .. 31

Figure 17 The architecture of the Optimiser module whose components are shown in white interacting with other
NebulOuS components indicated in grey. ... 35

Figure 18 The detailed architecture of the Solver module with the interaction and Advanced Message Queuing
Protocol (AMQP) topics used to exchange messages with the other components of the NebulOuS system.
 ………..36

Figure 19 Simple workflow example ... 40

Figure 20 Request scheduling for optimal resource allocation at real time .. 41

Figure 21 Adaptive Scheduling of Edge Tasks (ASET) workflow ... 41

Figure 22 Percentage of successful queries over time for ML task with users arriving in real-world pattern 42

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

7

 LIST OF TABLES

Table 1. Interface Selected Criteria ... 19

Table 2. User Preferences .. 20

Table 3. Interface Output example .. 20

Table 4: Data for ten fog nodes and five criteria .. 26

Table 5: Performance scores and Ranking of the ten fog nodes ... 27

Table 1: Meta-constraint Primer - format of interaction (example) .. 29

Table 2: Application Constraint Feeder - format of interaction (example) .. 30

Table 3: BQA mechanism - format of interaction (example).. 30

Table 4: BQA mechanism - format of interaction (example) .. 31

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

8

EXECUTIVE SUMMARY

This deliverable is the textual enclosure to the resource management software produced for the first release
of the NebulOuS platform. It intends to provide an overview and background of the implementation
emphasising on the theoretical foundations and architecture of the software. It therefore serves as a
necessary first introduction for a user of NebulOuS leaving the details and implementational details to the
open-source code itself and the software wiki.

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

9

1 INTRODUCTION

This report is the textual enclosure to software deliverable D3.1 Initial NebulOuS Brokerage & Resource
Management, category “other”, and it introduces the software developed in NebulOuS Work Package 3,
Autonomous Deployments on Ad-hoc Cross-Clouds and Fog. The aim is to give a high-level background to
the implementation of the relevant research results, leaving the details about the code to the development
wiki where the detailed interfaces and instructions for interacting with the NebulOuS code base are
documented.

The main software modules of the NebulOuS platform and the related architecture were discussed in the
deliverable D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS. The interaction
diagram for the information flow among the platform components is shown in Figure 1, with the modules
discussed in this deliverable highlighted. The structure of the deliverable follows the user application’s path
through the scope of WP3 starting with the user interface where the topological component model of the
application is defined with the corresponding model for the metrics to monitor and the utility to be
maximized by the running application. The resources available to the application is aggregated by the
Clod/Fog Service broker, that provides a ranked list of resources applicable to use. The resources selected
are validated against the operational constraints set for the application, leading to the definition of the
Service Level Agreements (SLAs) to be enforced for the application deployment and reconfiguration.

The deployed application will be constantly monitored and optimised for the current execution context, and
whenever a Service Level Objective (SLO) is violated, the Optimiser module will seek for a better application
configuration, and the Optimiser module is documented as the last module covered by this deliverable.
Workflow applications are special in the sense that they consist of a set of tasks with data dependent input
constraints making the workflow application execution a scheduling problem. Workflow execution is
therefore treated as a special type of application deployed on and execution infrastructure consisting of a
scheduler and a set of workers on which the workflow application tasks will be executed, and where the
NebulOuS platform is responsible for the provision of the optimised number of workers to be used by the
workflow scheduler. The initial results on workflow scheduling closes this report.

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

10

Figure 1: The component interaction diagram showing the components of the NebulOuS platform with the components developed in WP3 and introduced in this deliverable marked in
green.

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

11

2 GRAPHICAL USER INTERFACE

To enhance the user's capacity for providing detailed information about the application being deployed,
while also addressing necessary application and resource constraints, we have developed a Graphical User
Interface (GUI) which simplifies the complexity that stems from deploying an application, describing
application deployment properties, monitoring metrics and constraints, and resources available.

Central to the GUI are two primary components: the User Interface (UI) itself, which serves as the point of
interaction for the users, and the application's controller (Controller), which contains the application logic.
Together, these components create a cohesive and user-friendly environment for application deployment
and management.

In the early stages of this prototype, we have focused on integrating key UI requirements as outlined in D2.1
Requirements and Conceptual Architecture of the NebulOus Meta-OS. These requirements encompass
several critical areas:

• Configuration: We have empowered users to comprehensively define all aspects of their application
using the UI, ensuring a seamless deployment process.

• Monitoring: The UI provides users with the capability to track their applications, offering insights
into deployment status and operational metrics.

• Security: The UI segregates users based on their organizational affiliations through a Role-Based
Access Control (RBAC) backend. Within this framework, we distinguish between two main roles:
the organization administrator and the organization editor.

• Resource Management: Resource allocation and management are streamlined through an
integration with the Scheduling Abstraction Layer (SAL). This integration allows organization
administrators to register and manage resources effectively. An application editor is able to use
these resources when defining the application.

In the subsequent sections, we will delve deeper into each of these areas. A detailed examination will be
provided, along with a comprehensive walkthrough of the current version of the GUI. This will encompass
both technical aspects and user interaction elements, illustrating how they collectively contribute to an
effective and user-centric application deployment process.

2.1 PROTOTYPING AND IMPLEMENTATION ARCHITECTURE

In the initial stages of the design and implementation of the user interface (UI), we followed a structured
and strategic approach. We used Figma1 to create realistic wireframes and refine each aspect of the
application's design from the outset. By using Figma, we were able to craft a detailed and accurate
representation of the intended UI layout and functionality.

Building upon these wireframes, our approach involved crafting prototypes that served as functional
representations of the UI. This method was particularly effective in communicating the envisioned UI to
users and stakeholders. It enabled us to gather essential feedback early in the design process, ensuring that
the UI was aligned with user needs and expectations. Once we received the necessary feedback, we
continued in designing the architecture of the UI, and the tools and methods used for its implementation.

1 https://www.figma.com

https://www.figma.com/

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

12

In keeping with the standards of modern application
development, we opted to implement a Single Page Application
(SPA). This decision was driven by the need for a responsive,
dynamic, and user-friendly interface. The SPA was developed
using the vue3.js2 framework, chosen for its robustness, scalability,
and suitability for creating reactive user interfaces.

Furthermore, for the controller, we opted for a powerful and
efficient backend solution which could be use as the backbone of
the component. We used the Apostrophe Content Management
System (CMS3) as our backend framework, leveraging its advanced
features such as Object-Relational Mapping (ORM) and
Application Programming Interface (API) development tools.
These features provided us with the flexibility and capability
needed to build a robust and scalable UI.

Lastly, our communication with the NebulOuS platform was
established using asynchronous communication, utilizing the
exn-nodejs-library. This approach ensured seamless and efficient
data exchange, crucial for maintaining the responsiveness and
reliability of the UI.

2.2 USER INTERFACE WALKTHROUGH

In this section we will describe and go over the core features of the UI prototype.

2.2.1 User Management

There are three essential roles regarding the users that interact with the UI.

1. The NebulOuS administrator (superadmin): Has access to the ApostropheCMS backend and is able
to globally manage all data aspects of the UI.

2. The organization administrator (admin): This user is the bootstrapped by the superadmin, and
belongs to an organization. The administrator can manage users (editors) within their organization,
as well as manage Resources (SAL) which are available during the application creation process.

3. The organization user (editor): This user is created by the admin, they belong to a single
organization, they are allowed to manage applications, as well as modify their own profile through
the UI.

Once the admin user is onboarded, the admin can login into the UI and create the users of the organizations.

2 https://vuejs.org

3 https://v3.docs.apostrophecms.org

Figure 2: Figure 1 GUI Architecture

https://vuejs.org/
https://v3.docs.apostrophecms.org/

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

13

Figure 3: UI Login

Once logged in the user is presented with the application already created within the same organization.
From this screen the user can review the deployment status of applications, edit or create a new application.

Figure 4: Application List

Before creating an application, an admin needs to register the available resources for their organization,
which will be used during application deployment.

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

14

Figure 5: Resources Manager

Once the available resources have been set a user can then create an application to be deployed. In order to
assist the user during the provision of application data, we opted for a step-wizard like interface, validating
the information provided by the user at each step, and cross-checking that variables, metrics, and functions
are consistent at the data level.

Step 1 - Application Description

Here we provide a deployable KubeVela file and provide the user with the ability to define which sections of
the KubeVela file, can be used and altered during the optimization process.

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

15

Figure 6: The KubeVela application model view

Step 2 – Resource Selection

Here the user can determine which resources, that of the available resources for the organization can be used
during the deployment and monitoring of the application.

Figure 7: Resource Selection

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

16

Step 3 – Metric Model & SLO Definition

During this step we provide the user with the necessary UI functionality to fully describe the metrics that
are available for their application, and how these will be monitored. Furthermore, we allow the user to
define SLOs by specifying constrains on these metrics. The input during this process will be used to generate
the Metric Model Domain Specific Language (DSL) by the controller of the UI.

Figure 8: The step defining the metric model and the problem constraints.

Step 4 – Expression Editor

This is the last step of the application definition process, where the user is able to input utility functions
using math syntax. The UI extracts the constants used in the formula and allows the user to declaratively
specify the metrics and variables that the constant refers to. The value can be a KubeVela path defined in
Step 1, or metric defined in Step 3, and finally any other pre-defined Utility Function, allowing for extensible
cascading.

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

17

Figure 9: Expression Editor - defining utility functions

At each step of the process the UI through the controller, performs validation on the data input by the user,
to ensure that all information is coherent, and be used during the deployment of the application. The user
can save the application definition and perform the deployment of the application through the application
list. Finally, once the application has been properly defined and saved, the controller is responsible for a
sequence of event described in the next section.

2.3 CONTROLLER

As aforementioned the controller component contains the logic which complemented the User Interface.
The UI communicates with the controller via a RESTful API, and the functionality in this prototype includes.

• Data Validation: The controller provides the UI with a validation layers. Here we parse the KubeVela
file, along with all mathematical expressions defined through the application, and perform variable,
metric, and naming validation, in order to ensure that once the information for the application is
provided this can be used by the rest of the components.

• DSL Generation: Once the application is by the user, the controller layer communicates via
asynchronous messaging to the rest of the components that a new application has been defined,
along with two DSLs, one is the metric model in YAML format and the second is a full application
description in JSON format.

• API Interface The component also allows external systems to perform actions in the same manner
that a user would be able to do through the UI. The is to allow for example automated flows, or
systemic calls related to the application.

