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Executive Summary 
NebulOuS aims at designing and implementing a novel meta–Operating System (OS) that will enable secure 
and optimal deployment of hyper-distributed applications across the Cloud continuum. It aspires to provide a 
resource management platform that will transparently create and maintain an adaptive environment for hosting 
hyper-distributed application components (in the form of containerised workloads), whilst satisfying any QoS 
requirements, as well as any security and privacy constraints, attached to them. The platform will provide 
facilities for resource discovery, allocation, and provisioning, as well as for dynamic application component 
placement and scheduling.  

This document focuses on resource description with the aim of resource discovery i.e., on the identification 
of suitable CC resources for deploying hyper-distributed application components. In NebulOuS this is done by 
matching the QoS requirements attached to the components against the capabilities and characteristics of a pool 
of available CC resources. NebulOuS embraces a model-driven and user-centric approach to resource discovery 
that enables users to declaratively define: 

• Application compositions and deployments (i.e., hyper-distributed apps).  
• QoS requirements attached to application components.    
• Deployment preferences. 
NebulOuS assures the quality of the resource discovery process, hence the quality of the provided CC 

brokerage, by ensuring the quality of the QoS requirements used in this process. To this end, it relies on a 
semantic model that describes the declaratively-defined application component QoS requirements. By 
describing QoS requirements ontologically, we pave the way for a quality assurance mechanism that relies on 
semantic reasoning for assessing the correctness of these requirements by comparing them against a set of 
semantically-captured application consumption policies. These are policies that operate at a higher level of 
abstraction and express a broader set of business and security requirements that characterise an application 
component (as opposed to an application component workload or instance).  

As its title suggests, this document provides an initial account of the semantic and declarative models 
underpinning the NebulOuS discovery mechanism. More specifically, the following models are proposed: 

• The Open Application Model as the de-facto standard for describing hyper-distributed applications, and 
the KubeVela software as a tool for application composition and deployment. KubeVela has been chosen 
due mainly to its out of the box support for Kubernetes.  

• A custom model (based on the metric model from CAMEL [1]) for capturing the QoS requirements 
associated with hyper-distributed applications and for addressing their monitoring aspects. 

• A model based on AMPL for describing the constraints and the objectives according to which application 
components are managed throughout their lifecycles. 

These models are underpinned by ontological descriptions of CC resource capabilities and characteristics such 
as storage capacities, network connectivity, geolocation, and price. The final version of these models, and of the 
discovery mechanism, will be reported in D2.3 (due in by M34). 
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1. Introduction 
Accessing remote computing resources in data centres provisioned by cloud providers is today the de facto model 
for Internet-based applications [2]. According to this model, data generated by a wide range of devices, spanning 
from smartphones and wearables to smart city cameras and factory sensors, are transferred to typically 
geographically distant clouds for processing and storage. Nevertheless, this computing model is swiftly becoming 
unviable [2]. Firstly, it precludes applications with hard real-time requirements that cannot tolerate the high 
communication latencies incurred by long-distance data transfers. Secondly, as the number of interconnected 
devices continues to increase at astonishing rates1, communication latencies also increase, degrading the Quality 
of Service (QoS) even for applications with relaxed real-time requirements [3], [4]. 

An alternative computing model that can alleviate these problems advocates the decentralisation of a 
portion of the pooled resources available in cloud data centres and their distribution across the Cloud 
Continuum (CC) i.e., towards the edge of the network and closer to end users, actuators, and data sources 
(sensors) [5].These resources, henceforth referred to CC resources, typically take the form of dedicated micro-data 
centres, or of Internet nodes such as routers, gateways, and switches augmented with processing capabilities.  

Contrary to cloud resources, fog and edge resources are [2]: (i) constrained – they typically have less compute 
and storage capacity compared to cloud resources; (ii) mutually heterogeneous – they feature different machine 
architectures and have different capabilities; (iii) highly dynamic – their workloads vary widely. These 
characteristics render the task of managing CC resources and ensuring their optimal usage particularly complex 
[2].  

Managing CC resources entails several sub-processes including resource discovery, allocation, provisioning, 
scheduling, and placement [6]. In this deliverable we focus on resource discovery i.e., on the identification of CC 
resources capable of deploying components of hyper-distributed applications with associated and varying QoS 
requirements, and based on user-expressed preferences. 

In the literature, two main approaches to fog resource discovery have been proposed. In [7], the authors 
propose the Edge-as-a-Service (EaaS) platform that provides, amongst others, a lightweight discovery protocol 
that operates across homogeneous fog resources. The protocol is based on a master node that executes a manager 
process on each resource and interacts with it by issuing commands. A major drawback is that the protocol 
cannot operate in federated fog environments with heterogeneous resources; moreover, the security implications 
of installing and executing a manager process on remote resources are ignored.  

Closer to our work, the authors in [8] propose an algorithm that discovers fog resources by matching the 
QoS requirements of an application against the capabilities of available fog resources. The protocol relies on a 
programming infrastructure called Foglets and assumes that fog resources are publicly known or available for 
use; a join algorithm that selects one resource from among a set of available fog resources that are equidistant 
from the user is also provided. Nonetheless, the proposed protocol ignores interoperability issues stemming 
from the inherent heterogeneity of fog resources and the non-standardised naming conventions used for 
describing the characteristics of these resources and the QoS requirements of their workloads. Moreover, the 
protocol makes no provisions for assuring the quality of the provided brokerage function. 
  

 
1 Accrding to IoT Analytics (https://iot-analytics.com/number-connected-iot-devices/), the Internet of Things has increased from 
around 3 billion interconnected devices in 2015 to more than 16 billion interconnected devices in 2023 generating more than 300 
quintillion bytes per day. 

https://iot-analytics.com/number-connected-iot-devices/
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1.1 Model-Driven Resource Discovery 
Following [8], NebulOuS discovers CC resources by matching their capabilities against the QoS requirements 
attached to application components. It embraces a model-driven and user-centric approach that focuses on 
facilitating the overall process of defining hyper-distributed applications and their workloads and deploying 
them over CC resources. In particular, it enables users to declaratively define:  

• Application component compositions and deployments based on the Open Application Model 
(OAM2) as a de-facto standard for modelling cloud-native application deployment, and on the 
Kubernetes-native KubeVela software3 as the main tool for describing application composition and 
deployment.  

• QoS requirements attached to application components through the use of a custom model –based on 
the metric model of CAMEL4– that enables the definition of metrics over arbitrary user defined QoS 
attributes i.e., any attributes for which a source of values (i.e., a sensor) can be specified.  

• Optimisation goals i.e., preferences regarding application deployment, through the use of an 
optimisation model based on AMPL5. 

1.2 Semantic Technologies for Optimisation and Quality Assurance 
NebulOuS relies on semantic technologies for describing CC resources, and for assuring the quality of the 
resource discovery process, hence the quality of the provided CC brokerage. To this end, two distinct –albeit 
interrelated– ontological models are provided: 

1. The asset model, for describing common traits encountered in infrastructural CC services, including 
compute and storage capacities, network connectivity, geolocation, and price. 

2. The application component QoS requirements model that is populated with the information described in the 
metric model outlined above.  

The asset model provides a basis for determining how an application deployment is to be realised across a 
pool of available resources given a set of user-expressed preferences, and providing that the QoS requirements 
attached to the application’s components are satisfiable. More specifically, the asset model forms the basis of 
NebulOuS’s opimisation model that describes the constraints and the objectives according to which application 
components are managed throughout their lifecycles. This includes optimised application component placement 
that considers the current capacities and capabilities of a pool of available CC resources, the component’s QoS 
requirements, as well as any user-expressed preferences regarding application consumption.  

The application component QoS requirements model provides the basis of NebulOuS’ quality mechanism. 
More specifically, by ontologically describing QoS requirements, we pave the way for a quality assurance 
mechanism that relies on semantic reasoning for assessing the correctness of these requirements by comparing 
them against a set of semantically captured application consumption policies. These are policies that operate at a 
higher level of abstraction and express a broader set of business and security requirements that characterise an 
application component as opposed to an application component workload (instance). For example, a policy may 
impose minimum limits on the compute capacity that must be assigned to an application; any QoS requirement 
attached to a component of this application must respect these limits. In other words, we are envisaging a 
situation whereby QoS requirements potentially vary across different deployed workloads of an application, 

 
2https://oam.dev/ 
3 https://kubevela.io/ 
4 https://camel-dsl.org/ 
5 https://ampl.com/  

https://oam.dev/
https://kubevela.io/
https://camel-dsl.org/
https://ampl.com/


D2.2 Initial Semantic Models and Resource Discovery Mechanism 
 

 

 12 

whilst abiding by an overarching set of application consumption policies6. Evidently, our approach transforms 
the process of assuring the quality of CC brokerage into one of semantic reasoning, bringing about the following 
advantages: (i) reasoning based on knowledge that is semantically inferred and not necessarily available at the 
syntactic level; (ii) reliance on a standards-based approach that avoids ad-hoc solutions.  

1.3 NebulOuS Resource Discovery 
Figure 1 provides an overview of the NebulOuS approach to resource discovery. Users define hyper-

distributed application components and their deployments using KubeVela; they describe the QoS requirements 
attached to each component using an adequate for the CC metric model. QoS requirements are also mapped 
to the application component QoS requirements ontology for interoperability purposes, and for assessing their 
correctness7. Moreover, users specify optimisation goals regarding application deployment. Based on these goals 
and on the capabilities and characteristics of the available resources (described in the asset model8), the AMPL-
based optimisation model yields the optimal application deployment.  

The rest of this deliverable is structured as follows: Section 2 outlines cloud-application description languages 
and introduces the Open Application Model and KubeVela. Section 3 describes the NebulOuS custom metric 
model and Section 4 provides an overview of the AMPL-based optimisation model. Section 5 provides an 
overview of the NebulOuS resource discovery mechanism. Section 6 outlines semantic modelling in the IoT, 
overviews ontologies for QoS specification, and presents the two ontological models of NebulOuS: the asset 
model and the application component QoS model. Finally, Section 7 outlines conclusions.  
 

 
6 Consider, for instance, the following scenario. An organisation develops an IoT application and sets an application consumption 
policy that imposes minimum limits on the CPU cores and RAM size that must be available to an application execution. The 
organisation then deploys application instances at different locations to serve the needs of its customers (one deployed instance per 
customer is assumed).  Customers are free to set their own QoS requirements on their application instances if these abide by the 
overarching application consumption policy.  
7 Assessing the correctness of QoS requirements is beyond the scope of this deliverable.  
8 Capabilities and characteristics are dynamically obtained from the NebulOuS monitoring system which is outside the scope of this 
report.  
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Figure 1: Overview of the NebulOuS approach 

  



D2.2 Initial Semantic Models and Resource Discovery Mechanism 
 

 

 14 

2. Describing Application Placement in the Cloud Continuum 

2.1 Existing Work 
Two prominent domain specific languages (DSLs) for the description of cloud native applications are TOSCA9 
and CAMEL10. TOSCA is an open OASIS standard for describing application components, their 
interrelationships, their topologies, and the processes through which they are managed. It has recently been 
extended to provide support for edge and serverless deployments [9], [10] but lacks an (official) orchestrator 
implementation. To fill this gap, several TOSCA-compliant orchestrators have been proposed (see Table 1 for 
an overview). It can be seen, from the contents of Table 1 that the most actively maintained TOSCA approaches 
are the Unfurl11 and the Infrastructure Manager12 orchestrators, although based on the Github stars 
Cloudify13 is the most popular solution. These, however, are either not adequately supported, or target prior 
versions of the language, or are not open source, impeding their exploitation and/or further development. 
Moreover, none of these orchestrators provides support for Kubernetes11 – the current de-facto standard for 
automated deployment and management of containerised applications. 
 

