" NebulOuS

A META OPERATING SYSTEM FOR BROKERING
HYPER-DISTRIBUTED APPLICATIONS ON
CLOUD COMPUTING CONTINUUMS

D2.3
NEBULOUS SEMANTIC MODELS AND
RESOURCE DISCOVERY MECHANISM

[31/10/2025]

***, | Funded by
*.,." | the European Union

D2.3 NebulOuS Semantic Models and Resource
N e b u I O u S Discovery Mechanism

Grant Agreement No. 101070516

NebulOuS - A META OPERATING SYSTEM FOR BROKERING HYPER
DISTRIBUTED APPLICATIONS ON CLOUD COMPUTINGCONTINUUMS

Project Acronym/ Name

Topic HORIZON-CL4-2021-DATA-01-05

Type of action HORIZON-RIA

Service CNECT/E/04

Duration 36 months (starting date 1 September 2022)

Deliverable title Nebulous Semantic Models and Resource Discovery Mechanism
Deliverable number D2.3

Deliverable version 1.0

Contractual date of delivery 31 October 2025

Actual date of delivery 4 November 2025

Nature of deliverable Report

Dissemination level Public

Work Package WP2

Deliverable lead SEERC

Author(s) Simeon Veloudis

Abstract This deliverable presents the refined semantic foundations and resource

discovery mechanisms of NebulOuS. Building on D2.2, it consolidates
three complementary semantic models describing (i) the capabilities of
cloud-edge resources, (ii) the QoS requirements of application
components, and (iii) the meta-quality constraints governing service
delivery. It also presents the enhanced Resource Discovery Mechanism,
which has been extended to support edge device registration with the
Scheduling Abstraction Layer (SAL) and dynamic integration into
deployment scenarios.

Fog computing, Cloud Continuum, application deployment, resource
Keywords discovery, declarative description, semantic models, brokerage, QoS,
quality assurance

DISCLAIMER

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and
do not necessarily reflect those of the European Union or Directorate-General for Communications
Networks, Content and Technology. Neither the European Union nor the granting authority can be held
responsible for them.

COPYRIGHT

© NebulOuS Consortium, 2022

This document may not be copied, reproduced, or modified in whole or in part for any purpose without
written permission from the NebulOuS Consortium. In addition to such written permission to copy,
reproduce, or modify this document in whole or part, an acknowledgement of the authors of the document
and all applicable portions of the copyright notice must be clearly referenced.

All rights reserved.

Funded by www.nebulouscloud.eu
the European Union info@nebulouscloud.eu 1

NebulOuS

D2.3 NebulOuS Semantic Models and Resource

Discovery Mechanism
CONTRIBUTORS
Name Organization
Simeon Veloudis SEERC
Andreas Tsagkaropoulos ICCS
PEER REVIEWERS
Name Organization
Dimitris Apostolou ICCS
Pawel Skrzypek 7Bulls
REVISION HISTORY
Version Date Owner Author(s) Comments
1.0 06/10/2025 SEERC Simeon Veloudis Preliminary draft
1.1 09/10/2025 SEERC Simeon Veloudis Preliminary draft
1.2 09/10/2025 ICCS Andreas Tsagkaropoulos Preliminary draft
1.3 17/10/2025 SEERC Simeon Veloudis Preliminary draft
1.4 29/10/2015 SEERC Simeon Veloudis Preliminary draft
1.5 03/11/2015 ICCS Andreas Tsagkaropoulos Final draft