2.4 FUTURE STEPS

Our efforts so far have laid a solid foundation, but several key developments are planned to further enhance
the system's capabilities and user experience. In the next version of the UI we will implement push-based
real-time monitoring, using a time-series database and exchanging application data in the form of
asynchronous messages. Furthermore, we will introduce and implement ontology based (SLO) validation,
in order to ensure that user defined SLO constraints are applicable and possible within the context of the
application description.

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

18

We also plan to extend the API Interface to cover all system functionalities. And this will form the basis of a
Command-Line Interface (CLI) compatible with various *nix systems so that users can interact with the
NebulOuS through the command line. This will cater to a broader range of users, especially those who prefer
or require command-line access, thereby enhancing the system’s accessibility.

Finally, the User Experience (UX) of the UI will undergo continuous refinement, particularly in response to
feedback from initial user trials. This iterative process will ensure that the UI is not only functional but also
intuitive and user-friendly.

3 CLOUD CONTINUUM BROKERAGE

3.1 PURPOSE

As the complexity of the Cloud Continuum (CC) increases, the role of brokers in the cloud continuum
ecosystems becomes increasingly important. With the increase of cloud technologies adoption, the number
of services offered in the cloud market as well as the availability of cloud continuum computing resources
also raises. Thus, the evaluation of the available cloud continuum computing resources can be a
cumbersome task for the user due to the plethora of the offered services in the cloud market, the
heterogeneity of edge and fog devices, and the lack of standard mechanisms that allow their comparison
against user requirements. In that respect, there is an increasing need for user guidance during the
computing resource selection process. Cloud brokers that mediate between the user and the cloud
continuum ecosystem assist the user in filtering out not performing or not suitable resources and selecting
the most appropriate resource.

The multidimensional nature of cloud services involves several factors for their evaluation, such as
performance, availability, security, etc. A performance evaluation technique that is adequate to handle
multiple factors and aggregate them to a score for each assessed entity is the Data Envelopment Analysis
(DEA) [1], which is one of the foundational techniques in Operations Research [2]. In the context of
Nebulous, we integrate DEA with Multiple-Criteria Decision Making (MCDM) methods to evaluate the CC
nodes. In particular, we utilize DEA and Multi-Objective Programming (MOP) to derive the ranking of the
fog nodes. Also, we incorporate the users’ preferences with respect to the relative importance of the
evaluation criteria. We introduce these value judgments into the optimization models as weight restrictions
[3]. Beyond the incorporation of the relative importance of the criteria, ordinal information about the fog
nodes can be also incorporated into the assessment. In the context of the proposed approach that integrates
DEA with MOP, this is implemented by including a categorization of some of the alternative fog nodes into
the evaluation models. The categorization is obtained from the users.

3.2 INTERNAL ARCHITECTURE & INTERFACES

The architecture of the Broker is shown in Figure 10. The CC nodes fetcher sub-component retrieves
available cloud continuum nodes from the NebulOuS Resource Discovery component. The Criteria selection
sub-component is responsible for managing, displaying to the user and allowing the selection of the criteria
according to which the CC nodes will be evaluated. The Preference elicitation sub-component allows the
user to define preferences; this is an optional step. Finally, the Solver evaluates the available CC nodes and
generates a ranked list of CC nodes, taking also into account any user preferences.

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

19

Figure 10: NebulOus CC Brokerage Architecture

CC Brokerage makes use of interfaces for persisting the selected criteria (Table 1), user preferences (Table 2),
and generated output (Table 3).

Table 1. Interface Selected Criteria

JSON

{
"fog_node_candidates_criteria":
 [
 {
 "name": "Memory Speed",
 "type": "Quantitative",
 "measure": "MHz"
 },
 {
 "name": "Cost",
 "type": "Quantitative",
 "measure": "Euro"
 },
 {
 "name": "Security",
 "type": "Qualitative",
 "measure": "Ordinal Scale 1-3"
 }
]
}

The attribute type in JSON provided in Table 2 reflects the preference of a user over a pair of criteria, e.g.,
“ge” denotes greater than or equal to. In addition, the attribute constraint includes the information about
the magnitude of preference between two criteria and the corresponding constraint that will be used in the

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

20

optimization models. Except from relative constraints between two criteria, immediate ones can be given to
bound (from above or below) the weight of a criterion in the optimization process.

Table 2. User Preferences

JSON Example

{
 "fog_node_user_preferences":
 [
 {
 "type": "ge",
 "constraint": [1, -1, 0, 0, 0]
 },
 {
 "type": "ge",
 "constraint": [1, 0, 0, 0, -1.2]
 },
 {
 "type": "ge",
 "constraint": [0.5, 0, 0, 0, 0]
 }
]
}

Table 3. Interface Output example

JSON Example

{
"fog_node_candidates":
 [
 {
 "name": "Fog Node Candidate 1",
 "score": 63.89,
 "ranking": 4
 },
….
…
{
 "name":"Fog Node Candidate 10",
 "score":58.16,
 "ranking":7
 }
]
}

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

21

3.3 IMPLEMENTATION

For the NebulOuS CC Brokerage to be capable of comparing different CC resources and providing a ranked
list of offerings, an appropriate model for describing their comparable characteristics is imperative.

Figure 11: Methodology

We employ the methodology shown in Figure 11 to implement CC Brokerage. The first step is to fetch all
available CC nodes (resources). Next, the user can select among NebulOus CC Attribute model the ones
which are relevant to be used as criteria for the evaluation of available nodes. Finally, the user can
(optionally) declare his or her preferences, and the component generates a ranked list of available CC nodes.

The NebulOuS Cloud/Fog Service Broker to be capable of comparing different cloud continuum resources
and providing a ranked list of offerings, an appropriate model for describing their comparable
characteristics is imperative. The ranked list of available Fog and Edge resources will be used by NebulOuS
for creating ad-hoc cloud continuums dedicated to host application components instances. The model
should encapsulate all the necessary user preference indicators that will allow for comparisons between
cloud continuum resources. The model is presented in Figure 3 and essentially involves the reuse, extension
and proper adjustment of mainly the Service Measurement Index (SMI) [4], and the Broker@Cloud
preferences model [5], which have been introduced for capturing preferences over cloud services. Both
involve a hierarchical framework that divide the measurement space into 7 and top-level categories,
respectively, that are further refined by 3 or more attributes as seen below. The NebulOuS preferences model
is depicted using a mind map notation to provide a good overview of the attributes along with their
hierarchy involved.

All the attributes are analysed in the Appendix, providing indications on the updates/adjustments provided
over SMI and Broker@Cloud models.

We employ DEA to obtain a performance score for each fog node based on the aggregation of the criteria.
DEA is a data driven technique for the performance evaluation of a set of comparable entities with several
attributes (criteria) assumed as inputs and outputs, i.e., each entity converts multiple inputs to multiple
outputs. The composite score 𝐹𝑁_𝑆𝑐𝑜𝑟𝑒𝑗 for the specific fog node j (j=1,…,n) derives as the weighted sum

𝐹𝑁_𝑆𝑐𝑜𝑟𝑒𝑗 = 𝑢𝑌𝑗, where 𝑌𝑗 = (𝑌𝑗1, 𝑌𝑗2, … , 𝑌𝑗𝑚)
𝛵

 denotes the vector of the values of the m criteria and 𝑢 =

(𝑢1, 𝑢2, … , 𝑢𝑚) denotes the vector of the variables used as weights.

max 𝐹𝑁_𝑆𝑐𝑜𝑟𝑒𝑗0
= 𝑢𝑌𝑗0

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑢𝑌𝑗 ≤ 1, 𝑗 = 1, … , 𝑛

𝑢 ≥ 0

(1)

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

22

Figure 12: NebulOus CC Attribute Model

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

23

Model (1) is a linear program that is solved for one fog node at a time to maximize its score. We note that for
some criteria, denoted by set UC, lower values are preferred (the less the better) as higher values correspond
to worser performance. For instance, for the criterion Cost of each fog node. The values (𝑌̂) of such criteria
are inverted to exhibit positive contribution [6].

𝑌𝑘 = 1 𝑌̂𝑞⁄ , q ∈ UC; |UC| ≤ m (2)

Apart from deriving a score for each fog node, a ranking of them is required to identify the best ones [7]. As
the conventional DEA models, CCR [8] and BCC [9], are solved for each evaluated entity, they yield different
weighting schemes for each fog node that allow the maximization of their score. Therefore, we integrate
MOP into our approach to obtain a common weighting scheme to aggregate the criteria of the fog nodes and
determine their ranking. MOP and DEA are similar in structure, the relationships between them are explored
[10].

As the score of each fog node is calculated by model (1) separately from the others, the optimal multipliers
u* vary from plan to plan. The different fog node-specific weighting schemes derived by model (1) allow each
fog node to achieve the highest possible score (𝐹𝑁score

∗). A common basis for comparisons and ranking can
be established by finding a common set of multipliers u that will be used to obtain the score of each fog node.
For this purpose, we formulate the following MOP model where the performance of each fog
node (𝐹𝑁_𝑆𝑐𝑜𝑟𝑒𝑗 = 𝑢𝑌𝑗) is treated as a distinct objective.

max 𝐹𝑁𝑆𝑐𝑜𝑟𝑒1
= 𝑢𝑌1

 ⁝

max 𝐹𝑁𝑆𝑐𝑜𝑟𝑒𝑛
= 𝑢𝑌𝑛

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑢𝑌𝑗 ≤ FNscore𝑗
∗ , 𝑗 = 1, … , 𝑛

𝑢 ≥ 0

(3)

Several methods have been developed for solving multi-objective programming problems [11]. We use the
scalarization method to convert MOP (3) to a single objective program. In particular, we utilize the method
of the global criterion [12], which is a no-preference method, i.e., no priority is assigned to the objectives.
However, a variant of this method that incorporates preference information from the users can be
straightforwardly applied alternatively. In global criterion method, the distance between some reference
points and the feasible objective region is minimized. We select the reference point RP = (𝐹𝑁score1

∗ ,…,
𝐹𝑁scoren

∗) that contains the highest possible score attained by each fog node using model (1). The distance
between the reference point and the feasible objective region can be measured by employing different
metrics as the following Lp problem exhibits.

𝑚𝑖𝑛 (∑ |𝐹𝑁score𝑗
∗ − 𝑢𝑌𝑗|

𝑝
𝑛

𝑗=1

)

1/𝑝

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑢𝑌𝑗 ≤ FNscore𝑗
∗ , 𝑗 = 1, … , 𝑛

𝑢 ≥ 0

(4)

We scalarize MOP (3) via the method of the global criterion by employing the L1 metric, i.e., p=1 in model (4).