Table 1: TOSCA orchestrators 
Solution Open 

Source 
Public Cloud support (claimed) Targeted 

TOSCA 
Last commit  - last 
year commits12 

GitHub 
stars 

OpenTOSCA13 Yes Low: only one cloud supported for 
spawning VMs 

1.3 4/7/2023 - 10 52 

EDMM14 Yes Excellent: large number of clouds 
supported for spawning VMs (through 
translating technologies) 

TOSCA light 
[11] 

14/2/2023 - 1 10 

Unfurl15 Yes Very good: moderate number of clouds 
supported for spawning VMs 

1.3 23/9/2023 - 803 90 

OpenTOSCA 
Vintner16 

Yes Very good: moderate number of clouds 
supported for spawning VMs (through 
subordinate orchestrators) 

1.3 25/7/2023 - 206 2 

xOpera17 Yes Very good: moderate number of clouds 
supported for spawning VMs 

1.3 27/12/2022 - 1 32 

Infrastructure 
Manager18 

Yes Excellent: large number of clouds 
supported for spawning VMs 

1.0 21/9/2023 - 450 53 

Cloudify19 Partially20 Excellent: large number of clouds 
supported for spawning VMs 

Custom21 18/9/2023 - 319 141 

 
9  https://www.oasis-open.org/committees/tosca 
10 https://camel-dsl.org/ 
11 https://kubernetes.io/ 
12 Data as of 28/9/2023 
13 https://github.com/OpenTOSCA/container 
14 https://github.com/UST-EDMM/edmm 
15 https://github.com/onecommons/unfurl 
16 https://github.com/opentosca/opentosca-vintner 
17 https://github.com/xlab-si/xopera-opera 
18 https://github.com/grycap/im 
19 https://github.com/cloudify-cosmo/cloudify-manager 
20 Cloudify offers some its capabilities under either a community edition or a paid premium edition. The source code in the 
provided repository has no documentation on the setup of Cloudify (or the completeness of the provided components), while the 
license of both editions also dictates that they can be used only in binary form when downloaded in a compiled form. 
21 https://github.com/cloudify-cosmo/cloudify-manager-blueprints/blob/master/simple-manager-blueprint.yaml 

https://www.oasis-open.org/committees/tosca
https://camel-dsl.org/
https://kubernetes.io/
https://github.com/OpenTOSCA/container
https://github.com/UST-EDMM/edmm
https://github.com/onecommons/unfurl
https://github.com/onecommons/unfurl
https://github.com/xlab-si/xopera-opera
https://github.com/grycap/im
https://github.com/cloudify-cosmo/cloudify-manager
https://github.com/cloudify-cosmo/cloudify-manager-blueprints/blob/master/simple-manager-blueprint.yaml
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CAMEL enables users to specify a wide range of aspects related to multi- and cross-cloud applications, 
including domains of deployment, requirements, monitoring metrics, scalability, security, organisation, and 
execution. It supports the models@runtime [12] approach so all application updates, including reconfiguration 
decisions, are reflected and stored in the model. CAMEL also supports complex user preferences specifications 
including utility functions for expressing the goodness of a deployment configuration from an application 
owner’s perspective. CAMEL exhibits a significantly richer bundle of capabilities than TOSCA, especially in the 
multi-clouds deployment management domain. Nevertheless, its high degree of verbosity and its lack of support 
for Kubernetes renders its use in NebulOuS cumbersome. Moreover, the software supporting CAMEL models 
is limited to the Java-based Eclipse CDO models22 repository and the CDO client, which impedes the use of 
these models through C++ or Python components.   

2.2 Application Definition and Deployment in NebulOuS  
NebulOuS embraces a model-driven and user-centric approach to deploying hyper-distributed applications in 
the Cloud-Edge continuum. It aims at offering a simple yet powerful means for end users to define customised 
application compositions and deployments. NebulOuS leverages state-of-the-art technical approaches and 
specifications used by the cloud native computing community for distributed application composition and 
deployment. By relying on such widely adopted standards and tools, as opposed to ad-hoc solutions, we facilitate 
the use of the NebulOuS platform and promote its adoptability. 

The centrepiece of our approach is the adoption of the Open Application Model (OAM)23 as the de-facto 
standard for describing hyper-distributed applications, and the use of the KubeVela24 software as a tool for 
application composition and deployment. KubeVela is a Cloud Native Computing Foundation25 (CNCF) 
incubation project, and it is increasingly adopted by the community and industry26. Although its use parallels 
that of TOSCA and CAMEL, KubeVela does not offer a DSL for implementing OAM, it relies instead on the 
diffused and lightweight YAML for describing application compositions and deployments. Contrary to CAMEL 
and TOSCA, Kubevela is an official orchestrator for OAM applications, much more popular than any 
TOSCA/CAMEL orchestrator (over 5600 Github stars) while also being actively developed (654 commits in 
2023 up until 28/9/2023). KubeVela also provides out-of-the-box support for Kubernetes enabling applications 
using it to take advantage of any cloud provider supporting Kubernetes.  The rest of this section outlines the 
Open Application Model and its KubeVela implementation aiming to shed light on the capabilities it offers to 
NebulOuS.  

 Open Application Model introduction 
OAM23 was originally created by Alibaba and Microsoft as a collection of high-level abstractions for modelling 
cloud-native applications. Although the model is designed to be agnostic to any underlying infrastructure 
technology, its implementations are focused on Kubernetes. KubeVela24 is one such implementation. Others 
include the Rudr27 and Crossplane28 projects that were, however, discontinued giving way to KubeVela as the 
de-facto OAM implementation that currently drives the specification forward.  

 OAM seeks to address the problem of how to compose distributed applications in the context of 
(micro)service-oriented architectures. Its main goal is to devise a generic, infrastructure-agnostic way to describe 
application deployment across hybrid environments; this absolves developers from having to understand low-
level infrastructure details, thus allowing them to focus on the architecture and actual development of 

 
22 https://eclipse.dev/cdo/ 
23 https://oam.dev/ 
24 https://github.com/kubevela/kubevela 
25  https://www.cncf.io/ 
26 Indicated by the large number of GitHub stars that the KubeVela project received – more that 5400 at the time of writing this report 
27 https://github.com/oam-dev/rudr 
28 https://github.com/crossplane/oam-kubernetes-runtime 

https://eclipse.dev/cdo/
https://oam.dev/
https://github.com/kubevela/kubevela
https://www.cncf.io/
https://github.com/oam-dev/rudr
https://github.com/crossplane/oam-kubernetes-runtime
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distributed applications. To this end, OAM separates the application definition from operational details. This 
separation of concerns is based on a clear distinction between the platform engineer and application developer 
organisational roles.  It is achieved through a higher-level abstraction that decouples the description of 
distributed applications from the underlying infrastructure details, using a model that is self-contained and 
allows the definition of an application’s components and operational behaviours. This approach enables clarity 
and extensibility, enabling re-use of application components.  Figure 2 provides an overview of the OAM 
architecture. 

 As of September 2023, the latest official OAM specification is v0.3.0 (released in June 2021). Nevertheless, 
since then a series of KubeVela versions (with the latest one being v1.9.0 released in June 2023) have overwritten 
and outdated parts of the official specification. Our account of OAM is based on the KubeVela version 1.9.0.  

 

 
Figure 2: OAM architecture 

 KubeVela Model details 
The main abstraction used in KubeVela, is that of an “Application”. An application is defined as: “a collection of 
interrelated, but discrete components (services, tasks, workers) that, when coupled with configuration and instantiated in a 
suitable runtime infrastructure, together accomplish a unified functional purpose.”29 Application deployments are 
captured through user-defined deployment plans which are in turn defined as Directed Acyclic Graphs (DAGs). 
KubeVela applications use four main abstractions:  

• Component: Defines the delivery artefact (binary, Docker image, Helm Chart, etc.), or cloud service 
included in an application. In KubeVela, an application typically takes the form of a microservice and, 
as a result, it is recommended that it includes less than 15 components: a core service and its 
dependencies (e.g., database, cache, pub/sub, etc.).  

• Trait: A characteristic defined on a single component; for example: scale and rollout strategy, persistent 
storage claim, gateway endpoint, etc. Traits may be used for expressing user preferences/requirements 
regarding component placement. 

• Policy: Defines a strategy for a certain aspect of an application (e.g., multi-cluster topology, configuration 
overrides, security/firewall rules, etc.). Policies bear some similarity with traits, but they affect the entire 
application (as opposed to a single component trait).  

 
29 https://github.com/oam-dev/spec/blob/master/2.overview_and_terminology.md 

https://github.com/oam-dev/spec/blob/master/2.overview_and_terminology.md
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• Workflow: Allows to define every step in the delivery process. Some typical steps are manual approval, 
partial deploy, notification, etc.  

Each abstraction introduces a programmable module that can be referenced by an application entity (see Figure 
3). Applications are expressed declaratively in YAML. 
 

 
Figure 3: Application main abstractions 

For illustration purposes, we provide an example of a simple video surveillance application modelled and 
deployed using the Open Application Model and KubeVela (see Listing 1). The application is composed of 4 
distinct components: Kafka Server, Kafka UI, Video Capture and Video Player. All components are modelled as 
webservices (a specific KubeVela application type30), with their relevant properties and traits attached. As an 
example of the capabilities offered by KubeVela, consider the affinity and geoLocation traits that are attached 
to the face-detection component. Using these traits, a NebulOuS user can explicitly denote preferences and/or 
requirements regarding component placement, based on particular aspects that need to be accommodated by 
the NebulOuS Meta-OS (e.g., affinity/anti-affinity constraints, geographical requirements, etc.). 

 
30 https://kubevela-docs.oss-cn-beijing.aliyuncs.com/docs/v1.1/end-user/components/cue/webservice  

https://kubevela-docs.oss-cn-beijing.aliyuncs.com/docs/v1.1/end-user/components/cue/webservice
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apiVersion: core.oam.dev/v1beta1 

kind: Application 

metadata: 

  name: surveillance-demo 

  namespace: default 

spec: 

  components: 

    - name: kafka-server 

      type: webservice 

      properties: 

        image: confluentinc/cp-kafka:7.2.1 

        hostname: kafka-server 

        ports: 

          - port: 9092 

            expose: true 

          - port: 9093 

            expose: true 

          - port: 29092 

            expose: true 

        cpu: "1" 

        memory: "2000Mi" 

        cmd: [ "/bin/bash", "/tmp/run_workaround.sh" ] 

        env: 

          - name: KAFKA_NODE_ID 

            value: "1" 

          - name: KAFKA_LISTENER_SECURITY_PROTOCOL_MAP 

            value: "CONTROLLER:PLAINTEXT,PLAINTEXT:PLAINTEXT,PLAINTEXT_HOST:PLAINTEXT" 

          - name: KAFKA_LISTENERS 

            value: "PLAINTEXT://0.0.0.0:9092,PLAINTEXT_HOST://0.0.0.0:29092,CONTROLLER://0.0.0.0:9093" 

          - name: KAFKA_ADVERTISED_LISTENERS 

            value: "PLAINTEXT://kafka-server:9092,PLAINTEXT_HOST://212.101.173.161:29092" 

          - name: KAFKA_CONTROLLER_LISTENER_NAMES 

            value: "CONTROLLER" 

          - name: KAFKA_CONTROLLER_QUORUM_VOTERS 

            value: "1@0.0.0.0:9093" 

          - name: KAFKA_PROCESS_ROLES 

            value: "broker,controller" 

      traits: 

        - type: storage 

          properties: 

            configMap: 

              - name: kafka-init 

                mountPath: /tmp 

                data: 

                  run_workaround.sh: |- 

                    #!/bin/sh 

                    sed -i '/KAFKA_ZOOKEEPER_CONNECT/d' /etc/confluent/docker/configure 

                    sed -i 's/cub zk-ready/echo ignore zk-ready/' /etc/confluent/docker/ensure 

                    echo "kafka-storage format --ignore-formatted -t NqnEdODVKkiLTfJvqd1uqQ== -c 

/etc/kafka/kafka.properties" >> /etc/confluent/docker/ensure 

                    /etc/confluent/docker/run 

 

    - name: kafka-ui 

      type: webservice 

      properties: 

        image: provectuslabs/kafka-ui:cd9bc43d2e91ef43201494c4424c54347136d9c0 

        exposeType: NodePort 

        ports: 

          - port: 8080 

            expose: true 

            nodePort: 30001 

        cpu: "0.3" 

        memory: "512Mi" 

        env: 

          - name: KAFKA_CLUSTERS_0_BOOTSTRAPSERVERS 

            value: "kafka-server:9092" 

 

    - name: video-capture 

      type: webservice 

      properties: 
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    - name: kafka-ui 

      type: webservice 

      properties: 

        image: provectuslabs/kafka-ui:cd9bc43d2e91ef43201494c4424c54347136d9c0 

        exposeType: NodePort 

        ports: 

          - port: 8080 

            expose: true 

            nodePort: 30001 

        cpu: "0.3" 

        memory: "512Mi" 

        env: 