Funded by
the European Union

www.nebulouscloud.eu
info@nebulouscloud.eu

NebulOuS

Abbreviation/Acronym

D2.3 NebulOuS Semantic Models and Resource
Discovery Mechanism

Open form

ABox Assertional Box

AMQP Advanced Message Queuing Protocol
cC Cloud Continuum

CoCoOn Cloud Computing Ontology

OAM Open Application Model

ODRL Open Digital Rights Language

OWL Web Ontology Language

Q-SLA Quality-based Service Level Agreement
SAL Scheduling Abstraction Layer

SL Service Level

SLO Service Level Objective

DL Description Logic

TBox Terminological Box

QoS Quality of Service

Funded by
the European Union

www.nebulouscloud.eu
info@nebulouscloud.eu 3

D2.3 NebulOuS Semantic Models and Resource
N e b u I O u S Discovery Mechanism

TABLE OF ABBREVIATIONS AND ACRONYMSTABLE OF CONTENTS

EXECUTIVE SUMMARYoooviiiiiiitiinitinitinitcnatcnat st sssat s s st cssae st sssae s st sosas s sasssssssssasssssssssssesssssssssssssssssansssaes 6
1 INTRODUCGCTION ..cciitiiitiiitiintiinriniieniiesste st sasessans s sss s ssesssssssssssssssasesssasssssessssssnsssssssssssesssasessaes 7
2 RESOURCE DISCOVERY MECHANISMciiiinuiiiinniiiiiiieiiiiieinineeeinneessstesssmseesssmeessssmeessssesssssssesses 8
3 SEMANTIC MODELLING ..cuutiiiiiitiiitietinntecnitteiineecneieecssssstessssssessssssessssssesssssssessssssssssssssessssssssssssssesss 11
3.1 Capabilities of cloud-€dge TESOUTICES ..couruuururueueceeirirtrteeeeeeecetee ettt ns 11
3.2 requirements of apPliCAtION COMPOTIENTS ..uveuruertrreertrreertereertrsesessesesassesesesessesassesssessesesassesesessesasens 11
3.2.1 Service Levels and Service LeVel ODJECTIVEScoevueirerieirintiireeteteeetetsestee ettt st ssesaesessens 11
3.2.2 Qo 1R (18 oY o Lo I ISR <) =1 ISR 12
3.2.3 SEULLEIMENT ettt ettt ettt ettt a e et a sttt a e et a e e e s tn e e e senen 13
3.3 Meta-QUAlItY CONSTIAINTS w.eueireereiereeireereirteueteeeesteseetseeestssesestesesestssesestssesestssenensssesestesenensssenenens 14
3.3.1 (0.0 TR 14
3.3.2 Meta-Quality ConStraints in ODRLc.ccccceueerirueerenreeriseeestsseestssesestssesessssesestesesesssesessesesesseseneses 14
4 (010 3\ 03 (0 N 16
5 REFERENCGES ...ttt csstcsat s sssssat s sstesat s ssssssas s sssssnsesossessnsssossessnsssonsesnsesonsesans 17

Funded by www.nebulouscloud.eu
the European Union info@nebulouscloud.eu 4

D2.3 NebulOuS Semantic Models and Resource
N e b u I O u S Discovery Mechanism

LIST OF FIGURES

FIGUIE 1 SEQUEINCE QIAGTAIN c.cuvuuuiuierueieieteteeceteteaeueeteteseaetete e et ste e et st e se et st e s e et st e s e et s e e et et st e e et et e sesent b eseneattssenentns 8
Figure 2: Updated re@istration fOIM......coeierereureeeteeeeestste et st ettt et s s et st et st e e et st e et e se e et ssesenens 9
Figure 3: Updated reg@iStration fOIM. .. e e e e e e e e 9
Figure 4: OVErVIEW Of Q-SLA ...ttt tete e et e et ettt e et st e e e et s e et e s e et s s e et s e e et et st e se et et eseseattesenen 12
FIGUIE 5: SLA EXAIMPLE e eeseeseseseseseesesese e e e e e ettt ettt ettt ettt e e e easaeaeaen 13
FIGUIE 6: ODRL...cuuieiecniieieecncteeesencteteseactete e etets e sett s et ssesesttes s et et s ettt s se et et esesentatesesestatssesestatasssesentesssenentasssenes 14
Figure 7: Meta-quality constraints in ODRL.....c.ccoceceueueerceteueercntseeeestseeseeststeseetstesesentetssesenttssssensntssesencnssssseensssesenen 15

Funded by www.nebulouscloud.eu
the European Union info@nebulouscloud.eu 5

D2.3 NebulOuS Semantic Models and Resource
N e b u I O u S Discovery Mechanism

EXECUTIVE SUMMARY

This deliverable presents the consolidated outcomes of Work Package 2 of the NebulOusS project, focusing
on the evolution and operational maturity of the semantic and discovery components that underpin
intelligent service brokerage across the Cloud-Edge Continuum CEC.

Building on the foundations established in Deliverable 2.2, this iteration introduces:

e An enhanced Resource Discovery Mechanism, enabling the registration, management, and
utilisation of heterogeneous edge devices through the Scheduling Abstraction Layer (SAL). Key
improvements include the integration of device metadata (e.g., geolocation, provider), support for
non-standard communication ports, a nonce-based security token for application-specific device
registration, and the inclusion of a MongoDB sidecar for persistent device management within
Kubernetes.

o A refined suite of NebulOuS semantic models, encompassing three complementary ontological
representations:

1. The CoCoOn-based resource capability model, semantically lifting operational resource
descriptions from SAL.
2. The Q-SLA model, capturing application QoS requirements and enabling ontology-driven
reasoning over Service Level Agreements.
3. The ODRL-based meta-quality constraint model, defining higher-level governance rules
that constrain SLA formulation and enforce compliance with overarching quality policies.
These models collectively support automated reasoning for SLA validation, forming the semantic
foundation for the NebulOuS Brokerage Quality Assurance mechanism, described in Deliverable 3.2,
for enabling formal verification of SLA consistency and compliance with meta-quality constraints.