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

24

𝑚𝑖𝑛 ∑(FNscore𝑗
∗ − 𝑢𝑌𝑗)

𝑛

𝑗=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑢𝑌𝑗 ≤ FNscore𝑗
∗ , 𝑗 = 1, … , 𝑛

𝑢 ≥ 0

(5)

The single objective model (5), also known as the min-sum method, is solved only once and simultaneously
minimizes the sum of the deviations (L1 metric) for the fog nodes between the performance that they can
achieve using the common multipliers and the highest one (FNscore

∗). In other words, the aim of model (5)
is to maximize as much as possible the scores of all fog nodes under a common weighting scheme. Model (5)
is straightforwardly transformed to model (6) by introducing the deviation variables (𝑑𝑗 = FNscore𝑗

∗ − 𝑢𝑌𝑗)
at the constraints and replacing the corresponding terms in the objective function.

𝑚𝑖𝑛 ∑ 𝑑𝑗

𝑛

𝑗=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑢𝑌𝑗 + 𝑑𝑗 = 𝐹𝑁score𝑗
∗ , 𝑗 = 1, … , 𝑛

𝑢 ≥ 0, 𝑑𝑗 ≥ 0

(6)

Models (5) and (6) are equivalent and provide higher discrimination than model (1) regarding the
performance of the evaluated fog nodes. Also, these models allow for ranking since all fog nodes collectively
and equally participate to the generation of the optimal set of weights used for the calculation of their scores.
The optimal solution of models (5) and (6) is Pareto optimal to MOP (3).

The priorities of the users over the criteria can be also incorporated into the proposed evaluation models by
translating them into weight restrictions [13]. This can be implemented either by including the users’
explicit preference over two criteria, e.g., 𝑢1 ≥ 2𝑢2 or by utilizing Analytic Hierarchy Process (AHP) to elicit
the users’ preferences [14]. In particular, the users’ priorities are used to obtain assurance region constraints
that restrain the weights (u) of the selected criteria.

The explicit expression of user’s priorities over a pair of criteria results in lower and/or upper bounds
(𝐿𝑖𝑗 , 𝑈𝑖𝑗) that limit the weight assigned to each criterion. Specifically, for every pair of criteria (i, j) the ratio
of their weights (ui/uj) is bounded as follows.

𝐿𝑖𝑗 ≤ 𝑢𝑖/𝑢𝑗 ≤ 𝑈𝑖𝑗 (7)

We denote the whole set of weight restrictions with Ω, 𝑢 ∈ 𝛺. The set Ω generally denotes restrictions
imposed on the weights that limit the freedom of the evaluated fog nodes in selecting the optimal weights
to maximize their scores [15].

Our approach is illustrated by generating a data set with ten fog nodes using five criteria from the available
ones as depicted in Figure 13.

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

25

Figure 13: Criteria Selection via Broker component

Table 4 exhibits the profile of the ten fog nodes.

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

26

Table 4. Data for ten fog nodes and five criteria

 Number of
CPUs (YA)

Memory Size
(YB)

Solid State Drive
(YC)

Storage Throughput
(YD)

Cost (YE)

Fog Node Candidate 1 2 4 150 1500 419

Fog Node Candidate 2 8 6 200 4000 553

Fog Node Candidate 3 16 32 300 5600 1152

Fog Node Candidate 4 4 6 500 3300 673

Fog Node Candidate 5 32 16 600 6000 1853

Fog Node Candidate 6 44 16 2100 4800 2985

Fog Node Candidate 7 4 8 1500 9500 972

Fog Node Candidate 8 12 8 2500 11000 1756

Fog Node Candidate 9 48 32 5000 5500 3738

Fog Node Candidate 10 12 16 3000 12000 2348

In the context of the illustrative example the user conducting the assessment expressed the following
priorities over the criteria: 𝛺 = {𝑢1 ≥ 𝑢2, 𝑢1 ≥ 1.2 𝑢5 , 𝑢2 ≥ 𝑢4, 𝑢3 ≥ 𝑢4 }. A screenshot of these
restrictions formed by the Broker component is shown in Figure 14.

Figure 14: Preference Elicitation via Broker component

We incorporate into the evaluation models (1) and (6) the weight restrictions Ω to carry out the assessment
of the 10 fog nodes. We notice that prior to applying the models, the criterion Cost is converted to exhibit
positive contribution using formula (2). The highest possible score attained by each fog node using model
(1) with Ω is reported in the second column of Table 5. The scores and the ranking derived from model (6)
with Ω are reported in columns 3-4 of Table 5. These are calculated using a common weighting scheme for
all fog nodes.

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

27

Table 5. Performance scores and Ranking of the ten fog nodes

 Scores from model (1) with Ω Scores from model (6)

with Ω
Ranking

Fog Node Candidate 1 80.01 79.95 3

Fog Node Candidate 2 72.98 72.97 5

Fog Node Candidate 3 78.16 58.20 6

Fog Node Candidate 4 55.06 55.02 7

Fog Node Candidate 5 78.20 78.18 4

Fog Node Candidate 6 94.52 94.47 2

Fog Node Candidate 7 50.24 40.46 9

Fog Node Candidate 8 59.56 41.12 8

Fog Node Candidate 9 100.00 100.00 1

Fog Node Candidate 10 70.35 36.50 10

The Fog Node Candidate 9 is ranked in the first place while the Fog Node Candidate 6 follows with a close
score, thus the component recommends Fog Node Candidate 9.

3.4 FUTURE STEPS

The next steps of NebulOuS CC Brokerage include the extension of the proposed mathematical models to
accommodate directly criteria measured with qualitative data. Also, we will explore the incorporation of
user preferences via the classification of the alternatives, i.e., by the classification of the fog nodes into
groups based on indications or perceptions about their performance. Such a prioritization will yield
additional weight restrictions that will impose an analogous effect on the Fog Node scores. The new
developments will be incorporated in the component as well as open issues regarding the user management,
reports with results, etc. will be addressed.

4 BROKERAGE QUALITY ASSURANCE

4.1 INTRODUCTION

Any brokerage service operates based on constraints expressed by the entities interested in using the service
for accessing artefacts or assets that are suitable for their purposes. In NebulOuS, these constraints take the
form of deployment and runtime requirements posed by stakeholders who are interested in discovering
infrastructural fog resources suitable for running application or application component instances.

NebulOuS assures the quality of its fog brokerage service by assessing the quality of the deployment and
runtime constraints, henceforth collectively referred to as application constraints, upon which this service

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

28

is based. Deployment constraints impose requirements on the infrastructure over which an application4
instance is deployed: its compute capacity (expressed as CPU and RAM capacities), its ability to persist data
in storage volumes, and its ability to send and receive data over a network. They may also constrain the
infrastructure’s whereabouts (geolocation), and its provider (i.e., whether an application instance can or
cannot be deployed on infrastructure owned or provided by certain entities). Runtime constraints on the
other hand impose requirements on the execution of an application instance. They may constrain execution
indirectly, based on its effect on the underlying infrastructure e.g., CPU utilisation must not exceed 80% of
total CPU capacity, but also directly e.g., by constraining that the number of frames analysed per second by
a surveillance application component must not fall below a preset threshold.

NebulOuS assesses the quality of application constraints by ensuring their compliance with higher-level
meta-constraints. The latter impose broader-scope QoS requirements that convey an organisation’s
expectations regarding the consumption of an application. These expectations may be performance ore
security driven. As an example, consider an organisation that uses an IoT application. The organisation
imposes a QoS meta-constraint whereby application instances must be deployed on infrastructure that
features a CPU clock rate of at least 100MHz (e.g., to avoid aliasing effects); moreover, it imposes a security-
flavoured meta-constraint whereby the application must never be deployed across infrastructure that is
under the control of certain blacklisted (untrusted) organisations. Clearly, any application constraints set
by users of this application must abide by these broader organisational expectations.

NebulOuS offers the Brokerage Quality Assurance (BQA) mechanism for ensuring compliance of application
constraints with the (organisational) expectations expressed through meta-constraints. The BQA is
underpinned by a semantic model for expressing both application constraints and meta-constraints. This
essentially transforms the process of ensuring constraint compliance into one of semantic reasoning,
bringing about the following seminal advantages.

(i) Effective reasoning based on knowledge that is potentially semantically inferred and not readily
available at the syntactic level. Consider, for instance, a meta-constraint whereby no
application instances may be deployed outside the EU. Suppose that an application deployment
constraint requires that an application instance is deployed in Athens, Greece. Semantic
reasoning allows us to infer that Athens, Greece is indeed in the EU and therefore this
application constraint abides with the meta-constraint.

(ii) Reliance on a standards-based approach that avoids potentially error-prone ad-hoc solutions
for checking constraint abidance.

4.2 INTERNAL ARCHITECTURE AND INTERFACES

The BQA mechanism comprises two components (see Figure 15): the Meta-constraint Primer and the
Application Constraint Feeder. The Meta-constraint Primer interacts with the UI to elicit the knowledge
artefacts required for formulating meta-constraints; it then uses them to express meta-constraints
ontologically and pass them to the Ontology Module (OM). Meta-constraints are unary constraints
formulated on two arguments: a metric of interest (e.g., CPU cores, CPU utilisation, RAM size, frames per
second, IO operations per second, location, etc.), and a corresponding value or value range (the constraint
threshold); they also comprise a comparison operator (=, ≠, ≤, <, ≥, >) for comparing metrics against
thresholds.

4 We employ the term “application” to refer both to an application and to an application ‘component’. Afterall, an application ‘component’ is itself
an application.

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

29

Figure 15: BQA mechanism – internal structure and external interactions

Table 6 illustrates an example of the serialisation format used for representing meta-constraints in
interactions between the BQA mechanism and the UI; it also depicts the corresponding ontological
representation of meta-constraints (in JSON) passed to the OM.

Table 6. Meta-constraint Primer - format of interaction (example)

UI interaction (YAML) OM interaction (JSON)

constraint:
 metric: CPU_CORES
 operator: '>='
 threshold: 4

{
"firstArgument": "CPU_CORES",
"operator": "GREATER_EQUAL_THAN",
"secondArgument": 4
}

In a similar vein, the Application Constraint Feeder interacts with the UI to elicit the knowledge artefacts
required for formulating deployment and runtime constraints; it then uses them to express these constraints
ontologically and pass them to the OM. Akin to meta-constraints, deployment and runtime constraints are
unary constraints on two arguments and a comparison operator. Deployment constraints are extracted from
KubeVela serialisations provided by the UI, and runtime constraints are extracted from the metric model
also provided by the UI5. Table 7 depicts the serialisation format of deployment constraints and the
corresponding ontological representation (in JSON) passed to the OM. The serialisation format of runtime
constraints in the metric model is identical to the format used for representing meta-constraints in UI to
BQA mechanism interactions (see Table 6) and thus omitted.