          - name: KAFKA_CLUSTERS_0_BOOTSTRAPSERVERS 

            value: "kafka-server:9092" 

 

    - name: video-capture 

      type: webservice 

      properties: 

        image: registry.ubitech.eu/nebulous/use-cases/surveillance-dsl-demo/video-capture:1.1.0 

        cpu: "0.2" 

        memory: "100Mi" 

        env: 

          - name: KAFKA_URL 

            value: "kafka-server:9092" 

          - name: KAFKA_DETECTION_TOPIC 

            value: "surveillance" 

          - name: CAPTURE_VIDEO 

            value: "False" 

          - name: CAPTURE_DEVICE 

            value: "/dev/video0" 

          - name: DEBUG 

            value: "True" 

          - name: HOSTNAME 

            value: "docker-capture" 

        volumeMounts: 

          hostPath: 

            - name: video 

              mountPath: "/dev/video1" 

              path: "/dev/video0" 

      traits: 

        - type: affinity 

          properties: 

            nodeAffinity: 

              required: 

                nodeSelectorTerms: 

                  - matchExpressions: 

                    - key: "kubernetes.io/hostname" 

                      operator: "In" 

                      values: ["nebulousk8s-worker-1"] 

    - name: face-detection 

      type: webservice 

      properties: 

        image: registry.ubitech.eu/nebulous/use-cases/surveillance-dsl-demo/face-detection:1.2.0 

        edge: 

          cpu: "1.2" 

          memory: "512Mi" 

          env: 

            - name: KAFKA_URL 

              value: "kafka-server:9092" 

            - name: KAFKA_DETECTION_TOPIC 

              value: "surveillance" 

            - name: THREADS_COUNT 

              value: "1" 

              

: 

                - labelSelector: 

                    matchExpressions: 

                      - key: "app.oam.dev/component" 

                        operator: "In" 

                        values: [ "video-capture" ] 
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Listing 1: video surveillance application modelling and deployment using the Open Application Model and KubeVela 

            - name: THREADS_COUNT 

              value: "1" 

            - name: STORE_METRIC 

              value: "False" 

            - name: DEBUG 

              value: "True" 

      traits: 

        - type: affinity 

          properties: 

            podAntiAffinity: 

              required: 

                - labelSelector: 

                    matchExpressions: 

                      - key: "app.oam.dev/component" 

                        operator: "In" 

                        values: [ "video-capture" ] 

                  topologyKey: "test" 

        - type: nodePlacement 

          properties: 

            cloudWorkers: 

              count: 6 

              nodeSelector: 

                - name: node1 

                  value: 2 

                - name: node2 

                  value: 1 

                - name: node3 

                  value: 3 

            edgeWorkers: 

              count: 3 

              nodeSelector: 

                - name: node4 

                  value: 2 

                - name: node5 

                  value: 1 

        - type: geoLocation 

          properties: 

            affinity: 

              required: 

                - labelSelector: 

                    - key: "continent" 

                      operator: "In" 

                      values: ["Europe"] 

 

    - name: video-player 

      type: webservice 

      properties: 

        image: registry.ubitech.eu/nebulous/use-cases/surveillance-dsl-demo/video-player:1.1.0 

        exposeType: NodePort 

        env: 

          - name: KAFKA_URL 

            value: "kafka-server:9092" 

          - name: DEBUG 

            value: "True" 

          - name: SERVER_PORT 

            value: "8081" 

        ports: 

          - port: 8081 

            expose: true 

            nodePort: 30002 
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KubeVela uses Custom Resource Definitions (CRDs) to implement OAM abstractions on top of 
Kubernetes. It manages application components and cloud resources by leveraging Kubernetes’ capability to set 
up control loops (Controllers) for keeping the actual state of component instances in line with a desired 
configuration, thus avoiding configuration drift31. Desired configurations are expressed declaratively. 

KubeVela uses the concept of OAM “Definitions” to provide automation for custom capabilities that may 
be attached to an Application. A Definition is written in the CUE language32, and it is then shared, discovered 
and used to compose an Application. Its goal is to hide complexity from developers by abstracting away 
significant chunks of underlying logic and allowing them to reuse out-of-the-box elements that have been created 
to implement a particular piece of functionality. There are four different types of definitions – 
ComponentDefinition

33, TraitDefinition34, PolicyDefinition35, and WorkflowstepDefinition36 – each extending the 
corresponding application.  KubeVela does provide built-in definitions that are readily available upon 
installation – examples include cron-task, webservice (ComponentDefinitions), affinity, gateway, hpa 
(TraitDefinitions), apply-once, override, take-over (PolicyDefinitions), apply-component, build-push-image and deploy-
cloud-resource (WorkflowStepDefinitions). Available definitions can be found in the project’s GitHub repo37. A set 
of OAM definitions, along with their CRD controllers can be grouped into a KubeVela Addon. An Addon is a 
scenario-oriented extension of KubeVela, which is uploaded to a community-maintained registry and installable 
by any user. NebulOuS aims to take advantage of Definitions to automate interaction with underlying resources 
and thus offer to its users an intuitive way to deploy applications.  

 

 
Figure 4: Application modelling abstractions in KubeVela 

 
31 When deploying app components across different environments, changes are made according to each individual use case. This can 
lead to deployments drifting away from the original baseline configuration. As these changes add up, systems eventually start behaving 
inconsistently across environments. These issues are often difficult to diagnose and fix, especially since the changes are often 
undocumented. This process is commonly known as configuration drift.  
32 https://cuelang.org/ 
33 https://kubevela.io/docs/end-user/components/references/ 
34 https://kubevela.io/docs/end-user/traits/references/ 
35 https://kubevela.io/docs/end-user/policies/references/ 
36 https://kubevela.io/docs/end-user/workflow/built-in-workflow-defs/ 
37 https://github.com/kubevela/kubevela/tree/master/vela-templates/definitions  

https://cuelang.org/
https://kubevela.io/docs/end-user/components/references/
https://kubevela.io/docs/end-user/traits/references/
https://kubevela.io/docs/end-user/policies/references/
https://kubevela.io/docs/end-user/workflow/built-in-workflow-defs/
https://github.com/kubevela/kubevela/tree/master/vela-templates/definitions
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3. Metric Model  

The NebulOuS metric model provides a technology-agnostic modelling framework for capturing the QoS 
requirements associated with hyper-distributed applications and for addressing their monitoring aspects. It is 
based on the metric model offered by the CAMEL DSL which it extends, amends, and rationalises for shifting 
its attention from multi-cloud apps to hyper-distributed ones in the Cloud computing continuum.  

The NebulOuS metric model is underlain by the tenet that the different parts, or components, comprising a 
hyper-distributed app (e.g., app servers, databases, load balancers, etc.) may have different QoS requirements in 
terms of attributes being measured and attributes being computed. For this reason, it organises QoS-related 
artefacts around component types, or logical groupings of component types, called scopes. These artefacts 
include:  

• Metrics. Quantifiable attributes for monitoring a property. Metrics can be raw, collected directly by 
monitoring sensors (also referred as measurements), or composite, computed using raw metrics or other 
composite metrics. Metrics are further elaborated in Section 3.1. 

• Requirements. Top-level constructs used to express performance "expectations" from the application 
and the monitoring system. They take the form of metric constraints that are referred to as service level 
objectives (SLOs). Metric constraints are acceptable/desired or unacceptable/undesired metric values and 
value ranges. Requirements can be specified either per component type or per component scope, or at 
the application level (see Table 2).  They are further specified in Section 3.2. 

Scopes are introduced to facilitate the definition of common or combinatorial constraints that apply across 
different component types. Moreover, applications may be viewed as universal scopes, comprising all 
component types. 
 

Table 2: Different types of scopes 

Scope Types Requirements  Metrics  

Component  pertaining per component type  
used in component type 
requirements  

Scope  pertaining per scope  used in scope requirements  

Application-scope pertaining application-wide  
used in application-wide 
requirements  

   

3.1 Metrics  
A metric is a measure that quantifies an application/system/environment attribute, which can be used to 
characterise the progress, performance, or status of an application aspect. Metrics are used to track specific data 
points over time15. Metric values (either raw or computed) are recorded as events and exchanged through event 
streams. Events are immutable, time-stamped, real-world facts (for a raw metric, e.g., a sensor measurement) or 
computations thereof (for a composite metric, e.g., the average over the last-minute sensor measurements).  

Metric specifications implicitly define namesake event streams for conveying metric values. They also include 
several parameters describing how a metric is captured or computed, thus providing crucial information for 
configuring monitoring agents. These parameters are collectively referred to as the metric context and include: 
the sensor specification; the input metric windows in case of composite metrics (see below); the location/level 
where computations occur; the sampling rates of measurements or the times at which computations are 
performed, as different numbers and types of parameters may apply. For instance, a composite metric must 
include a formula that specifies the computation expression. On the other hand, a raw metric must include a 
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sensor definition. In case parameters are left unspecified, the corresponding default values will be used, however 
not all parameters have defaults, in which case they must be explicitly specified.   

Listing 2 specifies a composite and a raw metric. The composite metric is calculated by averaging the 
cpu_util_instance raw metric values included in the corresponding data window. The formula parameter gives 
the computation expression (in the next example is 'mean(cpu_util_instance)'), and the window section specifies 
how many and which input metric values (of cpu_util_instance) will be used in the computation (in the next 
example, it is all cpu_util_instance values arrived in the last 5 minutes). The output section specifies how often 
the resulting average will be calculated (i.e., every 30 seconds to cpu_util_prct). The raw metric collects its values 
using the sensor specified in the sensor section. Again, the output section specifies how often the measured 
values will be sent to the output event stream (every 30 seconds).  

The rest of this subsection elaborates on the main metric context parameters.   
 
      metrics: 

        - name: cpu_util_prct 

          type: composite 

          formula: 'mean(cpu_util_instance)' 

          window: 

            type: sliding 

            size: '5 min' 

          output: 

            type: all 

            schedule: '30 sec' 

        - name: cpu_util_instance 

          type: raw 

          sensor: 

            type: netdata 

            affinity: netdata__system__cpu__total 

          output: 

            type: all 

            schedule: '30 sec' 

Listing 2: Example of metrics 

 Windows 
Windows are finite sets of metric values, received from one or many input event stream(s) and retained based 
on a set of criteria. For instance, a window can contain the 𝑀 latest events emitted on an event stream, or the 
events that arrived in the last 𝑁 seconds. Windows can be either sliding or batch (tumbling). The former type 
has moving bounds and events can be added and removed as time passes (for example, events received in the last 
10 seconds are retained in a 10-sec sliding window and older events are automatically removed). The latter type 
has fixed bounds and events can be added as long as the window is open; all events are automatically removed 
when the window closes/expires (for example, all events received during the interval 00:00:00 – 00:00:30 are 
retained until 00:00:30 and then automatically removed). Windows can be time-based or length-based or a 
combination of them. Time-based windows typically have a fixed time span (for example last 10 seconds), while 
length-based windows typically have a maximum allowed number of events (for example the last 10 events). 
Windows are required for operations such as aggregations, and pattern matching where several metric values 
(spanning time) are needed (for example an average over last 10 minutes, or detecting if an event occurred after 
another, while other events might have occurred in between). 

Window Processings 
Window processings are operations on windows that rearrange retained events based on a set of criteria. Three 
processing types are currently considered: Grouping, Sorting and Ranking. The first type segments window events 
into groups; the second type sorts window events and retains the top/bottom of them; the third type is similar 
to Sorting but retains only the most recent occurrence of an event based on uniqueness criteria. Any number of 
processings can be defined on a window but grouping processings take precedence. It is to be stressed that 
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processings are not data operations; for example, they do not aggregate or join data. They may influence, 
however, the scope of data operations. For instance, a Grouping processing may segment window data per IP 
address, and a subsequent averaging operation may be applied per window segment as opposed to the entire 
window. Sort and rank processings can influence the outcome of a data join (order of joined events) or the 
outcome of first / last event operations.  