Funded by www.nebulouscloud.eu
the European Union info@nebulouscloud.eu 6

D2.3 NebulOuS Semantic Models and Resource
N e b u I O u S Discovery Mechanism

1 INTRODUCTION

NebulOuS approaches resource discovery within the Cloud Continuum (CC) through model-driven and
semantics-based techniques that enable the identification of optimal resources for deploying hyper-
distributed applications. Building on the foundations laid in Deliverable 2.2, “Initial Semantic Models and
Resource Discovery Mechanism” this deliverable presents the matured NebulOuS semantic models and the
refined resource discovery mechanism developed to support intelligent, user-centric, and quality-assured
application deployment across heterogeneous cloud and edge environments.

NebulOuS enables users to declaratively define hyper-distributed applications and their deployment
requirements through the Open Application Model (OAM) [1] and its Kubernetes-native implementation,
KubeVela, as detailed in Deliverable 2.2. The Quality of Service (QoS) requirements of each application
component are specified using a NebulOuS-specific metric model inspired by CAMEL, which allows metrics
to be defined over arbitrary, user-defined QoS attributes and their associated data sources (see Deliverable
2.2). Furthermore, optimisation objectives governing application placement and execution are expressed
through an AMPL-based optimisation model, also introduced in Deliverable 2.2, which determines
deployment configurations that best satisfy both QoS constraints and user preferences.

This model-driven foundation is complemented by an ontological layer that formally captures the
knowledge embedded in Service Level Agreements (SLAs). This layer underpins NebulOuS’ Brokerage
Quality Assurance mechanism, reasoning about the consistency and feasibility of user-defined QoS
requirements, as well as their compliance with higher-level application policies—the so-called meta-
quality constraints. This mechanism is detailed in Deliverable 3.2, “NebulOuS Brokerage, Optimization, and
Resource Management”.

In this context, the present deliverable focuses on two core elements:

e Section 2 introduces the evolved Resource Discovery Mechanism, describing the functional and
architectural improvements that enable the seamless integration of heterogeneous edge devices
into the NebulOuS Scheduling Abstraction Layer (SAL).

e Section 3 presents the NebulOuS semantic models, encompassing (i) the capabilities of cloud—edge
resources, (ii) the QoS requirements of application components, and (iii) the representation of
meta-quality constraints governing SLA formulation and compliance, formally expressed through
the Open Digital Rights Language (ODRL) [3].

Together, these models and mechanisms form the semantic backbone of NebulOuS, supporting policy-
driven SLA governance, and automated reasoning across the Cloud—Edge Continuum.

It should be noted that sections related to the Open Application Model (OAM), its Kubernetes-native
implementation KubeVela [4], the NebulOuS metric model, and the optimisation mechanisms are omitted
in thisiteration, as no additional work has been performed beyond what was already reported in Deliverable
2.2. The present document therefore focuses exclusively on the components that have undergone
substantial technical and conceptual evolution—namely, the Resource Discovery Mechanism and the
NebulOuS semantic models.

Funded by www.nebulouscloud.eu
the European Union info@nebulouscloud.eu 7

D2.3 NebulOuS Semantic Models and Resource
N e b u I O u S Discovery Mechanism

2 RESOURCE DISCOVERY MECHANISM

The NebulOuS Resource Discovery Mechanism plays a crucial role in enabling the distribution of processing
tasks across edge devices and independent computing resources throughout the continuum. Through this
mechanism, NebulOus is able to register such devices with the Scheduling Abstraction Layer (SAL), thereby
allowing them to supplement—or even replace—traditional cloud resources in deployment scenarios.

The primary goal of the component s to allow NebulOusS users to easily register computing resources —edge
devices or isolated processing nodes — to be used in future deployments of their applications. Registration
to the Resource Discovery Mechanism is being accomplished by first completing a form on device
characteristics and then combining this information with appropriate diagnostics to provide a wider view
of its processing capacity. Once a computing resource is registered to the Resource Discovery Mechanism,
registration details are being used to inform the Scheduling Abstraction Layer about the new resource —
which can then be used in new deployments by NebulOusS.

In this second iteration of the Resource Discovery Mechanism, a number of functional and structural
improvements have been introduced, alongside the resolution of several issues identified in earlier releases.
The latest version of the component is publicly available at: https://github.com/eu-nebulous/resource-

manager

The most significant enhancement concerns the registration of edge device information to SAL. This
functionality has been coupled with supporting utilities that allow this information to be published via the
AMQP broker employed by NebulOusS. As a result, NebulOuS can now seamlessly integrate edge devices—
or any independent computing nodes not tied to a particular cloud provider—into its deployments. This
enables operational scenarios where such resources can be dynamically leveraged to improve flexibility and
efficiency.

Another important improvement introduces the ability to restrict the use of specific edge devices to a single
NebulOuS application. This feature ensures that resources registered for one application are not
automatically visible to others (while still retaining the option to register a device for use by all applications,
if desired). The restriction mechanism is implemented through a nonce-based security token generated by
the user interface and transmitted via the broker to the Resource Discovery server. Upon receiving the token,
the server validates it through the NebulOuS Middleware, retrieves the associated application name, and
constructs a unique device identifier comprising both the device and application names. This identifier is
stored in SAL and used during resource optimization to filter out devices that do not belong to the current
application context.