5 More details on KubeVela serialisations and the metric model can be found in [16].

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

30

Table 7. Application Constraint Feeder - format of interaction (example)

UI interaction (YAML) OM interaction (JSON)

- name: kafka-ui
...
 properties:
 ...
 cpu: "0.3"
 memory: "512Mi"
 ...

{
"constraints": [{
 "firstArgument": "CPU_CAPACITY",
 "operator": "EQUALS",
 "secondArgument": 0.3
 },{
 "firstArgument": "RAM_CAPACITY",
 "operator": "EQUALS",
 "secondArgument": 512,
 }]
}

The BQA mechanism invokes the Inferencing Engine of the OM (see Figure 15) to determine whether the
ontological representation of an application constraint (either deployment or runtime) is compliant with –
i.e., it is semantically subsumed by – the ontological representation of a corresponding6 meta-constraint. If
subsumption is indeed inferred, then the application constraint is considered compliant and it is passed over
to the SLA Generator; otherwise, it is considered non-compliant and an appropriate notification is emitted.
If no corresponding meta-constraint can be found, the application constraint is vacuously considered
compliant. Conversely, if a meta-constraint does not correspond to any application constraints, it is itself
converted to an application constraint and passed over to the SLA Generator. Table 8 depicts an inferencing
request sent by the BQA to the OM’s Inferencing Engine and the corresponding response received. The
request queries the ontology to extract an application constraint and a meta-constraint and determine
whether the latter semantically subsumes the former.

Table 8. BQA mechanism - format of interaction (example)

OM interaction (request) OM interaction

(response)

{
 "queries": [
 "inverse containsConstraint value

SPECIFICATION_META_X AND Constraint",
 "inverse containsConstraint value SPECIFICATION_APP_X

AND Constraint"
],
 "action": "validate"
}

{
 "valid": true
}
or
{
 "valid: false
 justification: "... "
}

The BQA mechanism invokes the SLA Generator to transform any compliant application constraints, as well
as any meta-constraints that do not correspond to any application constraints, into Service Level Objectives
(SLOs). Table 9 depicts an example invocation.

6 A definition of correspondence between application constraints and meta-constraints is provided in Section x.3

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

31

Table 9. BQA mechanism - format of interaction (example)

{

 "insert": ["SPECIFICATION_APP_X", "SPECIFICATION_META_X "]

}

4.3 IMPLEMENTATION

This section outlines our ontological model for capturing application constraints and meta-constraints; it
also outlines the process through which the former are assessed for compliance with the latter.

Both application constraints and meta-constraints (henceforth simply referred to as simple constraints7)
are modelled as instances of the OWL-Q class owlq:SimpleConstraint. A simple constraint is associated
with its arguments through the properties owlq:firstArgument and owlq:secondArgument, and with its
comparison operator through the property owlq:Operator. More specifically, owlq:firstArgument is an
object property that associates a simple constraint with a metric i.e., with an instance of the class
owlq:Metric. owlq:secondArgument is a data property that associates a simple constraint with the
threshold value, or value range, against which the first argument (i.e., the metric) is compared. As an
example, Figure 16 illustrates how the application constraint o ≡ cpuCores = 4 and the meta-constraint m
≡ cpuCores ≥ 4 are modelled in OWL-Q.

0

Figure 16: Ontologically capturing application constraints and meta-constraints

7 Since they are both mathematically unary constraints.

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

32

4.4 DETERMINING COMPLIANCE

Let o and m be an application constraint and a meta-constraint respectively. To determine whether o is
compliant with m, a two-step process is followed. In the first step, o’s and m’s first arguments are obtained.
If they are represented by the same individual from the class owlq:Metric (see Figure 16), then the
comparison proceeds to the next step. Otherwise, o and m are considered orthogonal to each other, and o is
vacuously considered compliant with respect to m; no further comparison between o and m takes place.

In the second step, a range of allowable values is calculated for each constraint. This calculation is based on
the comparison operator that each constraint features, as well as on its threshold value. For instance, if o is
the constraint cpuCores = 4 and m is the constraint cpuCores ≥ 2, then the allowable value range for o is
[4, 4] and for m is [2, ∞). If o’s allowable value range is a subset of m’s allowable value range, then o is
considered compliant; in any other case i.e., if there is at least one value in o’s range that is not in m’s range,
then o is considered non-compliant. All compliant application constraints are passed over to the SLA
Generator where they get transformed into SLOs.

In case a meta-constraint is found to be orthogonal to all application constraints for a particular application
or application component, then the meta-constraint becomes an application constraint and passed to the
SLA Generator.

4.5 STATE-OF-THE-ART AND BEYOND

Several ontology-based formalisms have been proposed for describing QoS constraints. These include:
WSAF-QoS [17], DAML-QoS [18], QoSOnt [19], WSMO-QoS [20], OWL-Q [36, 37], onQoS-QL [23], and PCM
[24]. Nevertheless, only OWL-Q can be claimed to provide a rich metric model according to the richness
criteria in [25]8.

The BQA mechanism advances the state of the art in several ways. Firstly, to the best of our knowledge, there
is no prior attempt to assess the quality of a fog brokerage service by ensuring its alignment with higher-
level meta-constraints that convey an organisation’s broader QoS expectations; an alignment that is
achieved by harnessing the application constraints used for delimiting the artefacts or assets that become
accessible through the brokerage service. Secondly, the adoption of semantic technologies enables
application constraints to be assessed for compliance at the semantic, rather than the syntactic, level i.e.,
based on knowledge that is not syntactically articulated, but semantically inferred, during the reasoning
process; this leads to a more efficient quality assurance process. Thirdly, the adoption of semantic
technologies enables the articulation of application constraints and meta-constraints that are founded upon
custom metrics that can accurately convey an organisation’s broader QoS expectations. It thus paves the
way for a generic and ‘malleable’ brokerage service that can be shaped according to the particular needs of
an organisation.

4.5.1 BQA Mechanism Extensions

In the final iteration (M24-M29 of the project), the BQA mechanism will be further extended with concepts
and properties of the Metadata Schema (MDS). The MDS was introduced as part of the Melodic project9 for
addressing multi-clouds requirements and offerings and was extensively updated during the Morphemic

8 A deeper analysis of these criteria, and a detailed account of OWL-Q, are provided in [16].

9 https://www.melodic.cloud/

https://www.melodic.cloud/

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

33

project10 for coping with additional kinds of resources such as hardware-accelerated resources. Its adoption
in NebulOuS will provide a rich vocabulary of terms that will assist the articulation of a wider range of
application constraints and meta-constraints. A more detailed account of the MDS can be found in [16].

5 OPTIMISER

5.1 INTRODUCTION

The role of the optimiser is to assign resources to the application components to maximize the utility of an
application. The various components of the application have various resource requirements like the number
of threads a component can use, or the required location, or execution node provider. Furthermore, the
distributed application may also have requirements on the multiplicity of components, or vicinity of the
component to other application components. Making decisions about these requirements for each
component jointly constitutes the configuration of the distributed application.

The best application configuration depends on the current circumstances. For example, an application may
require more resources during daytime when there are many users of the application or much traffic on the
monitored roads, and if the utility of the application includes deployment cost, then the number of
application component instances should be decreased and perhaps moved to private infrastructure during
the night. Hence, the values measurements taken from the running application will drive the need for
reconfiguration.

On the other hand, reconfiguring the application has an overhead as some application microservices may be
unavailable during reconfiguration, and adding more resources may take some time before the additional
resources are available to the application. Hence, a reconfiguration will only be triggered if the forecasted
measurements indicate that one or more of the Service Level Objectives (SLOs) will be violated. The
Optimiser will then find the best configuration for the application’s forecasted execution context.

Once the optimised configuration has been found for the forecasted execution context, the Optimiser will
interact with the Deployment Manager (SAL) to install the application’s Kubernetes cluster for the initial
deployment, and thereafter modify this cluster throughout the application’s lifetime. When the Kubernetes
cluster is running, the application’s KubeVela file is modified to reflect the parameters of the desired
component configuration, and KubeVela will ensure the deployment or reconfiguration or relocation of the
application’s pods to reflect the optimised configuration.

5.2 INTERNAL ARCHITECTURE AND INTERFACES

The Optimiser Interface deals with the communication to the other components of NebulOuS. The
application’s KubeVela file and operational constraints are received from the GUI together with the value
ranges for the requirement attributes for the application’s components, and the utility function to be
maximized by the Optimiser. This information is consolidated using the formal optimisation model
description using A Mathematical Programming Language (AMPL) [26]. This description is unique for the
application to be managed, and the Optimiser Controller will therefore start the application specific
components: The Metric Updater, the Performance Module, the Utility Evaluator, and the Solver. The

10 https://www.morphemic.cloud/

https://www.morphemic.cloud/

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

34

Resource Auction component will be integrated for the second release of the NebulOuS platform. Figure 17
below shows the overall Optimiser architecture.

The Metric Updater receives the list of independent metrics of the application’s execution context from the
SLO Violation Detector and subscribes to predicted values for these metrics from the Prediction
Orchestrator, which is a part of the Event Management System. When the SLO Violation Detector estimates
that one or more SLOs will be violated, it sends a reconfiguration event to the Metric Updater, which in turn
sends the current execution context to the Solver.

The Utility Evaluator gets the ranked list of available virtualised resources from the Broker, see Section 3
above, and filters the deployment node candidates based on the domains of the requirement attributes of
the application components in the optimisation problem. For instance, if no component will be able to use
more than 16 GB of memory, all larger virtual machines can be discarded. It prepares a data file to match the
optimisation problem for the Solver and updates the data file whenever there is a change in the offered
execution possibilities.

The Performance Module maintains regression models allowing the Solver to assess the impact of a changed
configuration on the performance indicators used in the utility function. A simple linear regression model
will be used in the first release. A digital twin of the running application will be used for the next release to
simulate various deployment alternatives and train more advanced and better regression models for the
performance indicators.

The Solver components are shown in Figure 18 below. The notable feature is the introduction of the Solver
Manager that has been introduced to facilitate the use of the Solver in the training of the SLO Violation
Detector. The SLO Violation Detector will need knowledge of the optimal application configurations under
various conditions, and it will therefore send application execution contexts to the Solver Manager in the
same way as the Metric Updater. The Solver Manager maintains a pool of Solvers and dispatches the received
execution contexts to the first available Solver. The AMPL Solver implements a Solver for the AMPL
optimisation problem description. The benefit of the AMPL language is that there are a wide range of open
source or commercial mathematical solvers accepting AMPL descriptions, and currently it uses the Couenne
solver [27]. All Solver components are implemented as independent Actors allowing deadlock free parallel
execution [28].