Listing 3 gives the specification of a grouping processing included in the window of vc_instance_number  
metric. The criteria parameter specifies how the window events will be grouped. In this case they will be grouped 
per application component instance, which can be implemented using the instance IP address. A number of 
predefined criteria are provided; namely PER_INSTANCE, PER_HOST, PER_ZONE, and PER_REGION. Apart from them, 
custom criteria can also be specified.  
  
      metrics: 

        - name: vc_instance_number 

          formula: 'add(vc_instance_number_raw)' 

          window: 

            type: sliding 

            size: '5 min' 

            processing: 
              - type: grouping 

                criteria: PER_INSTANCE 
Listing 3: Example of grouping processing 

 Sensors 
Sensors are software units that measure an attribute or set of related attributes. They can be classified in various 
ways e.g., system or application-specific sensors (depending on their provider and what attributes they measure) 
or pull or push sensors.  Pull sensors provide solicited-only measurements (e.g., in response to queries from the 
monitoring sensor), whereas push sensors actively emit unsolicited measurements. All sensor measurements are 
converted to timestamped events and sent to the event stream attached to the defining metric. For system-specific 
attribute measurements the well-known Netdata38 monitoring agent will be used. Application-specific metrics 
can be obtained in a number of ways, including posting exporting them to Netdata, exposing them as 
Prometheus endpoint, or sending them to the monitoring system directly using AMQP protocol39. Additional 
methods might be added if required by use cases. 

 Output 
Output specifies how often events are sent to the metric’s output stream. Metric values can be collected or 
calculated at any rate based on the availability of input data (either sensor measurements or input events); 
however, it may be desirable that their rate of emission is limited (throttling). Output is an optional parameter 
that specifies such a rate limit. In the example of Listing 4, the schedule parameter specifies the rate for sending 
metric events to the corresponding output stream. The ‘type’ parameter is meaningful if more than one output 
events can be generated (measured or calculated) per period: ‘all’ value causes all collected/calculated events to 
be sent, ‘first’ value causes only the first one to be sent (the rest are discarded), and ‘last’ value causes only the 
last one to send. If the output parameter is left unspecified, metric values are immediately relayed to the event 
stream upon collection from the corresponding sensor, or upon calculation. 
 
 
 
 
 

 
38 https://www.netdata.cloud/ 
39 https://www.amqp.org/ 

https://www.netdata.cloud/
https://www.amqp.org/
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      metrics: 

        - name: cpu_util_prct 

          .................................... 
          output: 
            type: all 
            schedule: '30 sec' 

Listing 4: Example of output specification 

 References  
References are pointers from one metric model building block to another that are used to avoid repetition of 
identical specifications. References use the name of the referenced block to refer to it; their effect is equivalent 
to replacing the references by the referenced block specifications. In the example of Listing 5 the ref value must 
be the name of another metric. The name must be fully qualified if the referenced metric is defined in another 
component or scope; i.e., <component/scope_name>.<metric/requirement_name>. Otherwise, the component or 
scope part can be omitted. 
 
      metrics: 
        - name: VideoCaptureCardinality 
          ref: '[video-capture].[instances]' 
 

Listing 5: Example of references 

3.2 Requirements 
Requirements are named metric model structures defined per component type or scope, or application-wide. 
The content and interpretation of these structures depend on their subsequent usage (beyond the metric model). 
Currently, a single kind of requirements is provided, namely Service-Level Objectives (SLOs), but more can be 
added in the future (e.g., if the NebulOuS use cases require it). SLOs are the target values or value ranges for a 
service level that is measured by a service-level metric. They provide a means for measuring the performance of 
a service. They are modelled as named constraints, where each constraint is a boolean expression evaluating a 
condition, typically whether a metric (usually computed) falls within an acceptable (or non-acceptable) value 
range. When the metric values fall within the acceptable range, the service performs as expected and the 
corresponding SLO is fulfilled. Otherwise, the corresponding SLO is violated, which is an indication that the 
service is not functioning at an adequate performance level. Such an event will generate a signal, which will also 
be a metric; the metric value is not important, only the presence of the violation metric is significant. This signal 
is called an SLO violation event.  
 
      requirements:  

        - name: cpu_slo  

          type: slo 

          constraint: 'cpu_util_prct > 80'  

        - name: ram_slo  

          type: slo 

          constraint: 'ram_util_prct > 80' 

Listing 6: SLO requirement specification 

Listing 6 illustrates an example specification of two SLO requirements. Their names (cpu_slo and ram_slo) 
implicitly specify two named event streams (with the same names, or with names deriving from them) for sending 
any SLO violation events. Their constraints are simple threshold checks involving a single metric (e.g., 
cpu_util_prct or ram_util_prct respectively), but more complex expressions are possible. The specifications of 
the metrics are given in the metric section of the metric model (see below).  
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3.3 Metric Model structure  
A metric model document loosely follows the Kubernetes resource files style, and it typically comprises the 
following sections:  

• Header and Metadata 
• Components 
• Scopes 

Header 
A header includes vital information for identifying the document type and determining how the remaining 
contents will be processed and interpreted. It must include at least the type and version of the model.  

Metadata  
The metadata section typically follows the header and includes additional information such as a display name 
for the model, as well as tags/labels characterizing the model (among many metric models) that can be used in 
conjunction with selectors.  

Components 
The components section contains a list of entries with each entry including a component name, a requirements 
subsection, and/or a metrics subsection. The requirements subsection encompasses component-specific 
requirements (SLOs), whereas the metrics subsection encompasses component-specific metric specifications. All 
component names must be defined in the corresponding application model documents (i.e., in KubeVela 
specifications). 
 
  scopes: 
    - name: app-wide-scope 
      requirements: 
        .................................... 
      metrics: 
        .................................... 
    - name: app-wide-scope 
      components: [ MysqlDb, AppServer ] 
      requirements: 
        .................................... 
      metrics: 
        .................................... 
 

Listing 7: Example of scopes 

Scopes 
The scopes section contains a list of named scopes. As already mentioned, scopes are logical groupings of two 
or more component types that facilitate the definition of requirements and metrics pertaining to more than one 
component type. A metric model specification may use the metrics from any component participating in the 
scopes section. Thus, scopes facilitate the specification of metrics combining input data from different 
component types. Each scope has a unique name and optionally a list of participating components. It also 
contains a requirements sub-section (with SLOs), and/or a metrics sub-section. The former subsection includes 
requirements that conjunctively bind all scope components. The latter subsection encompasses metrics available 
to the components participating in the scope. The example of Listing 7 gives the specification of two scopes: an 
application-wide scope, and one encompassing only the MySqlDB and AppServer components. The components 
parameter is an array declaring the components participating in the scope. Omitting this parameter means all 
components are included, hence it is an application-wide scope.  

Listing 8 provides an example of a metric model (repetitive parts have been omitted to reduce length).   
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apiVersion: nebulous/v1 

kind: MetricModel 
metadata: 
  name: face-detection-deployment 
  labels: 
    app: surveillance-demo-app 
spec: 
  components: 
    - name: face-detection 
      requirements: 
        - name: cpu_slo 

          type: slo 

          constraint: 'cpu_util_prct > 80' 

        - name: ram_slo 

          type: slo 

          constraint: 'ram_util_prct > 80' 
          .................................... 
      metrics: 
        - name: cpu_util_prct 

          type: composite 
          template:  &prct_tpl 

            id: 'prct' 

            type: real 
            range: [0, 100] 
          formula: 'mean(cpu_util_instance)' 

          window: 
            type: sliding 
            size: '5 min' 
          output: 
            type: all 
            schedule: '30 sec' 
        - name: cpu_util_instance 

          type: raw 
          template: *prct_tpl 

          sensor: 
            type: netdata 

            affinity: netdata__system__cpu__total 

          output: 
            type: all 
            schedule: '30 sec' 
        .................................... 
  scopes: 
    - name: app-wide-scope 
      components: [ face-detection, ...... ] 

      requirements: 
        - name: sample_slo_combining_data_across_components 

          type: slo 

          constraint: ' sample_metric_combining_data_across_components > 10' 
        - name: sample_optimisation_goal 

          type: slo 

          constraint: utility_var 

        .................................... 
      metrics: 
        - name: sample_metric_combining_data_across_components 

          .................................... 
 

Listing 8: Metric model example (reduced) 

3.4 Language and Style  
The metric model provides two ways of defining a building block: (a) single-line/compact definition, and (b) 
multi-line/detailed definition. The former requires writing the definition as a string following a building-block-
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specific convention/format, hence enabling its automatic conversion into a detailed definition (case b). The 
latter requires each setting to be provided on separate lines. The compact definition significantly improves 
readability, but manual editing can be error prone. The detailed definition is the one that should be used 
internally by the NebulOuS components. Listing 9  provides an example in compact format.  

The metric model may be expressed in any popular serialisation format including YAML, JSON, and XML. 
In NebulOuS, we opt for YAML as it is the most human-readable syntax. 
 
          window: 'sliding 5 min' 

          output: 'all 30 sec' 

 
The same example in detailed format: 
 
          window: 

            type: sliding 
            size: '5 min' 
          output: 

            type: all 
            schedule: '30 sec' 

Listing 9: Examples of specification styles in detailed format 
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4. Optimisation DSL   
Any operating system deals primarily with the management and distribution of resources to satisfy the needs of 
running applications. Seen from one application, NebulOuS is therefore fundamentally about automatic 
application management across several underlying infrastructures hosting the resources necessary for running 
the application. Automating application management requires combining knowledge in four different areas: the 
application topology, the information about available resources, measurements of the current state of the 
application and the environment, and the definition of the goals and objectives for the application. 

4.1 Parameterised application topology model 
Figure 3 showed the fundamental structure of a KubeVela YAML application specification. For deployment, this 
model must be entirely specified and unique. However, this implies that all necessary decisions have been made 
à priori. Hence, this model cannot be used as input for the automatic application management since there is no 
information about the possible alternatives for the application configuration.  

As an example, consider the description of one application component labelled "video surveillance" from a 
video stream application shown in Listing 1. There are resource requirements for the component in lines 116-
118 and 130-132 of Listing 10. These requirements restrict the choices for the resources necessary to deploy and 
execute the component. Furthermore, there are placement restrictions for the component and the number of 
component instances in lines 157-172 of Listing 11. In their current form, none of these requirements exhibit 
any variability.  

To use the KubeVela description with NebulOuS, one must indicate where decisions are to be made and 
values from the decision process inserted. Adopting the notation that square braces mean items to be specialised, 
and a dot notation to bind it to the right semantic understanding of the meaning of the variables, one adopts a 
notation for the KubeVela file like the one illustrated in Listing 1 for the resource requirements with ranges for 
the possible values the application component can properly use. The initial application deployment will always 
happen with the least possible resources. 
 

 
Listing 10: The resource requirements represented as decision variables with ranges of possible values 

The same idea and illustrative syntax can be adopted for the deployment specifications as shown in Listing 
13. This example specification is incomplete without the supporting constraints: there should be constraints 
among the proposed variables since there is now nothing preventing the maximum possible Cloud worker 
instances to be deployed on every possible Cloud node, even if the total number of Cloud nodes in that case 
would exceed the upper limit for the total number of Cloud workers. 
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Listing 11: The parameterised placement instructions as index variables with value ranges 

It should be emphasized that the terms and modelling concepts used in the parameterised KubeVela model 
must be anchored in the semantic asset (see section 6) model describing the available resources and vocabulary 
across all application models. Furthermore, the ranges for the different variable domains indicated in the 
example of Listing 13 are defined in the user interface and exported from there to the optimisation model. 
Therefore, they need not be a part of the parameterized component model. However, leaving the domains out 
may be confusing since some of the domains may have secondary index variable definitions, like the 
faceDetection.cloudWorkers.edge.node.count, and then it may not be possible to validate the parameterized 
model for debugging purposes. On the other hand, since all the information necessary for the parameterized 
model will be collected in the user interface, and explicit export of this knowledge as a parameterized model file 
may not be necessary at all. 
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Listing 12: A KubeVela defined component for facial detection with resource requirements in red boxes and component placement 
instructions in the green box. 
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4.2 Optimisation model 
The optimisation model fundamentally describes the constraints and objectives of the automatic application 
management problem. The constraints define when a deployment configuration is valid, and a new 
configuration should be found when the current configuration is infeasible. All the decision variables described 
above from the parameterised KubeVela file, and the metrics of the metric model can be used in the constraints 
and utility objective function(s) defining the goals of the application management from the perspective of the 
owner of the application. The application utility typically has many different dimensions, i.e., possibly conflicting 
goals, and it is assumed that these dimensions are modelled as individual utility functions that may or may not 
be scalarised into a single utility function to maximise. 