Figure 1 illustrates the sequence of interactions between an external actor and the Resource Discovery
Mechanism during device registration.

User (device registrant)] Resource Discovery Mechanism] __ NebulOuS middieware |

request to
http://IP:PORT/request-edit.htmI?nonce=<NONCE>&appld=<APPID>

Ask for authentication using NONCE> H

< Verify authentication

L Reply with web form to register the device

:
3
‘
>
|
‘
‘
‘
‘
‘
:
‘
‘
‘
‘
!
‘

Figure I: Sequence diagram

Funded by www.nebulouscloud.eu
the European Union info@nebulouscloud.eu 8

https://github.com/eu-nebulous/resource-manager
https://github.com/eu-nebulous/resource-manager

D2.3 NebulOuS Semantic Models and Resource
Discovery Mechanism

NebulOuS

Depending on the login method, the updated registration form appears pre-filled with different data in the
'Device Ref' field used by SAL (see Figures 2 and 3). Both registration forms adhere to the following naming
convention when populating the Device Reffield:

application_id| < APP_ID > | < DEV_HASH >
In this convention, < DEV_HASH > represents arandomly generated device identifier, while < APP_ID >

corresponds either to an alphanumeric string (for devices registered to a specific application) or to the literal
string "all_applications" (for globally available devices).

Device details

]

Device Id Device unique id
Device Ref application_id|all-applications|50484 18c-e93c-445f-8a57-5a19100cef13
Device Name EdgeDevSite001
Device 0S LINUX
Device Owner admin
Hourly Device Cost 0.00
Device GPU cores 0 <
Device Provider BIBA
IP address 98.81.90.188
SSH port 22
Location Frankfurt Latitude 50.110924 Longitude 8.682127
SSH Username ubuntu
SSH Password S3cur3*Pass2

SSH Public Key

Additional Info

*** SSH public key - Not exposed ***

Additional device info

Figure 2: Updated registration form

Device details

&

Device Id Device unique id
Device Ref application_id|2222222222222|df64e4ab-1b92-4795-a569-0e53658f9429
Device Name EdgeDevSite002
Device 0S5 LINUX
Device Owner admin
Hourly Device Cost 0.00 2
Device GPU cores 0 :
Device Provider BIBA
IP address 98.81.90.187
SSH port 22
Location Frankfurt Latitude 50.110924 Longitude 8.682127
SSH Username ubuntu
SSH Password S3cur3Pass2

SSH Public Key *** SSH public key - Not exposed **#

Additional Info Additional device info

Figure 3: Updated registration form

As an example, let us consider the registration form presented in Figure 4: An edge device belonging to
provider ‘BIBA’, having a public IP address of 98.81.90.187, situated in Frankfurt, is being made accessible
through the standard SSH port (22) with the username-password pair illustrated in the figure. The device
does not have a GPU, and its cost is zero since it is assumed to be an edge device belonging to the company.

Funded by
the European Union

www.nebulouscloud.eu
info@nebulouscloud.eu 9

D2.3 NebulOuS Semantic Models and Resource
N e b u I O u S Discovery Mechanism

In the ‘Device Ref field, we can observe the middle part of the string (2222222222222) which reflects the
identifier of the particular application that the device will only be available for.

The Resource Discovery Mechanism has also been extended to support device registration using custom
port numbers, enabling communication through non-standard ports and the circumvention of restrictive
firewall configurations. In addition, users can now specify further metadata through the user interface,
including device provider, geographic longitude, and latitude.

Finally, the component’s codebase and deployment structure have been refined to favour configuration over
hard-coded options, allowing parameters such as platform IP, username, and password to be externally
configured. Structurally, the mechanism now operates as a Kubernetes pod with an integrated MongoDB
sidecar, simplifying the management and persistence of registered device information.

Funded by www.nebulouscloud.eu
the European Union info@nebulouscloud.eu 10

D2.3 NebulOuS Semantic Models and Resource
N e b u I O u S Discovery Mechanism

3 SEMANTIC MODELLING

NebulOusS relies on three distinct semantic models. The first captures the capabilities of CC resources, based
on the CoCoOn information schema [5], describing compute, storage, network, and other infrastructural
characteristics. The second model articulates the QoS requirements of application components, leveraging
the Q-SLA ontology [6] to represent performance, reliability, monitoring, and other service-level attributes.
The third model captures meta-quality constraints, expressing higher-order policies and rules that govern
application deployments, and is based on the Open Digital Rights Language (ODRL) [3].

3.1 CAPABILITIES OF CLOUD-EDGE RESOURCES

In NebulOusS, resource capabilities are modelled following the approach outlined in Deliverable 2.2: they are
represented in terms of the same concepts and properties as Iaa$ cloud services using the CoCoOn ontology.