When the Solver has found a set of assignments to the resource attributes for all application components,
the corresponding solution will be published by the Solver Manager. This means that the SLO Violation
Detector can subscribe to the found solutions and use them for training. Solutions that are resulting from
SLO violation events whose application execution context is prepared and sent by the Metric Updater will
be marked with a Boolean flag indicating that the found solution should be deployed as a reconfiguration of
the running application. These solutions are captured by the captured by the Optimiser Controller and
forwarded to the Adapter. The role of the Adapter is to compute the difference between the running
configuration and the desired application configuration. The changes to the optimised service graph will
then be communicated to the Deployment Manager that will reserve the new virtualised hardware resources
with the Broker and add the new services to the application’s Kubernetes cluster. When the Adapter gets
notified that the new resources are available, it will send a new KubeVela file to the Kubernetes master to
reconfigure the application’s pods.

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

35

Figure 17: The architecture of the Optimiser module whose components are shown in white interacting with other NebulOuS components indicated in grey.

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

36

Figure 18: The detailed architecture of the Solver module with the interaction and Advanced Message Queuing Protocol (AMQP) topics used to exchange messages with the other

components of the NebulOuS system.

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

37

5.3 IMPLEMENTATION

The optimiser-controller component is implemented in Java version 17 and compiles to a “fat jar”, i.e., a Java
Archive file that includes all dependencies and can be run standalone with only the Java runtime present.
The controller component can be run from the command line for testing purposes but is deployed as a
container in production. The controller uses the exn-connector-java11 middleware to communicate via the
Advanced Message Queuing Protocol (AMQP12) message broker with other NebulOuS components,
including the User Interface, the Solver and the Deployment Manager. The main behaviour is implemented
by the “NebulousApp” class which is instantiated once per running application. This class is created when
the UI starts a new application and manages that application's lifecycle: initial deployment, redeployment,
and eventual shutdown. The controller uses the Scheduling Abstraction Layer (SAL) common library13,
created in the MORPHEMIC10 project, to generate messages towards the execution engine, and the Jackson
library14 to parse JavaScript Object Notation (JSON15) and YAML16 data that arrives from other components.
The source code for the optimiser-controller is available in the relevant repository17 under the NebulOuS
code base.

The Utility Evaluator and the Performance Module components are implemented in Java version 17 and for
the first release of the NebulOus platform they are packaged into one .jar file and as a single Open Container
Initiative (OCI18) container. They are implemented as a SpringBoot19 application and key Spring Framework
components20 are: “PerformanceEstimator”, “NodeCandidatesFetchingService”, “ExnConnector”,
“ProactiveConnector”, and “NodeCandidateConverter”. The dependency management is done with
Maven21. Both Utility Evaluator and Performance module components use the exn-connector-java22
middleware to communicate with other NebulOus components via the AMQP. Messages received from
other components are parsed with the use of Jackson23, JSON24, and sal-common libraries25. The source code
is available in the NebulOus repository26.

11 https://opendev.org/nebulous/exn-connector-java

12 https://www.amqp.org/

13 https://github.com/ow2-proactive/scheduling-abstraction-layer/tree/master/sal-common

14 https://github.com/FasterXML/jackson

15 https://www.json.org

16 https://yaml.org/

17 https://opendev.org/nebulous/optimiser-controller

18 https://opencontainers.org/

19 https://spring.io/projects/spring-framework

20 https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/stereotype/Component.html

21 https://maven.apache.org/

22 https://opendev.org/nebulous/exn-connector-java

23 https://github.com/FasterXML/jackson

24 https://www.json.org

25 https://github.com/ow2-proactive/scheduling-abstraction-layer/tree/master/sal-common

26 https://opendev.org/nebulous/optimiser-utility-evaluator

https://opendev.org/nebulous/exn-connector-java
https://www.amqp.org/
https://github.com/ow2-proactive/scheduling-abstraction-layer/tree/master/sal-common
https://github.com/FasterXML/jackson
https://www.json.org/
https://yaml.org/
https://opendev.org/nebulous/optimiser-controller
https://opencontainers.org/
https://spring.io/projects/spring-framework
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/stereotype/Component.html
https://maven.apache.org/
https://opendev.org/nebulous/exn-connector-java
https://github.com/FasterXML/jackson
https://www.json.org/
https://github.com/ow2-proactive/scheduling-abstraction-layer/tree/master/sal-common
https://opendev.org/nebulous/optimiser-utility-evaluator

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

38

The Solver components are implemented in the ISO standardised programming language C++27 using the
features of the latest approved standard, C++23. There are 5 classes implemented as Theron++28 Actors: The
Metric Updater; the Execution Control merged with the Solver manager; the abstract Solver implemented
by the AMPL Solver, see Figure 18. In Theron++ each Actor is a separate operating system thread, and hence
the three Actors are running concurrently exchanging messages. Messages that are received from external
components or meant to be consumed by external components are sent as JSON messages using the JSON
for Modern C++29 library on AMQP topics implemented as part of the generic communication layer of
Theron++ using the Apache Qpid Proton30 Application Programming Interface (API) library. Internal
messages among Theron++ actors are sent as binary classes, and Figure 18 shows the name of the message
classes and which Actor class defining each message type. The code of all Solver components is available in
the relevant repository31 under the NebulOuS code base, and the executable is available as an OCI container.

5.4 STATE-OF-THE-ART AND BEYOND

The main novelty for the first release is the architecture, which is a significant evolution of the architecture
used for optimising Cloud applications in the MELODIC9 and MORPHEMIC10 projects [29]. The NebulOuS
architecture directly implements the proactive Monitor-Analyse-Plan-Execute with Knowledge (MAPE-K)
of autonomic computing [30], extended for proactive application management by the researchers in
NebulOuS [31].

Another novelty is the way the optimisation problem is formulated and solved. The way an optimisation
problem is formulated has much to say for the efficiency of finding a good and optimised solution. The
preceding projects use the Cloud Application Modelling and Execution Language (CAMEL) [32]. This
Domain Specific Language (DSL) allowed the modelling of the application topology model, the metric mode,
and the optimisation problem as one model. Even though this facilitated the coherency of the three models,
it also made the language complicated. The consistency of the models in NebulOuS is ensured by the GUI,
see Section 2 above. This separation of concerns allows the Optimiser architecture to be significantly
simplified, and the optimisation model to be formulated using the standard AMPL language [26], which is
directly supported by multiple commercial and open source solvers. The “No Free Lunch” theorem states
that there is no universally best solver for all optimisation problems [33], and therefore being able to easily
change the underlying solver depending on the problem structure at hand represent a major improvement.

Finally, the architecture has been designed to also support our own solvers, and there are currently
investigations ongoing to speed up the search of the variable domains by grouping feasible variable tuples
into deployment points for each component. The future inclusion of Digital Twin application models in the
Performance Monitor and more advanced machine learning regression models should allow even better and
more robust decisions to be made by the solvers.

27 https://isocpp.org/

28 https://github.com/GeirHo/TheronPlusPlus

29 https://github.com/nlohmann/json

30 https://qpid.apache.org/proton/

31 https://opendev.org/nebulous/optimiser-solver

https://isocpp.org/
https://github.com/GeirHo/TheronPlusPlus
https://github.com/nlohmann/json
https://qpid.apache.org/proton/
https://opendev.org/nebulous/optimiser-solver

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

39

6 WORKFLOW EXECUTION

6.1 INTRODUCTION

A single application in Service Oriented Architecture (SOA) should be composed of many independently
deployable smaller components. Each component may have different services that communicate with
others in various ways, e.g., REST API, Kafka broker or AMQP broker. To reduce development time and
associated costs, SOA defines a method for making components more reusable such that each service
contains all the code and data integrations needed to perform a complete, discrete function. In addition, the
service interfaces provide loose coupling, which means that they are designed as self-contained components
that can be called with little or no knowledge of how the integration is implemented beneath.

Moreover, these applications are also expected to run for an extended period under changing application
execution contexts and workload; hence they are called persistent applications since the application
components (functions) are deployed and scaled but remain available as long as there are data items
available to process. These discrete requests of data processing are called workload. The requests can be
submitted at any time and will be processed by the application’s components as they are available until the
application’s response to the request is finally produced. Therefore, the deployed components may
experience idle periods during which they do nothing but wait for the processing to resume depending on
the incoming data flow in the application components.

Modelling application as workflows allows the implementation of the SOA concept by dividing a single
application (also called a job) into multiple smaller tasks. Each task may be completely independent from
the rest and may require or provide a certain service(s) from or to another task(s). In other words, given a
discrete request of data processing, a workflow is a set of sequential operations that are started when data
is submitted to the initial task, known as the "ingress task," and end when data is removed from the "egress
task." The workflow tasks have data dependencies, which result in temporal execution dependencies:
Before all of its predecessor tasks have completed processing and the output data from these predecessor
tasks is ready for processing, a downstream task cannot begin. As a result, a workflow can be represented as
a directed graph that shows the dependencies between the tasks. Since it's frequently assumed that there
are no loops, a Directed Acyclic Graph (DAG) is a simpler representation of the workflow. Finally, the
workflow scheduler controls the execution of the discrete requests, and it follows up on the progress and
the metrics of the actions. The main goal of workflow is to maximize performance by binding computations
and data location.

6.2 APPROACH

Workflow scheduling oversees managing and allocating how a certain process is executed within a limited
pool of computing resources. This allocation ought to be in line with overarching goals, like minimizing the
process's execution time or achieving the best tradeoff between latency and accuracy. In this section, we
first explain the idea of a workflow model and how the baseline scheduler is executed. Then, we present how
the intelligent scheduler tested on a simulator could improve the baseline scheduler based on the
monitoring of computing resources, and lastly, we show how the workflow scheduler is initially integrated
with Nebulous and next steps.

The first step consists of defining the application model using KubeVela language where the user can define
the application architecture, the deployment requirements and the resource requirements together with the
workflow executor component and a communication broker. The workflow executor is responsible for
managing and control the workload of discrete workflow requests, e.g., data and a directed graph composed
of tasks and dependencies. The tasks are consequently stateless and match application components, which
makes them well suited to be implemented by serverless functions or lightweight containers. ¡Error! No se

encuentra el origen de la referencia. shows an example of DAG workflow.