The need to specify an optimisation problem in a machine interpretable format has long been recognized 
by the operational research community, and A Mathematical Programming Language (AMPL40) appeared first 
in 1985 and has since been continuously expanded and improved. AMPL is an algebraic DSL capable of 
describing large and complex optimisation problems [13]. The AMPL parser, runtime interface and interpreter 
are today commercial software, but there is a free community version41 available for research and industrial 
prototyping. AMPL has been adopted as a starting point for the NebulOuS project, with the understanding that 
the runtime interface and interpreter require replacement in the integrated NebulOuS. This should happen 
without the need to change the textual AMPL program description. 

The AMPL struct ‘param’ is used to represent constants and metric values, this includes parameters coming 
from the selection of the node candidates to be used for the deployment of the application. This could be for 
instance the negotiated price to use a virtual machine (VM) on an Edge server, as this price could fluctuate 
according to demand for using the Edge server and the actual price to be used ‘now’ will vary with the time of 
the resource availability request. Other parameters of the models can be given as a static data, for instance, the 
Cloud providers and Edge providers that can be used for the deployment. The variables of AMPL are used to 
represent the decision variables exemplified in the previous section.  

The information in the AMPL file is used in expressions to calculate the utility value in the unit interval 
giving a value between zero and unity. The optimisation aims to find assignments to the variables so that the 
utility value is maximized. These value assignments are subject to constraints over the variables and the 
parameters of the problem. An example of an AMPL formulation of the parameterized topology model for the 
facial recognition component of the previous subsection will be presented next. The example also presents the 
naming convention that will be used in the AMPL models used in NebulOuS, where the type of the variable is 
indicated by the last part of the name, after the component type, and the deployment type (e.g., 
faceDetection.edge.cpu). 

Listing 13 shows the definition of the requirements for the component to run and the allowed options for 
the deployment. The intervals mean any real number in the range and the integer interval means any integer 
value in the range; hence, one may want to rather replace the intervals for the memory requirements with a set 
of possible values instead of allowing all integer values in the given range. Listing 14 shows the definitions for 
the multiplicity variables for the number of workers. There are two scalar variables representing the total number 
of workers in the Cloud and in the Edge respectively. Then there are index variables over the set of providers of 
each type to represent the number of workers on each provider and each type. Since the total number of workers 
of a type on all providers must add up to the total number of workers for that type, there are constraints to 
enforce this restriction per provider type. 

 

 
40 https://ampl.com/  
41 https://ampl.com/ce/  

https://ampl.com/
https://ampl.com/ce/
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Listing 13: Representing the application deployment requirements. 

 
Listing 14: The total multiplicity of the various worker types broken down in workers per location 

Listing 15 presents the node identifiers on each provider as parameters that must be given as sparse matrices 
where the first, row index is for the named providers, and the second, column index is for the number of workers 
at that provider. Hence, not all rows need to have the same number of columns. The number of worker instances 
allocated to each node at each provider is represented similarly. Finally, there must be constraints to ensure that 
the allocation of workers across all nodes of a provider matches the number of workers to be allocated to that 
provider. 

 

 
Listing 15: Deployment node identifiers and number of worker instances per node 

Listing 16 shows the definition of deployment cost starting from the individual node costs based on the 
already established node identifiers. This is essentially given as two vectors of values for the possible deployment 
nodes. Since the cost is changing dynamically depending on the market demand for each type of node, the 
available nodes and the cost tables will be continuously updated to reflect the current availability for deployment. 
Then two auxiliary parameters are calculated to compute the cost of the selected nodes from each provider. This 
is done by summing over all possible node indices, but selecting only those node indices for which the number 

# Illustrative model for the 'face-detection' component 
# Component resource requirements  
# Values in meaningful units   
var faceDetection.edge.cpu in interval [1.2, 3.0];  
var faceDetection.edge.memory in integer [250, 1000];  
var faceDetection.cloud.cpu in interval [3.0, 6.0];  
var faceDetection.cloud.memory in integer [1000, 4000];   
# Cloud and edge providers  
set CloudProviders := AWS Google Azure; set EdgeProviders := TID Orange Vodaphone Swisscom; 

# Number of workers to deploy and at different locations paint 
var faceDetection.cloudWorkers.count in integer [2, 10]; 
var faceDetection.edgeWorkers.count in integer [0, 5];  
var faceDetection.cloudWorkers.location{ p in CloudProviders }  in integer [0, faceDetection.cloudWorkers.count]; 
var faceDetection.edgeWorkers.location{ p in EdgeProviders }  in integer [0, faceDetection.edgeWorkers.count]; 
# Making sure to deploy correct number of workers over all locations 
subject to CloudWorkerLimit :  
    sum{ p in CloudProviders } faceDetection.cloudWorkers.location[p]  == faceDetection.cloudWorkers.count;   
subject to EdgeWorkerLimit : 
    sum{ p in EdgeProviders } faceDetection.edgeWorkers.location[p]  == faceDetection.edgeWorkers.count; 

 

# Label the nodes at each provider the range is set so that there are as many nodes as 
# there are workers at each provider to accommodate the case where there is only one worker per node. 
param CloudNodeIDs{ p in CloudProviders, 0..faceDetection.cloudWorkers.location[p] }; 
param EdgeNodeIDs{ p in EdgeProviders, 0..faceDetection.edgeWorkers.location[p] }; 
# Specific deployment decision variables with the constraint that the sum of nodes on 
# each provider matches the sum of all providers 
var faceDetection.cloudWorkers.cloud.node.instances { p in CloudProviders, 

1..faceDetection.cloudWorkers.location[p] } in integer [0, faceDetection.cloudWorkers.location[p] ]; 
var faceDetection.edgeWorkers.cloud.node.instances { p in EdgeProviders, 1..faceDetection.edgeWorkers.location[p] 

} in integer[0,faceDetection.edgeWorkers.location[p]]; 
subject to CloudNodeWorkerLimit: 
    sum{ p in CloudProviders, id in integer [1, faceDetection.cloudWorkers.location[p] } 
    faceDetection.cloudWorkers.cloud.node.instances[p, id]  == faceDetection.cloudWorkers.location[p]; 
subject to EdgeNodeWorkerLimit: 
    sum{ p in EdgeProviders, id in integer [1, faceDetection.edgeWorkers.location[p] } 
    faceDetection.edgeWorkers.edge.node.instances[p, id]  == faceDetection.edgeWorkers.location[p]; 
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of instances is larger than zero. The result of these calculations is stored in two vectors indexed by the Cloud 
providers and Edge providers respectively.  Finally, given the deployment budget parameter, the total 
deployment cost for the Cloud part and the Edge part are calculated individually and then compared against 
the budget in a constraint. 
 

 
Listing 16: The cost constraints of the optimisation problem 

Given all the variable and constraint definitions of the previous listings, one must formulate at least one 
deployment goal or objective. This could be to deploy at minimal cost. However, the minimal cost is an 
application that has zero worker instances, and it is therefore not a realistic objective without also providing a 
goal related to the application performance. Since the role of the facial detection component is to analyse images, 
one can imagine that the number of images awaiting processing over the next time unit, for instance minutes, 
will be measured by the application and submitted to the event management system via an appropriate sensor 
to a metric, which is here called ImagesToProcess. Recall that the optimiser will subscribe to all ‘parameters’ that 
are not composite parameters that can be directly calculated from other definitions, and so this parameter will 
be replaced with it current metric value before optimising the configuration.  

Secondly, there must be a way to measure the processing capabilities of the facial recognition component. 
This capacity depends on the complexity of each image, but also on the node hosting the facial recognition 
component since the underlying hardware has different capabilities. The result is that the processing time per 
image will be a stochastic quantity that can be reported by the facial component after completing the processing 
of each image. The event management system will then be able to compute the empirical distribution of these 
measurements and calculate the upper quantile of this distribution. Essentially, this quantile will represent an 
upper bound on the computing time needed to finish computation, for instance that 80% of the images are 
processed using less computing time than this upper quantile value. The upper bound on the number of images 
that is to be served by one single facial recognition component is then the length of the time interval divided by 
the upper bound on the image computation time. Hence, this can be used to find the number of facial 
recognition components needed to process the images in the queue over the time interval available for their 
processing.  

The utility of the application is obviously best if exactly the number of queued images can be processed in 
the next time interval as the application provides the correct amount of facial processing components. The utility 
is decreased if less than the queued number of images can be served, but also if more than the number of queued 

# Cost parameters to be set for the available node candidates 
# Values in some currency 
param CloudNodeCost{ id in CloudNodeIDs }; 
param EdgeNodeCost{ id in EdgeNodeIDs }; 
# Then calculate the total deployment cost for Cloud and Edge 
param TotalProviderCloudCost{ p in CloudProviders } 
    = sum{ n in faceDetection.cloudWorkers.location[p] : 
            aceDetection.cloudWorkers.cloud.node.instances[ p, n ]>0 } 
        ( CloudNodeCost[ CloudNodeIDs[p, n] ] ); 
param TotalProviderEdgeCost{ p in EdgeProviders } 
    = sum{ n in  faceDetection.edgeWorkers.location[p] : 
        faceDetectionedgeWorkers.edge.node.instances[ p, n ]>0 } 
    ( EdgeNodeCost[ EdgeNodeIDs[p, n] ] ); 
# Cost constraint on the number of workers 
param DeploymentBudget; 
param TotalCloudCost = sum{ p in CloudProviders } TotalProviderCloudCost[p]; 
param TotalEdgeCost  =  sum{ p in EdgeProviders } TotalProviderEdgeCost[p]; 
subject to DeploymenCostConstraint : 
    TotalCloudCost + TotalEdgeCost <= DeploymentBudget; 
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images will be served as it is an indication of overprovisioning, and therefore a costlier deployment than needed 
to do the job. The utility function calculations are shown in Listing 17. 

 

 
Listing 17: The utility calculations for the facial detection component workers problem 

4.3 NebulOuS Integration 
As can be seen from the worked example in the previous sections, there must be a strong consistency between 
the variability definitions in the parameterised topology model; the metric model providing advanced 
calculations of composite metrics whose values are functional combinations of other metric values, e.g., the 
quantile of the empirical computation time distribution used in this example; and the formulation of the 
constraints and the utility functions. The semantic model will provide a framework for this modelling and the 
capabilities of the infrastructure available for the deployment, and the user interface will support the application 
owner’s definitions of the involved functional expression linking these to the available metrics and component 
variability variables. 
  

# There will be two utility objectives for this deployment:  
# The first objective aims at minimising the total cost of the deployment.  
minimize Cost: 
    TotalCloudCost + TotalEdgeCost;      
# The second objective aims to provide enough facial detection components to be   
# able to process the queued number of images.   
param ImagesToProcess;  
param UpperQuantileImagesProcessingTime;  
param TimeIntervalLength = 60s;  
param UpperQuantileNoImagesPerComponent = TimeIntervalLength / 
    UpperQuantileImagesProcessingTime;   
maximize Performance: 
    1/exp( (ImagesToProcess - UpperQuantileNoImagesPerComponent  
        * (faceDetection.cloudWorkers.count + faceDetection.edgeWorkers.count) )^2 ); 
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5. Resource Discovery Mechanism 

This section outlines a Resource Discovery mechanism designed to efficiently register, discover, monitor, and 
manage fog and edge devices within the cloud computing continuum. It emphasizes secure communication, 
detailed device profiling, health monitoring, administrative control, and data persistence for auditing and 
resource management purposes.  
 

 
Figure 5: Overview of NebulOuS Resource Discovery mechaniswm 

5.1 Registering Fog/Edge devices to NebulOuS 
The Resource Discovery mechanism allows fog and edge device owners to register their devices with NebulOuS. 
These devices are potential candidates for deploying application component instances (or workloads). As seen 
in Figure 1, device owners use a graphical user interface (GUI) to provide necessary details of their devices, such 
as Device Id, Public IP, Credentials, Location etc. Public IP and connection credentials are important for 
allowing NebulOuS to connect and set up these fog or edge devices, while other additional details collected (e.g., 
Location) will be used later on by the Cloud/Fog Service Broker to generate the available resource pools that 
are appropriate for a specific application. These details are then used by the Fog/Edge Resources Manager, a 
dedicated component of the Resources Discovery mechanism, to connect to the device through an SSH 
connection and execute appropriate scripts to detect/identify the capabilities of the device, and to install an 
appropriate monitoring agent for collecting health status data. Once all the information is collected the device 
details are persisted in a no-SQL database that holds details for all Fog/Edge resources available to the system. 
They are also ontologically captured as part of the asset model for interoperability purposes.  