Building on the initial CoCoOn-based model introduced in Deliverable 2.2, subsequent work has focused on
integrating operational resource descriptions through the Scheduling Abstraction Layer (SAL) and
establishing a semantic mapping between SAL and CoCoOn. To operationalise and maintain an up-to-date
view of available resources, NebulOusS leverages SAL, which provides a REST API and associated schemas for
describing and managing CC nodes and services. SAL defines a set of resource descriptors—including CPU,
memory, storage, network bandwidth, location, and price—that capture the capabilities of heterogeneous
cloud and edge nodes in a machine-actionable form.

A mapping is established from SAL to CoCoOn to semantically lift these operational descriptions into the
ontology. In this process, only SAL concepts and attributes that may participate as first arguments of
provider-facing SLA SLOs are mapped, namely: compute, memory, storage, network capacity, location, and
price. Each resource instance described through SAL is translated into a corresponding CoCoOn instance
(e.g., cocoon:ComputeService, cocoon:StorageService, cocoon:NetworkService) with its quantitative
attributes preserved. Attributes that are operational, temporal, or procedural in SAL (e.g., resource status,
scheduling policies, runtime metrics) are excluded from this mapping, as they do not directly contribute to
SLO definitions.

This mapping provides the following benefits. First, it establishes a semantic bridge between operational
resource descriptions and formal resource models, enabling interoperability across heterogeneous CC
resources. Second, it allows SLA SLOs to be grounded in CoCoOn, meaning that each SLO’s first argument
directly references a semantically defined resource, which supports automated reasoning about feasibility,
consistency, and policy compliance. In this way, the semantic mapping of SAL to CoCoOn forms a
foundational step in ensuring that NebulOuS’s provider-facing SLAs are trustworthy, precise, and
semantically consistent.

3.2 REQUIREMENTS OF APPLICATION COMPONENTS

The second NebulOuS semantic model focuses on capturing the Quality of Service (QoS) requirements
associated with the components of hyper-distributed applications. This model builds upon Q-SLA, a
comprehensive semantic QoS description language developed on top of OWL, which provides the formal
expressiveness required to represent and reason about Service Level Objectives (SLOs) within the CC. The
following section outlines the role and usage of Q-SLA within NebulOusS.

3.2.1 Service Levels and Service Level Objectives

Building upon the semantic foundations for representing SLAs established in Deliverable 2.2, the present
work extends this model towards operationalisation and reasoning-driven automation. While Deliverable
2.2 focused on defining the conceptual structure of the usage of Q-SLA within NebulOuS—including the
definition of Service Levels (SLs), SLOs, compensations, and settlements—this section concentrates on how
these concepts are now instantiated, interconnected, and dynamically used in reasoning processes. It
introduces mechanisms for automatic SLA transitions and settlements, enabling policy-driven brokerage
across the Cloud-Edge Continuum.

Funded by www.nebulouscloud.eu
the European Union info@nebulouscloud.eu 1

D2.3 NebulOuS Semantic Models and Resource
N e b u I O u S Discovery Mechanism

In NebulOuS SLAs are treated as aggregations of smaller-scale QoS specifications called Service Levels (SLs).
SLs are used for modelling the fluctuating level of resources that is often provisioned in near-edge
environments affecting the quality of workload consumption. They may also be used for defining
compensating actions that transition between different SLs when certain performance-related threshold
values are superseded or violated, thus implementing service degradation schemes.

Ontologically, SLs take the form of complex QoS constraints i.e., of logical combinations of simple and/or
other complex constraints. Simple constraints are boolean expressions that represent SLOs. They invariably
comprise two arguments and an operator for comparing them. The first argument (specified through the
object property firstArgument — see Figure 4) is a QoS metric, and the second argument (specified through
the data property secondArgument) is a literal; operators are attached to the constraints through the object
property operator. In the example SLA shown in Figure 5, two SLs are defined: a high and a low. Each SL is
expressed as a conjunction of two SLOs — response time and availability. Specifically, the high SL combines
the high-tier versions of these SLOs (ResponseTime_H and Availability_H), while the low SL combines their
low-tier counterparts (ResponseTime_L and Availability_L). The response time SLOs are linked to the
average response time metric (Avg_RT) via the object property firstArgument which they constrain through
the data property secondArgument (100ms for the high SL and 200ms for the low SL). Similarly, the availability
SLOs constrain the average workload uptime metric, setting a 99.999% threshold for the high SL and 99.99%
for the low SL. Metrics and literals are further elaborated below.