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

40

In this example, Task 1, which is a computing task, depends
on ingress task, which is a preprocessing task. Thus, Task 1
will be executed after ingress Task and egress task will be
able to access Task 1’s results as output data. For instance,
the workflow executor submits a job, the data and the
ingress task, to the workflow scheduler, and receives the
output data via a communication broker; then the
workflow executor submits a new job, task 1 and output of
the ingress task, to the workflow. This process is repeated
until the egress task is done. Therefore, allocating
workflow tasks to the available resources for completion is
the responsibility of the workflow task scheduler, a part of
the workflow executor. The tasks on the workflow's
minimal makespan path and their data dependencies must
be taken into account during this allocation process. In
order to guarantee that data will be available for the
downstream tasks after the predecessor tasks on the
minimal makespan path have completed processing, it is
also necessary to consider the task duration. The workflow
scheduler must either queue up tasks that are ready to be
completed or obtain additional resources when the
execution resources run out.

The scheduling issue is homogeneous, and the workflow executor has traditionally been a high-
performance computing (HPC) data center with identical servers. The unknown task execution times are
the source of difficulty. Each task's execution time is therefore a random variate from an observable
execution time distribution, and these execution times may vary depending on the data being processed.

Workflows scheduled on a workflow executor within the Cloud continuum will by definition have
heterogeneous execution resources, with the resource pool potentially dynamically allocated based on
demand. Because the workflow task scheduler is one of the components of the workflow executor
application, the scheduling problem is therefore not only a stochastic task allocation problem minimizing
the expected makespan but also a simultaneous right-sizing problem for the application.

Given the distributed setup of heterogeneous resources and services distributed across network and
computational elements and, it is not trivial to use the existing datacenter resource scheduling technique.
For example, Figure 20 shows a deep learning task within a video surveillance application. The variants of
the request can be the devices requesting, the accuracy and the latency requirements. Based on these goals
and constraints in terms of load spread across the devices, the decision needs to be made at runtime.

Figure 19: Simple workflow example

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

41

Figure 20: Request scheduling for optimal resource allocation at real time

To this end, we are building a workflow executor as an application where each job, input data and task, is
submitted to the workflow scheduler that determines the scheduling policy to distribute the jobs across the
available task components. This approach of determining the best scheduling policy will allow to build a
learning paradigm based on uncertain network dynamics and algorithms that can learn and adapt their
environment based on resource availability. We refer to this as Adaptive Scheduling of Edge Tasks (ASET),
wherein a sophisticated reinforcement learning agent, trained on real-world network topology, is used to
determine the optimal policy for scheduling workloads by means of Deep Reinforcement learning (DRL)
techniques. The policy can be as straightforward as scheduling a task at the closest edge cluster in real time
based on load and latency.

Figure 21: Adaptive Scheduling of Edge Tasks (ASET) workflow

Our adaptive scheduling method seeks to discover the best course of action based on the state of the system
at that moment, including the applications running, the network architecture, and the varying stream
arrivals. An intelligent agent attempts to learn the best policy selection strategy based on the observed state
of the environment because the optimal policy learning is formulated as a Reinforcement learning (RL)
problem due to the lack of labelled data. This is achieved, as illustrated in Figure 21, by an RL policy that
estimates a probability distribution of every action that could be taken (policy selection) and cumulatively
maximizes a reward (usually maximizing the fraction of successfully served queries). In addition, this
approach allows the evaluation of classical scheduling policies.

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

42

Figure 22: Percentage of successful queries over time for ML task with users arriving in real-world pattern

Preliminary findings on a simulationn environment indicate that ASET outperforms conventional
scheduling mechanisms even when only a portion of the network resources are visible. We model the
situation where users arrive according to actual patterns. Better policy selection through multi-agent
communication, security & privacy-aware, and real-world deployments is still being worked on.

7 CONCLUSIONS

This deliverable has documented the software components of the NebulOuS platform dealing with the
planning part of the application deployment and reconfiguration. It covers collecting the input from the
NebulOuS users in terms of the application topology model, the metric model and information about
resource providers and available hardware to be used when configuring and deploying the application. This
includes the design and filtering of providers’ stated SLOs and the recommendation the alternative. This
leads to an optimisation problem that is solved based on information about the application’s current
execution context to find a configuration optimised for the situation at hand.

The components are now under testing with the NebulOuS pilots and will be further evaluated by the
companies successfully responding to the NebulOuS Open Calls. The software will be improved based on
the feedback gathered from the evaluations. Furthermore, new modules will be integrated in the next
release, most notably the distributed auctions for the resources available to an application, and the live
feedback cycle where information about observed SLO violation events will drive the recommendations
provided by the Broker.

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

43

8 REFERENCES

[1] A. Charnes, W. W. Cooper, and E. Rhodes, ‘Measuring the efficiency of decision making units’,
European Journal of Operational Research, vol. 2, no. 6, pp. 429–444, Nov. 1978, doi: 10.1016/0377-
2217(78)90138-8.

[2] Zilla Sinuany-Stern, ‘Foundations of operations research: From linear programming to data
envelopment analysis’, European Journal of Operational Research, vol. 306, no. 3, pp. 1069–1080, May
2023, doi: 10.1016/j.ejor.2022.10.046.

[3] William W. Cooper, Lawrence M. Seiford, and Kaoru Tone, Data Envelopment Analysis: A
Comprehensive Text with Models, Applications, References and DEA-Solver Software, Second. New
York, NY: Springer US, 2007. doi: 10.1007/978-0-387-45283-8.

[4] Jane Siegel and Jeff Perdue, ‘Cloud Services Measures for Global Use: The Service Measurement Index
(SMI)’, in 2012 Annual SRII Global Conference, Jul. 2012, pp. 411–415. doi: 10.1109/SRII.2012.51.

[5] I. Patiniotakis, Y. Verginadis, and G. Mentzas, ‘PuLSaR: preference-based cloud service selection for
cloud service brokers’, Journal of Internet Services and Applications, vol. 6, no. 1, pp. 1–14, 2015.

[6] Holger Scheel, ‘Undesirable outputs in efficiency valuations’, European Journal of Operational
Research, vol. 132, no. 2, pp. 400–410, Jul. 2001, doi: 10.1016/S0377-2217(00)00160-0.

[7] L. Liang, J. Wu, W. D. Cook, and J. Zhu, ‘The DEA Game Cross-Efficiency Model and Its Nash
Equilibrium’, Operations Research, vol. 56, no. 5, pp. 1278–1288, 2008.

[8] A. Charnes, W. W. Cooper, and E. Rhodes, ‘Measuring the efficiency of decision making units’,
European Journal of Operational Research, vol. 2, no. 6, pp. 429–444, Nov. 1978, doi: 10.1016/0377-
2217(78)90138-8.

[9] R. D. Banker, A. Charnes, and W. W. Cooper, ‘Some Models for Estimating Technical and Scale
Inefficiencies in Data Envelopment Analysis’, Management Science, vol. 30, no. 9, pp. 1078–1092, 1984,
doi: 10.1287/mnsc.30.9.1078.

[10] Tarja Joro, Pekka Korhonen, and Jyrki Wallenius, ‘Structural Comparison of Data Envelopment
Analysis and Multiple Objective Linear Programming’, Management Science, vol. 44, no. 7, pp. 962–
970, 1998, doi: 10.1287/mnsc.44.7.962.

[11] I. Kaliszewski, ‘Out of the mist––towards decision-maker-friendly multiple criteria decision making
support’, European Journal of Operational Research, vol. 158, no. 2, pp. 293–307, Oct. 2004, doi:
10.1016/j.ejor.2003.06.005.

[12] Kaisa Miettinen, Nonlinear Multiobjective Optimization. in International Series in Operations
Research & Management Science. Springer US, 1998. Accessed: Dec. 10, 2018. [Online]. Available:
//www.springer.com/gp/book/9780792382782

[13] R. Allen, A. Athanassopoulos, R.G. Dyson, and E. Thanassoulis, ‘Weights restrictions and value
judgements in Data Envelopment Analysis: Evolution, development and future directions’, Annals of
Operations Research, vol. 73, no. 0, pp. 13–34, Oct. 1997, doi: 10.1023/A:1018968909638.

[14] Thomas L. Saaty, The analytic hierarchy process: planning, priority setting, resource allocation. New
York: McGraw-Hill, 1980.

[15] R. G. Thompson, P. S. Dharmapala, E. J. Gatewood, S. Macy, and R. M. Thrall, ‘DEA/Assurance Region
SBDC Efficiency and Unique Projections’, Operations Research, vol. 44, no. 4, pp. 533–542, Aug. 1996,
doi: 10.1287/opre.44.4.533.

[16] S. Veloudis et al., ‘NebulOuS D2.2: Initial Semantic Models and Resource Discovery Mechanism’,
NebulOuS, Deliverable D2.2, Oct. 2023.

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

44

[17] E. M. Maximilien and M. P. Singh, ‘A framework and ontology for dynamic Web services selection’,
IEEE Internet Comput., vol. 8, no. 5, pp. 84–93, Sep. 2004, doi: 10.1109/MIC.2004.27.

[18] Chen Zhou, Liang-Tien Chia, and Bu-Sung Lee, ‘DAML-QoS ontology for Web services’, in Proceedings.
IEEE International Conference on Web Services, 2004., San Diego, CA, USA: IEEE, 2004, pp. 472–479.
doi: 10.1109/ICWS.2004.1314772.

[19] G. Dobson, R. Lock, I. Sommerville, and Ian Sommerville, ‘QoSOnt: a QoS Ontology for Service-Centric
Systems’, in 31st EUROMICRO Conference on Software Engineering and Advanced Applications, Porto,
Portugal: IEEE, 2005, pp. 80–87. doi: 10.1109/EUROMICRO.2005.49.

[20] X. Wang, T. Vitvar, M. Kerrigan, and I. Toma, ‘A QoS-Aware Selection Model for Semantic Web
Services’, in Service-Oriented Computing – ICSOC 2007, vol. 4749, B. J. Krämer, K.-J. Lin, and P.
Narasimhan, Eds., in Lecture Notes in Computer Science, vol. 4749. , Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, pp. 390–401. doi: 10.1007/11948148_32.

[21] K. Kritikos and D. Plexousakis, ‘OWL-Q for Semantic QoS-based Web Service Description and
Discovery’, Foundation of Research and Technology, Heraklion, Greece, [Online]. Available:
https://publications.ics.forth.gr/_publications/10.1.1.93.9067.pdf

[22] K. Kritikos, D. Plexousakis, and P. Plebani, ‘Semantic SLAs for Services with Q-SLA’, Procedia Computer
Science, vol. 97, pp. 24–33, 2016, doi: 10.1016/j.procs.2016.08.277.