Incoming registration requests are checked against predefined access control rules and application 
consumption policies. More specifically: 

• A first pre-authorization step takes place by invoking the NebulOuS Security and Privacy Manager to 
check against available access control rules. At this stage a filtering of allowed devices can be made based 
on the rights of the owner of the device and/or its location (e.g., providers/users whitelist/blacklist, 
permitted geographical regions etc.). 

• A second authorization step takes place after the Fog/Edge Resources Manager has aggregated all device 
capabilities. This authorization step comprises a comparison check between the nominal and real device 
capabilities and/or a check based on the real capabilities and the minimum requirements that have been 
defined for security or performance/quality assurance purposes. For the latter, the Broker Quality 
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Assurance mechanism is invoked in order to infer the device’s abidance to higher-level application 
consumption policies. These are policies that operate at a higher level of abstraction and express a broader 
set of business and security requirements that characterise an application as opposed to an application 
workload (instance). For example, a policy may impose minimum limits on the compute capacity that 
must be assigned to an application component; any QoS requirement attached to a workload (running 
instance) of this component must respect these limits. In other words, we are envisaging a situation 
whereby QoS requirements potentially vary across different deployed workloads of an application 
component, whilst abiding by an overarching set of application consumption policies. Consider, for 
instance, the following scenario. An organisation develops an IoT application and sets an application 
consumption policy that imposes minimum limits on the CPU cores and RAM size that must be 
available to an application execution. The organisation then deploys application instances at different 
locations to serve the needs of its customers (one deployed instance per customer is assumed).  
Customers are free to set their own QoS requirements on their application instances if these abide by 
the overarching application consumption policy. 

 

 
Figure 6: Sequence diagram for registering Fog/Edge devices 

Through the GUI a NebulOuS administrator is able to accept or reject the registration of any new device. 
All incoming devices registration requests are persisted in a no-SQL store for auditing purposes. Figure 6 depicts 
a sequence diagram that encapsulates the Fog/Edge devices registration process.  

The list of available devices, along with their details (location, processing capacity, network quality etc.), will 
be used by the Optimiser (see Section 4) to determine, based on the set of user preferences, which subsets of 
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these resources can satisfy application provisioning requirements and preferences, and therefore formulate an 
adequate resource pool. 

5.2 Unregistering Fog/Edge devices to NebulOuS 
Fog and edge devices are unregistered in three occasions: i) when a device owner requests the withdrawal of a 
device; ii) when a NebulOuS administrator requests the withdrawal of a device; iii) when the monitoring system 
detects that the device is unreachable for more than a given amount of time (and retries). If the unregistered 
device is already commissioned hosting application instances, a reconfiguration process is triggered that relocates 
all hosted application instances.  
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Figure 7: Sequence diagram for unregistering Fog/Edge devices 

An authorization step takes place every time an unregistration request arrives at the Fog/Edge Resources 
Manager, by invoking the NebulOuS Security and Privacy Manager. This check: 

• Determines whether the device is already commissioned hosting specific component instance(s). 
• Evaluates the request against the available access control rules that determine the entities that are allowed 

to perform a device unregistration. 
The Resource Discovery mechanism maintains a data collection with records of all devices that have been 

unregistered from the pool of available resources. This database can be used for tracking device lifecycle events, 
and for reference when assessing resource availability and providers' reputation. Figure 7 depicts a sequence 
diagram that analyses the “unregistration” process of Fog/Edge devices.  

5.3 Resource Discovery  
As part of Task 2.4, we designed and developed a first prototype of the NebulOuS Resource Discovery 
mechanism that is capable of registering/unregistering fog and edge devices. These devices form part of the 
transient cloud computing continuum, and therefore consolidate resource pools that will be used by the 
NebulOuS Optimiser as node candidates for deploying application components. This first release of the 
mechanism implements only basic functionality and can be accessed here: 
https://opendev.org/nebulous/resource-manager. More comprehensive functionality including the 
authentication steps outlined above is deferred for the 2nd release. The rest of this section provides screenshots 
of the Resource Discovery mechanism’s GUI.  

After successful authentication, the user (either admin or device owner) is directed to the Resource 
Discovery mechanism’s dashboard. From there they can navigate to specific service sections, like new device 
registration (for onboarding), onboarded devices monitoring and management, archived registration requests 
and devices offboarded, and a settings section. 

 

  
Figure 8: Resource Discovery mechanism dashboard 

In the device registration section, a device owner can view a list of all open registration requests he/she has 
submitted, as well as create new ones. Past requests that completed either successfully or unsuccessfully are listed 
at the History section.  
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Figure 9: List of open user’s registration requests (currently empty) 

When creating a new request, the device owner is required to fill important device data like its IP address, a 
unique device Id, SSH connection credentials, as well as optional information like a human-readable device 
name, device capabilities etc. 
 

  
Figure 10: New device registration request form 

After submitting the registration request, it will receive a unique Request Id, its status will be set to NEW_REQUEST 
and certain administrative info will be recorded (like creation date and owner). It will also be listed in the list of 
open requests. 
 

  
Figure 11: List of open user’s registration requests (with a new request) 
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Periodically the Resource Manager will process new requests, by attempting to connect to the described devices 
and detect their capabilities. The collected capability data are then stored along with the request. During device 
capability collection the request status changes to DATA_COLLECTION_REQUESTED. 
 

  
Figure 12: List of open user’s registration requests – Collecting device capabilities 

The collected device capability data can be viewed and edited in the request form. 
 

  
Figure 13: Device capabilities as collected by Resource Manager and stored in database – Request has been updated 

 
After device capability data collection, the Resource Manager will request authorization for onboarding the 
device. This is indicated by setting request’s status to PENDING_AUTHORIZATION. 
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Figure 14: List of open user’s registration requests (Request awaits authorization, after capabilities collection) 

Administrator can manually authorize a device onboarding. However automated authorization procedures will 
also be employed. 

  
Figure 15: Admin view of open registration requests awaiting authorization 

Resource Manager will periodically process the authorized requests and instruct the appropriate component to 
carry out the onboarding process. During onboarding the request status is ONBOARDING_REQUESTED. 
 

  
Figure 16: List of open user’s registration requests (device is being onboarded) 

After successful onboarding completion the request status changes to SUCCESS and the onboarded device will 
be listed in the list of active devices. Device owner can view only the devices he/she has registered (and had 
onboarded), but the administrator can view all of them. 
 

  
Figure 17: List of open user’s registration requests (successful device onboarding) 

Eventually, the Resource Manager can periodically archive old requests that have completed either successfully 
or with an error (data collection error, onboarding error, authorization error or rejection). 
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6. Semantic Modelling 

As explained in the Introduction, NebulOuS provides the following ontological models: 1) the asset model, for 
describing common traits encountered in infrastructural CC services, including compute and storage capacities, 
network connectivity, geolocation, and price; 2) the application component QoS requirements model that is populated 
with the information described in the metric model outlined above. These models are elaborated in Sections 
6.1 and 6.2.  

6.1 Asset Modelling 
The asset model provides the basis for determining how an application component deployment is to be realised 
across a pool of available resources given a set of user-expressed preferences, and providing that the application 
component’s QoS are satisfiable. The asset model forms the basis of NebulOuS’s optimisation model that describes 
the constraints and the objectives according to which application components are managed throughout their 
lifecycles (see Section 4). This includes optimised application component placement that considers the current 
capacities and capabilities of a pool of available CC nodes, the component’s QoS requirements, as well as any 
user-expressed preferences regarding the consumption of the component.  

Before presenting NebulOuS’ asset model, we outline related work on semantic modelling in the IoT, as 
well as on semantic modelling of IaaS offerings.  

 IoT Ontologies 
Several ontologies targeting interoperability in the IoT have been proposed. The "Semantic Sensor Networks" 
(SSN) ontology [14], [15] is a comprehensive W3C recommendation for providing a formal representation of 
sensor properties (sensing modalities, units, and ranges of measurement), actuators, the types of phenomena –
or features of interest– being observed or affected by actuations, and the procedures involved in realising 
observations and actuations. SSN incorporates a lightweight, self-contained, core ontology called SOSA (Sensor, 
Observation, Sample, and Actuator). Through their different, albeit complementary, scopes and degrees of 
axiomatization, SSN and SOSA are together able to provide interoperability across a wide gamut of applications 
and use cases ranging from satellite imagery to social sensing and citizen science. Both SSN and SOSA are based 
on W3C’s Resource Description Framework (RDF) and are thus extensible and reusable. In [16] IoT-Lite, a 
lightweight semantic model that includes the least number of concepts required for classifying IoT data, is 
defined as an instantiation of SSN42. IoT-Lite is not intended to be a fully-fledged ontology but a lightweight 
core extensible with application-specific semantic models.  

The Smart Applications Reference (SAREF) [17] ontology provides a common vocabulary for describing the 
functionalities, features, and services of smart appliances, as well as the communication and data exchange 
protocols that these devices use. SAREF is intended to enable interoperability and support the development of 
smart home and building automation applications; to this end, it provides a modular representation of the 
service that an appliance provides in terms of its functions and the actual commands that invoke these functions. 
Notably, SAREF is narrower-in-scope than SSN and based on a more domain-specific nexus of interrelated 
concepts.  

The IoT-A ontology [18] is part of the wider IoT Architectural Reference Model (ARM). It provides a formal 
representation of the key components and their relationships in an IoT architecture. The ontology is modular 
comprising different facets or “models”: the domain model that includes fundamental concepts such as services 
and virtual entities, the entity model representing digital twins, the resource model carrying device-specific 
information, the service description model that describes the services offered by an IoT device, the event model 

 
42 An ontology is considered to be an instantiation of another “parent” ontology when it builds upon or specializes the concepts and 
relationships defined in the parent ontology to create a more specific or domain-specific representation. This relationship is often 
described as a hierarchy, where the parent ontology is more general, and the child ontology is more specific. 
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describing the events and changes that a device may engage in, the functional model that encodes lower-level 
concerns such as protocols and device management, as well as concepts for describing data flows and 
intercomponent interactions.  

The NGSI-LD ontology [19] is a formal representation of the concepts and relationships of the NGSI-LD 
data model that aims at allowing the exchange of data across IoT devices and systems. It includes the usual prose 
for the representation of IoT entities and the properties thereof, as well as a set of interrelated concepts for 
representing and sharing contextual awareness. It fails to support actuation environments.  

In [20], an ontology is proposed for enabling the development of ‘generic’ IoT applications that are agnostic 
of the underlying sensing or actuating devices that they interact with. The ontology enables seamless device-to-
application communication by abstracting away from vendor-specific device details through the annotation and 
classification of the data streams that these devices generate/accept. The ontology is based on an old version of 
SSN (prior to the integration of SOSA) extended with the authors’ own ontological actuation model.  

In a similar vein, the SEMIC ontology [21] aspires to introduce an interoperability layer that bridges the 
world of IoT applications with the realm of sensing and actuating devices. SEMIC extends SSN through a nexus 
of interrelated concepts that enables the modelling of virtual (software) sensors and their interrelations with 
underlying physical sensors, and of virtual observations. Virtual observations are aggregations of physical 
observations that collectively provide the kind of higher-level information sought by IoT applications (e.g., 
deriving room occupancy information based on data from cameras and Wi-Fi access points).  

IoTMA (Internet of Things Model and Analytics) [22] is another SSN-based ontology that provides a 
common vocabulary for describing the capabilities and properties of IoT devices. IoTMA emphasises formalising 
context awareness, i.e., including concepts for characterising observations gathered in a particular IoT context, 
and determining/prioritising any future actuations in that context based on that awareness.  

The above ontologies are primarily designed as generic frameworks for capturing the delivery and 
consumption of heterogeneous sensor data, and the actuation of IoT devices. They focus on formally 
representing sensors, actuators, observations, and the phenomena being observed. They are, however, unsuitable 
for describing CC resources for they fail to incorporate concepts for modelling common traits such as compute 
and storage capacity, data transfer capability, geographical location, and price. Such concepts are the main focus 
of another class of ontologies, henceforth referred to as IaaS ontologies, that primarily aim at generically 
describing infrastructural cloud offerings. A brief overview of such ontologies is in order.  