L d
Constraint % ComparisonOperator Organisation

Metric Facet

A constraint I
Specification Facet
SLA Facet Person
operator
SimpleConstraint - tee " logical . 5
| QualifyingCondition ComplexConstraint —Operalor_> LogicalOperator obliged Entity
secondArgument ? A
I monitoringEntity T
T ’7qualrlymgcondmon | T AssessmentEntity enlmy
PriceModel service
P E— AN
sLO sL Level SLA <, ™ __ RoleAssignment
minPrice price Assignment
|) Component
sloSettiement MaxPrice

| firstSL secondSL siTransition settlement

affected

Penalty Price priceComponent
Component l concemedSL
| PO
firstArgument compevnsanon PriceComponent SLTransition Settlement
SLOCompensation minPrice evaluationPeriod evaluationPeriod
settlementPricePercentage MaxPrice violationThreshold settlementCount
$ I | measul Directive ¢
A schedule g Measurement
> Metric — Schedule RawMetric Sensor— Sensor 2 5
Directive
[A +
window argumentLi
e | v
Window CompositeM fonnula# Formula function—>» Function ArgumentList

Figure 5: Overview of Q-SLA

3.2.2 QoS Metrics and Literals

QoS metrics in NebulOusS are represented using the metric model (or facet — see Figure 4) and may be either
simple or composite. Simple metrics (e.g., “raw response time”) are directly monitored from sensors and are
associated with measurement directives specifying how monitoring should be performed, including
scheduling parameters (start/end times and measurement frequency), selection of measurement values
(e.g., all measurements after a certain timestamp or within a recent time window), access type (“push” or
“pull”), and the scripts used, if any. Each measurement is further annotated with a value type (e.g., integer)
and a unit of measurement (e.g., seconds). Users can also define custom simple metrics, provided that
monitoring endpoints are available.

Composite metrics (e.g., “average response time”) are derived from one or more simple or other composite
metrics, enabling the creation of higher-order metrics that bridge the gap between low-level device

Funded by www.nebulouscloud.eu
the European Union info@nebulouscloud.eu 12

D2.3 NebulOuS Semantic Models and Resource
N e b u I O u S Discovery Mechanism

measurements and application-level QoS concepts. For example, a workload may be associated with a
composite metric “workload availability,” represented as a vector combining simple metrics for “uptime”
and “response time.” In highly dynamic near-edge environments, additional simple metrics—such as “error
rate”—can be incorporated into the composition to capture variability and potential service disruptions.

This operational focus extends the original Q-SLA model from Deliverable 2.2 by providing concrete
guidance for automated monitoring, dynamic metric composition, and handling of near-edge deployment
variability, supporting reasoning-driven SLA management in the Cloud—Edge Continuum.

3.2.3 Settlement

SLA settlement refers to the set of automated corrective actions and compensations applied when Service
Level Objectives (SLOs) are violated. It formalises how SLA violations are handled, including penalties,
service level transitions, or workload termination, and is defined ontologically to support reasoning-driven
enforcement across the Cloud-Edge Continuum. Settlement in NebulOusS occurs at three different levels:

1. SLOlevel: Individual SLO violations trigger penalties that take the form of instances of the Penalty class
(see Figure 4). These instances are linked to instances of the SLOCompensation class which specify —via
the data property settlementPricePercentage— a discount percentage on the cost of workload
consumption. In Figure 5, for example, a response time SLO is associated with a penalty that enforces a
5% price discount per SLO violation. Notably, penalties apply regardless of the SL at which the violation
occurs.

2. SLlevel: Cumulative SLO violations surpass a preset threshold, prompting transitions between service
levels. Transitions are modelled through the SLTransition concept (see Figure 4). Each transition
connects two SLs using the object properties firstSL and secondSL, while the data properties
evaluationPeriod and violationThreshold define its activation conditions. For example, in Figure 5, the
H_L_Transition instance specifies a downgrade from the high to the low SL when the number of SLO
violations exceeds 4 within any 1-hour period.

secondSL
SLA_Settlement H_L_Transition
1h €——[—settlement— SLA —slITransition— 1h
4 | 4
ﬁsewiceLevei vL |
‘ h 4 firstSL
concernedSl i
< —_— SL_Low » And |« SL_High <
logical logical
A [Operator Operator [A
operator constraint constrain operator
s’ v v v
ResponseTime_L Availability_L operator operator| Availability_H ResponseTime_H
> > €
200 99.99 j ’— 99.999 100
fi tAI l T fi 1‘AI
irs r‘g‘;rument ﬁrsbi\rgument sloSettlement—] irs r‘gument
SLO_comp
AVG_RT Availability Penalty —compensation> AVG_RT
0.05

Figure 6: SLA example

3. SLA level: Critical situations occur and workload consumption must be terminated. Critical situations
are captured through the Settlement concept, using the data properties evaluationPeriod and
settlementCount. In Figure 5, the SLA_Settlement instance mandates termination if 4 or more SLO
violations occur within any 1-hour period. Notably, this condition applies only when the workload is
already operating at the low SL, which is indicated by the association between SLA_Settlement and the
low SL via the object property concernedSLs. Settlement actions may be automatically triggered through
ontology-based reasoning. Depending on the occasion, this reasoning may be simpler —e.g., entailing
a mere evaluation of the conditions governing the activation of a transition— or more complex —e.g.,
entailing semantic inferencing over an external geospatial ontology to determine whether the current
deployment location is near-edge and hence whether settlement actions should ensue.