[23] G. Damiano, E. Giallonardo, and E. Zimeo, ‘onQoS-QL: A Query Language for QoS-Based Service
Selection and Ranking’, in Service-Oriented Computing – ICSOC 2007, vol. 4749, B. J. Krämer, K.-J. Lin,
and P. Narasimhan, Eds., in Lecture Notes in Computer Science, vol. 4749. , Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 115–127. doi: 10.1007/978-3-540-93851-4_12.

[24] F. D. Paoli, M. Palmonari, M. Comerio, and A. Maurino, ‘A Meta-model for Non-functional Property
Descriptions of Web Services’, in 2008 IEEE International Conference on Web Services, Beijing: IEEE,
Sep. 2008, pp. 393–400. doi: 10.1109/ICWS.2008.97.

[25] K. Kritikos et al., ‘A survey on service quality description’, ACM Comput. Surv., vol. 46, no. 1, pp. 1–58,
Oct. 2013, doi: 10.1145/2522968.2522969.

[26] Robert Fourer, David M. Gay, and Brian W. Kernighan, AMPL - A Modeling Language for Mathematical
Programming, Second edition. Duxbury Press, 2003. [Online]. Available: https://ampl.com/wp-
content/uploads/BOOK.pdf

[27] Pietro Belotti, Christian Kirches, Sven Leyffer, Jeff Linderoth, James Luedtke, and Ashutosh Mahajan,
‘Mixed-integer nonlinear optimization’, Acta Numerica, vol. 22, pp. 1–131, May 2013, doi:
10.1017/S0962492913000032.

[28] Gul Abdulnabi Agha, Actors: a model of concurrent computation in distributed systems. in The MIT
Press series in artificial intelligence. Cambridge, Mass: MIT Press, 1986.

[29] Marta Różańska, Paweł Skrzypek, Katarzyna Materka, and Geir Horn, ‘An Architecture
for Autonomous Proactive and Polymorphic Optimization of Cloud Applications’, in Proceedings of
the 36th International Conference on Advanced Information Networking and Applications (AINA-
2022), Volume 3, Leonard Barolli, Farookh Hussain, and Tomoya Enokido, Eds., in Lecture Notes in
Networks and Systems, vol. 451. Conference Location: Sydney, Australia: Springer International
Publishing, Apr. 2022, pp. 567–577. doi: 10.1007/978-3-030-99619-2_53.

[30] IBM, ‘An architectural blueprint for autonomic computing’, IBM, 17 Skyline Drive, Hawthorne, NY
10532, U.S.A., White Paper Third Edition, Jun. 2005. [Online]. Available: http://www-
03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf

[31] Marta Różańska and Geir Horn, ‘Proactive Autonomic Cloud Application Management’, in Proceedings
of the 15th IEEE/ACM International Conference on Utility and Cloud Computing (UCC2022),
Conference Location: Vancouver, Washington, USA: IEEE/ACM, Dec. 2022, pp. 102–111. doi:
10.1109/UCC56403.2022.00021.

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

45

[32] Alessandro Rossini et al., ‘The cloud application modelling and execution language (CAMEL)’, OPen
Access Repositorium der Universität Ulm, p. 39, Mar. 2017, doi: 10.18725/OPARU-4339.

[33] David H. Wolpert and William G. Macready, ‘No free lunch theorems for optimization’, IEEE
Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–82, 1997, doi: 10.1109/4235.585893.

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

46

9 APPENDIX: NEBULOUS CC ATTRIBUTE MODEL

All the attributes are analysed in the table below, providing indications on the updates/adjustments
provided over SMI and Broker@Cloud models.

1st Level Attributes 2nd Level Attributes Indicative 3rd
Level Attributes

Indicative Value
Types

Update on
SMI/Broker@Cloud

Accountability:
Measures the properties
related to the cloud
continuum resource
provider

 Adjusted to Cloud
Continuum Resources

 Auditability:
The ability of a resource user to
verify that the provider is
adhering to the standards,
processes, and policies that they
follow.

 Linguistic: {
LOW, MEDIUM,
HIGH }

Adjusted to Cloud
Continuum Resources

 Compliance:
It examines whether or not,
standards, processes, and
policies committed to by the
provider, are followed.

 Unordered Set -

 Governance:
The processes used by the
provider to manage user
expectations, issues and
perceived performance.

 Unordered Set Adjusted to Cloud
Continuum Resources

 Ownership:
The level of rights a user has
over his/her data, and
intellectual property associated
with the use of a cloud
continuum resource.

 Adjusted to Cloud
Continuum Resources

 Provider Certifications:
The provider maintains current
certifications for standards
relevant to their user'
requirements.

 Unordered Set -

 Provider Contract/SLA
Verification:
The provider makes available to
users SLAs adequate to manage
the resource offered and
mitigate risks of device
unavailability.

 Adjusted to Cloud
Continuum Resources

 Provider Personnel
Requirements:
The extent to which provider

 Adjusted to Cloud
Continuum Resources

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

47

1st Level Attributes 2nd Level Attributes Indicative 3rd
Level Attributes

Indicative Value
Types

Update on
SMI/Broker@Cloud

personnel have the skills,
experience,
education, and certifications
required to effectively offer and
maintain a cloud continuum
resource.

 Technical
competency w.r.t
resources
hardware

Linguistic: {
LOW, MEDIUM,
HIGH }

Adjusted to Cloud
Continuum Resources

(Broker@Cloud)

 Technical
competency w.r.t
network
connectivity

Linguistic: {
LOW, MEDIUM,
HIGH }

Added 3rd Level
Attribute

 Provider Supply Chain:
The provider ensures that any
SLAs that must be supported by
its suppliers are supported.

 -

 Malfunctions Mitigation
Support:

The level of provider support in
case of resources malfunctions
(e.g., High refers to the same day
replacement of the faulty device)

 Linguistic: {
LOW, MEDIUM,
HIGH }

Added 2nd Level
Attribute

Agility:
Indicates the impact of
a resource use upon a
user's ability to change
direction, strategy, or
tactics quickly and with
minimal disruption.

 Adjusted to Cloud
Continuum Resources

 Adaptability:
The ability of the provider to
adjust to changes in user
requirements.

 Linguistic: {
LOW, MEDIUM,
HIGH }

-

 Elasticity:
The ability of adjusting the
offered resource capacity to
meet demand (e.g., in cases that
a fog resource had been partially
made available to NebulOuS).

 Adjusted to Cloud
Continuum Resources

(Broker@Cloud)

 Time Range in
seconds

 Extend offered
processing
capacity

Boolean Added 3rd Level
Attribute

 Extend offered
memory capacity

Boolean Added 3rd Level
Attribute

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

48

1st Level Attributes 2nd Level Attributes Indicative 3rd
Level Attributes

Indicative Value
Types

Update on
SMI/Broker@Cloud

 Extend offered
network capacity

Boolean Added 3rd Level
Attribute

 Extensibility:
The ability to add new features
or services to existing offered
resources.

 Adjusted to Cloud
Continuum Resources

 Geographic
Coverage

(number of
available locations
in the world)

Integer

Added 3rd Level
Attribute

(adjusted from
(Niemcewicz, 2021))

 Flexibility:
The ability to add or remove
predefined features from a
resource.

 Adjusted to Cloud
Continuum Resources

 Portability:
The ability of a user to easily
move a service from one
provider to another with
minimal disruption.

 Linguistic: {
LOW, MEDIUM,
HIGH }

-

 Scalability:
The ability of a provider to
increase or decrease the number
of cloud continuum resources
offered in a certain area to meet
client requirements.

 Adjusted to Cloud
Continuum Resources

 Cloud resources
addition

Boolean Added 3rd Level
Attribute

 Fog resources
addition

Boolean Added 3rd Level
Attribute

 Edge resources
addition

Boolean Added 3rd Level
Attribute

 Total number of
available Fog
resources

Integer Added 3rd Level
Attribute

 Total number of
available Edge
devices

Integer Added 3rd Level
Attribute

 Moveability:
The likelihood that a certain fog
or edge resource leased to be
used by an external user, can be
moved away from its original
physical location, during the
contracting period. This can
have either a positive (resource
move based on the application

 Added 2nd Level
Attribute

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

49

1st Level Attributes 2nd Level Attributes Indicative 3rd
Level Attributes

Indicative Value
Types

Update on
SMI/Broker@Cloud

requirements) or negative
(unforeseen resource move)
impact on the application and
its agility.

 Desired Move
Support

Boolean Added 3rd Level
Attribute

 Unforeseen Move
Likelihood

Linguistic: {
LOW, MEDIUM,
HIGH }

Added 3rd Level
Attribute

Assurance:
Indicates how likely it is
that the service will be
available as specified

 Adjusted to Cloud
Continuum Resources

 Availability:
The amount of time that a user
can make use of a service.

 Percentage -

 Maintainability:
It refers to the ability for the
provider to make modifications
to the resource to keep the
offereing in a condition of good
repair.

 Linguistic: {
LOW, MEDIUM,
HIGH }

-

 Recoverability:
It is the degree to which a
resource is able to quickly
resume a
normal state of operation after
an unplanned disruption.

 Adjusted to Cloud
Continuum Resources

(Broker@Cloud)

 Recovery Time Range in
seconds

-

 Reliability:
It reflects measures of how a
resource operates without
failure under given conditions
during a given time period.

 -

 Uptime Seconds or
Percentage

Adjusted to Cloud
Continuum Resources

 Resiliency/Fault Tolerance:
The ability of a resource to
continue to operate properly in
the event of a failure.

 Adjusted to Cloud
Continuum Resources

 Service Stability:
The degree to which the
resource is resistant to
(network) change, deterioration,
or displacement.

 Linguistic: {
LOW, MEDIUM,
HIGH }

Adjusted to Cloud
Continuum Resources

(Broker@Cloud)

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

50

1st Level Attributes 2nd Level Attributes Indicative 3rd
Level Attributes

Indicative Value
Types

Update on
SMI/Broker@Cloud

 Serviceability:
The ease and efficiency of
performing maintenance and
correcting problems with the
resource.

 Adjusted to Cloud
Continuum Resources

(Broker@Cloud)

 Free support Boolean -

 Type of support

(hours/days/respo
nse time)

Unordered Set {
e.g. Basic -
24x7x24, Bronze
- 24x7x4, Silver -
24x7x2, Gold -
24x7x1,
Platinum -
24x7x½, Gold -
24x7x1
(Reseller)}

-

 Support
satisfaction

Linguistic: {
VERY LOW,
LOW, MEDIUM,
HIGH, VERY
HIGH, PERFECT
}

-

 Network Support Unordered Set Added 3rd Level
Attribute

Financial:
It is related to all the
economic aspects
related to using a cloud
continuum resource

 Adjusted to Cloud
Continuum Resources

 Billing Process:
The level of integration that is
available between the user and
provider’s billing systems and
the predictability of periodic
bills.