 IaaS Ontologies 
Several ontologies targeting interoperability across IaaS offerings have been defined. In [23], a series of ontologies 
are proposed, including one for describing compute instances (virtual machine characteristics), one for 
describing pricing schemes, one for describing regions and availability zones, and one for describing SLAs. A 
main drawback of these ontologies is that they typically associate domains and ranges of object properties 
through global scope constraints (rdfs:domain and rdfs:range): this is overly restrictive and can lead to 
unintended inferences [24]. 

In [25], the mOSAIC ontology is proposed for cloud service discovery and composition. It provides a 
platform and set of APIs for resolving interoperability issues in federated clouds. Its main “drawback” is that it 
predates the development of major standard domain ontologies such as schema.org, QUDT, SSN, and 
Wikidata, thus failing to rely on –and link to– them. Moreover, it seems not be maintained anymore.  

In [26], the Cloud Description Ontology is presented for facilitating cloud service brokerage at the IaaS, 
PaaS and SaaS levels. The ontology features a rather simplistic price model that is insufficient for modelling real 
world scenarios. It is unavailable online and seems not to be maintained anymore. 

In [27], an OWL ontology for generically describing the lifecycle of cloud services is proposed. The ontology 
provides concepts and relations for modelling generic processes such as (cloud) service discovery, negotiation, 
composition, and consumption. It does not, however, provide any concepts and relations for modelling lower-
level technical service specifications such as compute and storage capacity, network connectivity, geographical 
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location, and price; for such specifications it relies instead on (now outdated) external ontologies such as 
DReggie [28].  
In  [24], the Cloud Computing Ontology (CoCoOn) [24] is proposed for semantically describing cloud service 
offerings. CoCoOn reuses existing established domain ontologies including SSN [15], schema.org43, and 
QUDT44 (Quantities, Units, Dimensions and dataTypes). This brings about several advantages:  

• Interoperability. Reusing terms from different ontologies enhances interoperability between different 
systems and datasets for it facilitates the unambiguous exchange and integration of information.  

• Standardization. Reusing terms from established ontologies that typically represent industry standards 
or widely accepted vocabularies helps avoiding ambiguities and reducing redundancies (duplicate terms), 
whilst it increases credibility and understandability, hence acceptance, among domain experts.  

• Evolution and maintenance. Reusing concepts and properties from established ontologies facilitates 
evolution and updates over time (regarding at least the reused concepts and properties). 

Moreover, CoCoOn adheres to the principle of minimal commitment [29] leading to a more flexible and extensible 
model [24]. This is achieved by defining object property domains and ranges through guarded restrictions (i.e., 
through the property owl:someValuesFrom) and cardinality constraints (e.g., owl:qualifiedCardinality and 
owl:maxQualifiedCardinality), instead of the usual rigid global scope constraints (rdfs:domain and rdfs:range).  

Due to the above advantages, we have decided to base our ontological asset model for describing 
infrastructural CC service offerings on CoCoOn. More specifically, we have decided to reuse CoCoOn’s 
concepts and properties for providing a schema against which queries regarding QoS capabilities of CC resources 
can be executed.  Notably, due to CoCoOn’s reliance on SSN, this schema is easily extensible to serve queries 
that incorporate, in addition to QoS requirements, requirements on sensors/actuators (e.g., discover all CC 
resources that have certain QoS characteristics and are in proximity to sensors with a certain specification). This 
clearly leads to a more holistic approach to CC resource discovery that can take into account a multitude of 
requirements. Section 5.1.3 provides a summary of CoCoOn’s main concepts and properties with emphasis on 
terms adopted and reused in our model. A fuller account of CoCoOn can be found in [30]. 

 CoCoOn 
Figure 18 provides an overview of CoCoOn’s hierarchically structured classes45. cocoon:CloudService is the main 
class hosting vocabularies for describing features and attributes of cloud service offerings at three different levels: 
IaaS, PaaS, and SaaS. Here we focus on IaaS. IaaS services are classified as compute, storage, and network 
(modelled, respectively, through the classes cocoon:ComputeService, cocoon:StorageService, and 
cocoon:NetworkService). 
Compute Service 
The following Virtual Machine (VM) attributes are modelled through data properties of cocoon:ComputeService: 

• Number of cores available to a Virtual Machine (VM) (cocoon:numberOfCores). 
• CPU performance power (cocoon:hasCPUcapacity). 
• RAM size available to a VM (cocoon:hasMemory). 

 
43 https://schema.org/ 
44 https://www.qudt.org/ 
45 Undecorated lines represent subclassing relations. 
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The local storage available to a VM is modelled through the object property cocoon:hasStorage that maps a 
compute service instance to an instance of the class cocoon:LocalStorage (see below); the maximum number of 
disks and storage capacity assignable to a VM (if any) are specified through the data properties 
cocoon:hasMaxNumberOfDisks and cocoon:hasMaxStorageSize respectively. Turning now to pricing, the class 
cocoon:ComputeService inherits from its parent cocoon:CloudService class the object property 
gr:hasPriceSpecification which maps a compute service instance to a pricing specification from the class 
gr:UnitPriceSpecification (of the GoodRelations ontology46). More details on CoCoOn’s price modelling are 
provided later. Listing 18 provides an example of a compute service instance specification47. Note the use of the 
class schema:TypeAndQuantityNode to describe integer and decimal values that are associated with units of 
measurement as part of data properties (e.g., “a compute service instance has 86.4GB of memory”). 

 

 
46 GoodRelations is part of Schema.org ontology. 
47 The data properties cocoon:inRegion and cocoon:hasProvider are covered later. 

Figure 18:  CoCoOn v1.0.1 
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Listing 18: Example compute service specification 

Storage Service 
Two kinds of storage service are defined: cocoon:LocalStorage and cocoon:NetworkStorage. For either kind, size is 
defined through the data property cocoon:hasStorageSize, whereas the amount of input/output operations per 
second (IOPS), and the throughput, are specified through the data properties cocoon:hasStorageIOMax and 
cocoon:hasStorageThroughputMax respectively. Pricing specifications are associated with storage service instances 
in the same way as with compute service instances. Listing 19 provides an example of a storage service 
specification. 
 

 
Listing 19: Example storage service specification 

  

@prefix schema: <https://schema.org/> . 

@prefix unit: <http://qudt.org/vocab/unit#> . 

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> . 

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . 

@prefix gr: <http://purl.org/goodrelations/v1#> . 

@prefix cocoon: <https://w3id.org/cocoon/v1.0.1#> . 

@base <https://w3id.org/cocoon/data/v1.0.1/> . 

<2019-02-12/ComputeService/Gcloud/CP-COMPUTEENGINE-VMIMAGE-N1-HIGHCPU-96-PREEMPTIBLE> 

a cocoon:ComputeService ; 

rdfs:label "CP-COMPUTEENGINE-VMIMAGE-N1-HIGHCPU-96-PREEMPTIBLE" ; 

gr:hasPriceSpecification [ a cocoon:CloudServicePriceSpecification ; 

gr:hasCurrency "USD" ; 

gr:hasCurrencyValue 0.72 ; 

gr:hasUnitOfMeasurement unit:Hour ; 

cocoon:inRegion <Region/Gcloud/us-east1> 

] ; 

cocoon:hasMemory [ a schema:TypeAndQuantityNode ; 

schema:amountOfThisGood 86.4 ; 

schema:unitCode cocoon:GB 

] ; 

cocoon:hasProvider cocoon:Gcloud ; 

cocoon:numberOfCores "96"^^xsd:decimal ; 

schema:dateModified "2019-02-12"^^xsd:date . 

 
 

@base <https://w3id.org/cocoon/data/v1.0.1/> . 

<2019-03-07/NetworkStorage/Azure/premiumssd-p30> 

a cocoon:NetworkStorage ; 

rdfs:label "premiumssd-p30" ; 

gr:hasPriceSpecification [ a gr:CloudServicePriceSpecification ; 

    gr:hasCurrency "USD" ; 

    gr:hasCurrencyValue 0.13200195133686066 ; 

    gr:hasUnitOfMeasurement cocoon:GBPerMonth ; 

    cocoon:inRegion <Region/Azure/australia-east> 

] ; 

cocoon:hasProvider cocoon:Azure ; 

cocoon:hasStorageIOMax [ a schema:TypeAndQuantityNode ; 

    schema:amountOfThisGood "5000"^^xsd:nonNegativeInteger ; 

    schema:unitCode cocoon:IOPs 

] ; 

cocoon:hasStorageSize  [ a schema:TypeAndQuantityNode ; 

    schema:amountOfThisGood "1024"^^xsd:nonNegativeInteger ; 

    schema:unitCode cocoon:GB 

] ; 

cocoon:hasStorageThroughputMax  [ a schema:TypeAndQuantityNode ; 

    schema:amountOfThisGood "200"^^xsd:nonNegativeInteger ; 

    schema:unitCode unit:MegabitsPerSecond 

]. 
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Network Service 
Several kinds of network service are defined:  cocoon:InternetService, cocoon:LoadBalancing, 
cocoon:StaticIPService, and cocoon:DNSService. 

• cocoon:InternetService. Uses the object property cocoon:hasDirection to indicate traffic direction by 
mapping to the class cocoon:TrafficDirection which is partitioned by the singletons cocoon:Egress and 
cocoon:Ingress. The object properties cocoon:hasDestination and cocoon:excludesDestination are used to 
specify destination ranges by mapping to the class cocoon:Location (see later).  

• cocoon:LoadBalancing. A load balancing service is modelled in terms of load balancing data, modelled as 
instances of the subclass cocoon:LoadBalancingData, and forwarding rules, modelled as instances of the 
subclass cocoon:ForwardingRule. Load balancing data are associated with a direction, modelled through 
the object property cocoon:hasDirection, and with a pricing specification; the latter association is 
achieved in the same way as with compute service instances. 

Static IP and DNS services shall not further concern here for they do not directly relate to our work. Listing 21 
provides an example of a load balancing service specification.  
 

 
Listing 20: Example load balancing service specification. 

Price modelling 
The class cocoon:CloudServicePriceSpecification is defined as a subclass extension of the class 
gr:UnitPriceSpecification. The regional dimension of service pricing is addressed through the object property 
cocoon:inRegion which maps a price specification instance to an instance of the class cocoon:Region (see later). 
Disjoint specialisation subclasses are defined to handle different kinds of pricing specification: VM pricing 
(cocoon:CloudOSPriceSpecification), storage transactions pricing (cocoon:CloudStorageTransactionsPrice 
Speficition), and network services pricing (cocoon:CloudNetworkPriceSpecification). The reason for introducing 
these specialisation subclasses is to accommodate, through appropriate object and data properties, the different 
requirements of each kind of pricing specification.  

• VM pricing. cocoon:CloudOSPriceSpecification features three main properties: cocoon:chargedPerCore 
that specifies the price charged per CPU core; cocoon:forCoresMoreThan that specifies the price charged 
for machines with more than the specified number of cores; cocoon:forCoresLessEqual that specifies the 
price charged for machines with less than the specified number of cores. Listing 21 provides an example 
of a VM pricing specification. 

• Storage transactions pricing. No additional object or data properties are defined for this class. Listing 22 
provides an example of a storage pricing specification.  

• Network service pricing. The data properties cocoon:forUsageLessEqual and cocoon:forUsageMoreThan are 
used to specify upper and lower usage limits for network pricing schemes (e.g. the price for 0-1TB of 
egress Internet traffic, the price for 1-10TB of egress Internet traffic, and the price for 10+TB of egress 
Internet traffic). Special rates that apply e.g. to egress traffic between zones in the same region may be 
modelled through the data property cocoon:specialRateType. 

@base <https://w3id.org/cocoon/data/v1.0.1/2019-02-12/> . 