Funded by www.nebulouscloud.eu
the European Union info@nebulouscloud.eu 13

D2.3 NebulOuS Semantic Models and Resource
Discovery Mechanism

NebulOuS

3.3 META-QUALITY CONSTRAINTS

Meta-quality constraints impose governance rules that constrain how SLAs are formulated. More
specifically, they define higher-level compliance conditions that govern individual SLOs, or entire SLAs,
ensuring that service brokerage decisions adhere to overarching quality principles. They may restrict the
values of individual SLOs—for example, “ the response time SLO should invariably impose a threshold below
10ms”—or they may apply more broadly, focusing on workload consumption as a whole e.g., “ifany SLO is
violated more than n times in an hour, workload consumption must be downgraded to a lower QoS (and
thus cheaper) level, and if no such level exists, it must be terminated altogether”. In NebulOuS, meta-quality
constraints are formally expressed using the Open Digital Rights Language (ODRL) [3].

3.3.1 ODRL

ODRL is a W3C recommendation designed for ontologically representing policies. It provides several
normative subtypes for modelling both policies and the rules that they comprise. Policies can be classified
as Offers, Agreements, or Sets, representing proposals, commitments, claims that do not grant any
permissions/prohibitions, or collections of rules with no additional semantics, respectively. Similarly, rules
can be Prohibitions, Permissions, or Duties, indicating actions that a party cannot, can, or must perform,
respectively. A rule is semantically associated with: an action i.e., the operation to be performed on the
resource; an asset or asset collection i.e., the resource or entity whose usage the rule governs; a party i.e., the
entities involved in the rule, such as the actor of the action; one or more constraints (optional) i.e., additional
conditions that further restrict the rule’s execution. Actions, assets, and parties can be further refined
through the refinement object property, which links these elements to one or more constraints that specify
additional conditions governing their applicability. Refinements enable context-aware policy expressions,
allowing constraints to be applied dynamically based on external factors. For instance, a meta-quality
constraint may restrict workload response times to under 100ms, but with a temporal refinement restricting
the application of this constraint to certain day times or to certain deployment locations.

Left Right
Set Offer Agreement Operand Operand
| leftOperand rightOperand
v
Policy ¢ ¢
I i
Duty — permission Loglca_l operand——» Constraint
obligation Constraint
prohibition constraint + T
refinement rightOperand
S : Asset
Prohibition — > Rule —relation—», Asset I - Operator
Collection
! I i)
cti £
a +|on function | partof
- . Party
Permission Action Party < Collection Legend
| T Same colors denote
partOf a subclass relation

Figure 7: ODRL

3.3.2 Meta-Quality Constraints in ODRL

A meta-quality constraintis modelled as an ODRL Duty say D. D takes the form of an OWL class that satisfies
the following axioms.

1. Itislinked via the object property target to exactly one Asset, which is invariably the SLA that the meta-
quality constraint constrains.

www.nebulouscloud.eu
info@nebulouscloud.eu 14

Funded by
the European Union

D2.3 NebulOuS Semantic Models and Resource
N e b u I O u S Discovery Mechanism

2. Itis associated via the object property constraint with exactly one Constraint or LogicalConstraint,
which articulates the requirements imposed by the meta-quality constraint.

3. Itislinked via the object property function to exactly one Party. This property is specialized into either
the assigner sub-property, denoting the entity issuing the meta-quality constraint, or the assignee sub-
property, denoting the entity subject to the constraint, typically the workload consumer.

4. Itis connected via the object property action to exactly one permit Action.

These axioms may be formally expressed as terminological (TBox) and assertional (ABox) axioms in the
SROIQ Description Logic (DL) as follows:

D C (=1target.SLA) N
(= 1 constraint. (Constraint U LogicalConstraint)) n
(= 1 assigner.Party) N (= 1 assignee. Party) N (= 1 acion. {permit})

For any object property P and concept C, (< 1PC) represents the abstract class that comprises all those
individuals that have at least one association through P with an instance of C; similarly, (> 1P() represents
the class that comprises all those individuals that have at most one association through P with an instance
of C. The symbols LI and M represent, respectively, class union and intersection. (= 1PC) is an abbreviation
for (s 1PC) @ (= 1PC). Notably an SLA may be linked to several meta-quality constraints. Intuitively, an SLA
is ‘permissible’ if the logical condition of each of its linked meta-quality constraints is true. All meta-quality
constraints linked to a particular SLA should be encapsulated within a single overarching Set policy
corresponding to the SLA. Below we provide two example meta-quality constraints. The first binds an
individual SLO. It states that the response time SLO should invariably impose a threshold below 10ms.
Formally, in SROIQ:

D, E constraint. (leftOperand.{ResponseTime} N operator.{lt, leq} N rightOperand <10)

The second binds the entire SLA. It states that if any SLO is violated more than 4 times in an hour, workload
consumption must be downgraded to a lower QoS level, or (if no such level exists) it must be terminated
altogether. Formally, in SROIQ (see also Figure 7):

D, E constraint. (evaluationPeriod = 1h N (violationThreshold < 4 U settlementCount < 4))

liﬁrstArgumentj

i violation
N Viol_thr_cndt Threshold
4 violations
Policy_1 |
Meta_cnst
_ _ <=
> cndt_1 opelrator—)
—» SLA_1
iqati and Sttl_cnt_cndt T
obligation or—> - = settlement
target 4 violations Count
— Meta_cnst |—ﬁrstArgumemJ
Meta_cnst condition 1 —
] evaluation
| ————firstArgument——» Period
action ; and
assignee
4
. Eval_per_cndt_1
Permit —» Party_1 > operator > =
1 hour
Figure 8: Meta-quality constraints in ODRL
Funded by www.nebulouscloud.eu

the European Union info@nebulouscloud.eu 15

D2.3 NebulOuS Semantic Models and Resource
N e b u I O u S Discovery Mechanism

4 CONCLUSIONS

This deliverable presented the matured NebulOuS Resource Discovery Mechanism and the semantic models
that collectively enable automated, quality-assured deployment across the Cloud—Edge Continuum.

The Resource Discovery Mechanism has evolved into a robust, Kubernetes-native component capable of
dynamically integrating heterogeneous edge resources, while ensuring security, configurability, and
operational persistence.

The three semantic models—capturing resource capabilities, application requirements, and meta-quality
constraints—provide the ontological foundation for NebulOuS’s reasoning-driven QoS assurances.

Together, these advancements mark a significant step toward realising the NebulOusS vision of intelligent,
adaptive, and trustworthy service brokerage in the Cloud-Edge Continuum.

Funded by www.nebulouscloud.eu
the European Union info@nebulouscloud.eu 16

D2.3 NebulOuS Semantic Models and Resource
N e b u I O u S Discovery Mechanism

5 REFERENCES

[1]] Open Application Model (OAM). “An open-model for defining cloud native apps.” OAM Specification,
oam-dev/spec repository, GitHub, v0.3.0 (June 212021). Available at: https://github.com/oam-dev/spec

[2] Achilleos, A. P., Kritikos, K., Rossini, A., Kapitsaki, G., Domaschka, J., Orzechowski, M., ... Papadopoulos,
G. A. 2019. The cloud application modelling and execution language (CAMEL). Journal of Cloud
Computing: Advances, Systems and Applications 8,20 (Dec. 2019). DOL:https://doi.org/10.1186/s13677-
019-0138-7

[3] W3C (2018). ODRL Information Model 2.2. W3C Recommendation, World Wide Web Consortium
(W3C). Available at: https://www.w3.org/TR/odrl-model/

[4] KubeVela Authors. (2025). KubeVela: The modern application delivery platform (v1.10.4). GitHub
repository. https://github.com/oam-dev/kubevela

[5] Zhang, Q., Haller, A., & Wang, Q. (2019). CoCoOn: Cloud Computing Ontology for IaaS Price and
Performance Comparison. CECS, The Australian National University. Available at:
https://openresearch-repository.anu.edu.au/items/c690c5e3-9clc-44d4-9aa2-97ccacc6bc68

[6] Kritikos, K., & Plexousakis, D. (2016). Semantic SLAs for Services with Q-SLA. In Proc. of the 9th
International Conference on Cloud Computing and Services Science (CLOSER 2016). Available at:
https://www.researchgate.net/publication/309196705_Semantic_SLAs_for_Services_with_Q-SLA

Funded by www.nebulouscloud.eu
the European Union info@nebulouscloud.eu 17

https://github.com/oam-dev/spec?utm_source=chatgpt.com
https://www.w3.org/TR/odrl-model/
https://github.com/oam-dev/kubevela
https://openresearch-repository.anu.edu.au/items/c690c5e3-9c1c-44d4-9aa2-97ccacc6bc68
https://www.researchgate.net/publication/309196705_Semantic_SLAs_for_Services_with_Q-SLA?utm_source=chatgpt.com

NebulOuS

D2.3 NebulOuS Semantic Models and Resource

Discovery Mechanism
CONSORTIUM
. w l /; SOUTH-EAST
s UBITECH ! corerean a bulls.com AcTiveeon
-~
J : o

ALCMENTA ubiwhere eurecal &) mercabama
\CCs %“?&
enpged existanze

@ fire

e00 L.
-4 Telefonica

BIBA

“ NebulOuS

A META OPERATING SYSTEM FOR BROKERING
HYPER-DISTRIBUTED APPLICATIONS ON
CLOUD COMPUTING CONTINUUMS