 -

 Cost:
The user’s cost to exploit a cloud
continuum resource over time.
This includes the cost of data
migration, along with recurring
costs (e.g., monthly access fees)
and usage based costs.

 Adjusted to Cloud
Continuum Resources

(Broker@Cloud)

 Operation cost Float (€/hour) -

 Data-Inbound
cost

Integer
(GB/month)

-

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

51

1st Level Attributes 2nd Level Attributes Indicative 3rd
Level Attributes

Indicative Value
Types

Update on
SMI/Broker@Cloud

 Data-Outbound
cost

Integer
(GB/month)

-

 Storage Integer (GB) -

 Financial Agility:
The flexibility and elasticity of
the financial aspects of the
provider’s resources

 -

 Financial Structure:

How responsive to the user's
needs are the provider's pricing
and billing components

 Linguistic: {
LOW, MEDIUM,
HIGH }

-

Performance:
It covers the features
and functions of the
provided resources

 Adjusted to Cloud
Continuum Resources

 Capacity:
The maximum number of
resources that a provider can
deliver while meeting agreed
SLAs.

 Adjusted to Cloud
Continuum Resources

(Broker@Cloud)

 Number of CPU
Cores

Integer

 CPU MFLOPs Float Added 3rd Level
Attribute

 Clock Speed Float (GHz) -

 Number of GPU
Cores

Integer -

 GPU MFLOPS Float -

 Memory Size Integer (GB) -

 Memory Speed Integer (MHz) -

 Storage Capacity Integer (GB) -

 Storage
Throughput

Integer (MB/s or
IOPS)

-

 Solid State Drive Boolean Added 3rd Level
Attribute

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

52

1st Level Attributes 2nd Level Attributes Indicative 3rd
Level Attributes

Indicative Value
Types

Update on
SMI/Broker@Cloud

 Accuracy:
The extent to which a resource
adheres to its requirements.

 Linguistic: {
LOW, MEDIUM,
HIGH }

-

 Network Functionality:
The specific features provided by
a resource.

 Adjusted to Cloud
Continuum Resources

(Broker@Cloud)

 Features Unordered Set
(e.g,
Bluetooth/LoRa
WAN/Zigbee
connectivity)

-

 Bandwidth Float (Mbps) Added 3rd Level
Attribute

 Upload Speed Float (Mbps) Added 3rd Level
Attribute

 Download Speed Float (Mbps) Added 3rd Level
Attribute

 Network
Throughput

Ineteger
(Mbit/s)

-

 Suitability:
How closely do the capabilities
of the resource match the needs
of the user.

 Adjusted to Cloud
Continuum Resources

 Proximity to Data
Source

Float (Km) Added 3rd Level
Attribute

 Proximity to POI
(point/area of
interest defined
by the user)

Float (Km) Added 3rd Level
Attribute

Security and Privacy:
It indicates the
effectiveness of a
provider's controls on
access to resources,
data, and the physical
facilities from which
resources are provided

 Adjusted to Cloud
Continuum Resources

 Access Control & Privilege
Management:
Policies and processes in use by
the provider to ensure that only
the provider and user personnel
with appropriate role/reasons to
access a resource may do so.

 Adjusted to Cloud
Continuum Resources

(Broker@Cloud)

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

53

1st Level Attributes 2nd Level Attributes Indicative 3rd
Level Attributes

Indicative Value
Types

Update on
SMI/Broker@Cloud

 Supported
authentication
schemes

Unordered Set
{Basic, 1-way
SSL, 2-way SSL}

-

 Role based Access
Control(RBAC)
supported

Boolean -

 Attribute based
Access Control
supported(ABAC)

Boolean Added 3rd Level
Attribute

 Data Geographic/Political:
The user's constraints on
resource location based on
geography or politics.

 -

 Data Integrity:
Keeping the data that is created,
used, and stored in its correct
form so that users may be
confident that it is accurate and
valid.

 -

 Data Privacy & Data Loss:
User restrictions on access and
use of data are enforced by the
provider. Any failures of these
protection measures are
promptly detected and reported
to the user.

 Adjusted to Cloud
Continuum Resources

(Broker@Cloud)

 Audit Trailing Boolean -

 Physical & Environmental
Security:
Policies and processes in use by
the provider to protect the
provider facilities and physical
resources from unauthorized
access, damage or interference.

 Adjusted to Cloud
Continuum Resources

 Proactive Threat & Vulnerability
Management:
Mechanisms in place to ensure
that the resource is protected
against known recurring threats
as well as new evolving
vulnerabilities.

 -

 Firewall (UTM-
unified threat
management)

Boolean -

 Retention/Disposition:
The provider’s data retention
and disposition processes meet
the users' requirements.

 Linguistic: {
LOW, MEDIUM,
HIGH }

-

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

54

1st Level Attributes 2nd Level Attributes Indicative 3rd
Level Attributes

Indicative Value
Types

Update on
SMI/Broker@Cloud

 Security Management:
The capabilities of providers to
ensure network, data and
infrastructure security based on
the security requirements of the
user.

 Adjusted to Cloud
Continuum Resources

 Encrypted Storage Boolean -

 Encryption Type Integer (e.g. 128,
192, 256 Bits)

-

 Transport Layer
Security

Boolean Added 3rd Level
Attribute

 Process Transparency:

This attribute refers to the
availability of open source code,
open source business processes
and open source hardware from
the cloud continuum provider
side

 Boolean Added 2nd Level
Attribute

Usability:
It is related to the ease
with which a resource
can be used

 -

 Client Personnel Requirements:
The minimum number of
personnel satisfying roles, skills,
experience, education, and
certification required of the user
to effectively access and utilize a
resource.

 -

 Installability:
Installability characterizes the
time and effort required to get a
resource ready for use.

 Linguistic: {
LOW, MEDIUM,
HIGH }

-

 Learnability:
The effort required of users to
learn to access and use the
resource.

 Linguistic: {
LOW, MEDIUM,
HIGH }

-

 Operability:
The ability of a resource to be
easily operated by users.

 Linguistic: {
LOW, MEDIUM,
HIGH }

-

 Transparency:
The extent to which users are
able to determine when changes
in a feature of the resource occur
and whether these changes
impact usability.

 Linguistic: {
LOW, MEDIUM,
HIGH }

-

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

55

1st Level Attributes 2nd Level Attributes Indicative 3rd
Level Attributes

Indicative Value
Types

Update on
SMI/Broker@Cloud

 Understandability:
The ease with which users can
understand the capabilities and
operation of the resource.

 Linguistic: {
LOW, MEDIUM,
HIGH }

-

 Reusability:
 How generic the resource
interface is and how easy it is to
be used in different cloud
applications

 Linguistic: {
LOW, MEDIUM,
HIGH }

Adjusted to Cloud
Continuum Resources

(Broker@Cloud)

Reputation:
It is related to the
reputation of the
provider and of the
cloud continuum
resource offerings that
are provided or that
have been provided in
the past.

 Adjusted to Cloud
Continuum Resources

(Broker@Cloud)

 Brand name:
It is the linguistic expression of
the reputation of the provider as
perceived by its users

 Linguistic: {
BAD, OK, GOOD
}

-

 Resource Reputation:
It is the linguistic expression of
the reputation of the cloud
continuum resource as
perceived by its users

 Linguistic: {
BAD, OK, GOOD
}

Adjusted to Cloud
Continuum Resources

(Broker@Cloud

 Provider Trust

It refers to the linguistic
expression of the level of
confidence that the provider
is and will continue to abide
to legal security and be
compliant with local
regulations

 Linguistic: {
LOW, MEDIUM,
HIGH }

Added 2nd Level
Attribute

(adjusted from
(Niemcewicz, 2021))

 Contracting Experience:
Indicators of users effort and
satisfaction with the process of
entering into the agreements
required to use a resource.

 Linguistic: {
LOW, MEDIUM,
HIGH }

Moved from other 1st
Level Attribute (i.e.

Accountability)

 Ease of doing business:
Users’ satisfaction with the
ability to do business with a
certain provider.

 Linguistic: {
LOW, MEDIUM,
HIGH }

Moved from other 1st
Level Attribute (i.e.

Accountability)

 Provider business stability:
The likelihood that a certain

 percentage
(fuzzy number)

Moved from other 1st
Level Attribute (i.e.

Accountability)

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

56

1st Level Attributes 2nd Level Attributes Indicative 3rd
Level Attributes

Indicative Value
Types

Update on
SMI/Broker@Cloud

provider will continue to exist
throughout the contracted term.

 Resources stability:
The likelihood that certain
resources, contracted to be
exploited by an external user
will not be moved and will
continue to exist throughout the
contracted term.

 percentage
(fuzzy number)

Added 2nd Level
Attributes

 Provider Ethicality:
Ethicality refers to the manner
in which the provider conducts
business; it includes business
practices and ethics outside the
scope of regulatory compliance.
It also includes fair practices
with suppliers, customers, and
employees

 Linguistic: {
LOW, MEDIUM,
HIGH }

Moved from other 1st
Level Attribute (i.e.

Accountability)

 Sustainability:
The impact on the economy,
society and the environment of a
certain provider.

 Moved from other 1st
Level Attribute (i.e.
Accountability) &
Added 3rd Level

Attributes

 Economic impact Linguistic: {
LOW, MEDIUM,
HIGH }

-

 Societal impact Linguistic: {
LOW, MEDIUM,
HIGH }

-

 Energy
consumption

Float (Watts) -

 Carbon footprint Float (g/KWh) -

 Provider Track record:
The previous experience and
performance history with
respect to leasing cloud
continuum resources from a
certain provider

 Added 2nd Level
Attribute

 Resource Track record:
The previous experience and
performance history with
respect to using certain cloud
continuum resource types from
a certain provider

 Added 2nd Level
Attribute

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

57

CONSORTIUM

D3.1 Initial NebulOuS Brokerage & Resource Management

www.nebulouscloud.eu

info@nebulouscloud.eu

58

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union or Directorate-General for Communications Networks, Content and
Technology. Neither the European Union nor the granting authority can be held responsible for them.

A META OPERATING SYSTEM FOR BROKERING
HYPER-DISTRIBUTED APPLICATIONS ON

CLOUD COMPUTING CONTINUUMS