<LoadBalancingData/Gcloud> 

a cocoon:LoadBalancingData ; 

gr:hasPriceSpecification  [ a gr:CloudServicePriceSpecification ; 

    gr:hasCurrency "USD" ; 

    gr:hasCurrencyValue 0.008 ; 

    gr:hasUnitOfMeasurement  cocoon:GB ; 

    cocoon:inRegion <Region/Gcloud/us> 

] ; 

cocoon:hasDirection cocoon:Ingress ; 

cocoon:hasProvider cocoon:Gcloud ; 

schema:dateModified "2019-02-12"^^xsd:date . 
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Listing 21: Example pricing specification 

QoS modelling 
The quality with which a service is being delivered depends on the capabilities of the infrastructure allocated to 
it (i.e., compute and storage capacity, and network bandwidth), as well as on the actual data transfer speed and 
latency48. As already seen, infrastructural capabilities are modelled through the classes cocoon:ComputeService, 
cocoon:StorageService, and cocoon:NetworkService. Data transfer speed and latency are defined through the class 
cocoon:QualityOfService, specifically through the subclasses cocoon:DataTransferSpeed and 
cocoon:DNSQueryLatency respectively. cocoon:DataTransferSpeed is further partitioned by cocoon:DownlinkSpeed 
and cocoon:UplinkSpeed.  Listing 23¡Error! No se encuentra el origen de la referencia. provides an example of a 
downlink speed specification for a specific data size. which is defined as equivalent to the class ssn-
system:SystemProperty. 

 

 
Listing 22: Example storage pricing specification 

QoS measurement 
QoS measurements are grouped under the class cocoon:Measurement which is defined as equivalent to the class 
sosa:Observation, enabling the use of sosa:hasFeatureOfInterest to specify the particular feature being measured 

 
48 Latency refers here to round trip time. It is affected by several uncontrollable factors including network congestion, routing 
efficiency, network infrastructure quality. The same as the ones affecting data transfer rate. 

@base <https://w3id.org/cocoon/data/v1.0.1/2019-02-12/> . 

<SystemImage/Gcloud/suse-sap> 

a cocoon:SystemImage ; 

rdfs:label "suse-sap" ; 

gr:hasPriceSpecification  [ a cocoon:CloudOSPriceSpecification ; 

    gr:hasCurrency "USD" ; 

    gr:hasCurrencyValue 0.41 ; 

    cocoon:chargedPerCore false ; 

    cocoon:forCoresMoreThan "4"^^xsd:decimal 

] ; 

gr:hasPriceSpecification  [ a cocoon:CloudOSPriceSpecification ; 

    gr:hasCurrency "USD" ; 

    gr:hasCurrencyValue 0.34 ; 

    cocoon:chargedPerCore false ; 

    cocoon:forCoresLessEqual "4"^^xsd:decimal ; 

    cocoon:forCoresMoreThan "2"^^xsd:decimal 

] ; 

gr:hasPriceSpecification  [ a cocoon:CloudOSPriceSpecification ; 

    gr:hasCurrency "USD" ; 

    gr:hasCurrencyValue 0.17 ; 

    cocoon:chargedPerCore false ; 

    cocoon:forCoresLessEqual "2"^^xsd:decimal 

] . 

 
 

@base <https://w3id.org/cocoon/data/v1.0.1/> . 

<2019-03-07/CloudStorageTransactionsPriceSpecification/Azure/managed_disk/transactions-ssd> 

a cocoon:CloudStorageTransactionsPriceSpecification ; 

rdfs:label "transactions-ssd" ; 

gr:hasPriceSpecification  [ a gr:CloudServicePriceSpecification ; 

    gr:hasCurrency "USD" ; 

    gr:hasCurrencyValue 0.0000002 ; 

    cocoon:inRegion <Region/Azure/brazil-south> 

] . 
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each time. The devices that are used for measuring QoS are described through the class cocoon:Device which is 
a subclass of sosa:Sensor.  
 

 
Listing 23: Downlink speed specification 

Location and region 
The class cocoon:Location represents any kind of geographical location. In contrast, its subclass cocoon:Region is 
a specialisation class used to represent cloud regions. Regions are mapped to their geographical locations 
through the cocoon:inPhysicalLocation and cocoon:inJurisdiction object properties depending on whether 
locations are known exactly or approximately respectively. A region is typically mapped to a single physical 
location. The continent to which a region belongs is specified through the cocoon:continent data property, 
whereas a region’s provider is specified through the data property cocoon:hasProvider (maps to an rdfs:label 
describing a provider). 

 The NebulOuS Approach 
Infrastructural CC service offerings are characterised by the same traits as IaaS cloud offerings: compute and 
storage capacity, data transmission capability, geographical location, and price. They may thus be modelled in 
terms of the same concepts and properties as IaaS cloud offerings. In NebulOuS, such modelling is based on 
CoCoOn. More specifically, in our ontological model a CC service takes the form of a contextualised cloud 
service i.e., one that is offered from outside the context of a cloud data centre. A CC service is thus represented 
as an instance of the class cocoon:CloudService that is associated with a price specification whose location – 
specified through the cocoon:inRegion property – lies outside the subclass cocoon:Region. Formally, we define the 
class nebulous:FogService in the Description Logic 𝒮ℛ𝒪ℐ𝒞49 as50: 

 
𝑛𝑒𝑏𝑢𝑙𝑜𝑢𝑠: 𝐹𝑜𝑔𝑆𝑒𝑟𝑣𝑖𝑐𝑒 ≡ 
(= 1 𝑔𝑟. ℎ𝑎𝑠𝑃𝑟𝑖𝑐𝑒𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛. ((= 1 𝑐𝑜𝑐𝑜𝑜𝑛: 𝑖𝑛𝑅𝑒𝑔𝑖𝑜𝑛. 𝑐𝑜𝑐𝑜𝑜𝑛: 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛)

⊓ (< 1 𝑐𝑜𝑐𝑜𝑜𝑛: 𝑖𝑛𝑅𝑒𝑔𝑖𝑜𝑛. 𝑐𝑜𝑐𝑜𝑜𝑛: 𝑅𝑒𝑔𝑖𝑜𝑛))) 
where ((= 1 𝑐𝑜𝑐𝑜𝑜𝑛: 𝑖𝑛𝑅𝑒𝑔𝑖𝑜𝑛. 𝑐𝑜𝑐𝑜𝑜𝑛: 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛) ⊓ (< 1𝑐𝑜𝑐𝑜𝑜𝑛: 𝑖𝑛𝑅𝑒𝑔𝑖𝑜𝑛. 𝑐𝑜𝑐𝑜𝑜𝑛: 𝑅𝑒𝑔𝑖𝑜𝑛)) is the abstract class 
encompassing all those instances of the class cocoon:CloudServicePriceSpecification that are associated with 
locations that are not cloud data centre locations.  

 
49 OWL 2 is known to provide the expressiveness of the 𝒮ℛ𝒪ℐ𝒞 Description Logic [31] which may thus be used to describe OWL 2 
abstract classes such as 𝑛𝑒𝑏𝑢𝑙𝑜𝑢𝑠: 𝐹𝑜𝑔𝑆𝑒𝑟𝑣𝑖𝑐𝑒. 
50 Note that, for any object property 𝑃 and concept 𝐶, (=  1 𝑃. 𝐶) represents the abstract class that comprises all those individuals 
that feature exactly one association through P with an instance of C; it is an abbreviation for the Description Logic notation (≤
1 𝑃. 𝐶)  ⊓  (≥ 1 𝑃. 𝐶). (≤ 1 𝑃. 𝐶) represents the class of all individuals that have at most one association through P with an instance 
of C, and (≥ 1 𝑃. 𝐶) represents the class of all individuals that have at least one association through P with an instance of C. 

@base <https://w3id.org/cocoon/data/v1.0.1/> . 

<256-KB> a schema:TypeAndQuantityNode; 

    schema:amountOfThisGood "256"^^xsd:interger; 

    schema:unitText "KB"; 

    schema:unitCode "2P". 

 

<QualityOfService/DownlinkSpeed-256-10240-KB> a cocoon:DownlinkSpeed; 

    cocoon:transferedFileSizeMin <256-KB>; 

    cocoon:transferedFileSizeMax <10240-KB>. 
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6.2 QoS Requirements 
We have hitherto focused on modelling capabilities and features of infrastructural CC services. We shall now 
focus on QoS requirements. 

 Service Quality Meta-Models 
Several ontology-based meta-models have been proposed for describing QoS requirements. These include: 
WSAF-QoS [32], DAML-QoS [33], QoSOnt  [34], WSMO-QoS [35], OWL-Q [36], [37], onQoS-QL [38], and 
PCM [39]. Nevertheless, only OWL-Q can be claimed to provide a rich metric model for describing QoS 
requirements in NebulOuS. We assess richness according to the following criteria based on modelling 
capabilities [40]: 

• Metric value types. A metric value type defines a range of possible values, which are applicable in 
constraints related to that metric. When dealing with continuous numeric domains, which have an 
inherent order, it is sufficient to model only the highest and lowest values along with their numeric type 
(e.g., real, integer, etc.). If the domain is numeric but not continuous, it can be represented as a 
combination of multiple continuous domains. In practical applications, numeric domains are commonly 
employed for the majority of quality metrics. However, set and enumeration domains lack a predefined 
order, so the user must specify the ordering of elements within the domain. 

• Metric unit. Metric values are typically measured using specific units, such as seconds for measuring 
execution time. However, it's insufficient to model just the unit name; we must also capture information 
on how to convert a value from one unit to another. To achieve this, units can be categorized into basic 
and derived units. Basic units are defined with a name and a concise abbreviation. Derived units, on the 
other hand, are created by multiplying a base unit by a specific float value, representing multiples of 
those base units. For instance, the unit for minutes can be derived by multiplying the unit for seconds 
by 1/60, while the unit for throughput quality is expressed by dividing the unit for "bytes" by the unit 
for "seconds". It is important to model these multiplying coefficients for derived units to ensure accurate 
conversions. 

• Metric measurement directive or function. Quality metrics are categorized into resource and composite 
metrics. Resource or raw metrics are directly obtained from the service's instrumentation system by 
following measurement directives. These directives should include a URI that specifies how to retrieve 
the value of a managed resource, as well as information about the data type of the returned value. 
Additionally, the access model (either push or pull) must be defined to determine whether the party 
responsible for measurement will actively request the value or passively receive it when it becomes 
available. Furthermore, specific measurement directives may require a timeout attribute to specify the 
maximum waiting time for obtaining the measurement value. Composite metrics, on the other hand, 
are calculated by applying mathematical (often statistical) functions to other metrics. Therefore, the 
description of both the function used and the other metrics involved in the computation is essential. 
Additionally, a function model should be provided to allow users to select the appropriate mathematical 
function for each specific composite metric. 

• Metric schedule. At least one of the following types of time windows should be defined for periodic or 
instantaneous calculations of new values for metrics: (a) calendar time window like week, month, and/or 
year; (b) sliding windows e.g., the last ten days; (c) expanding window or running total e.g., from this 
year’s start until now. 

• Metric weight relative to its implicit domain and user preferences. This weight can be used to calculate 
the rank of a service quality offer and indicates the impact that this metric has to the overall quality 
offered by a service. 

• Aggregation of the values of a composite service’s metric. It is imperative to provide a formal description 
of how the value of a metric for a complex service can be derived from the values of the corresponding 
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metrics of the individual services it comprises. This description is critical for automating the estimation 
of metric values for composite services. 

 We therefore opt for OWL-Q as basis for the NebulOuS ontological model for modelling QoS requirements.  

 OWL-Q 
OWL-Q [36], [37] is an ontology designed to capture QoS requirements. It offers a comprehensive set of concepts 
(represented as OWL 2 classes) and properties for semantically describing and constraining virtually any QoS 
attribute. Through its Q-SLA facet, OWL-Q provides adequate support for semantic SLA specification. To the 
best of knowledge, no other existing ontology provides such support.  We have therefore decided to base our 
ontological model for describing QoS requirements on OWL-Q.  

OWL-Q comprises a collection of facets serving as logical boundaries between conceptually different parts 
of the ontology (see Figure 19). Each facet is designed to address a particular aspect of QoS modelling. The 
Specification facet focuses on modelling QoS characteristics as constraints on service attributes and metrics; such 
characteristics may be defined by a service requester as part of a service request, or by a service provider as part 
of service offerings. The Attribute facet captures knowledge about the attributes constrained in quality 
specifications; service response time, availability, and network bandwidth are all examples of such attributes. 
The Metric facet encapsulates knowledge about the (statistical) formulae –if any— applied on the constrained 
attributes in quality specifications; average response time, minimum availability, and minimum bandwidth over 
a period are all examples of such metrics. Lastly, the Unit facet focuses on modelling units of measurement, and 
the Value Type facet specifies allowable types and value ranges for the attributes constrained in quality 
specifications. More details on facets can be found in the following paragraphs.  

 

 
 

Figure 19: OWL-Q facets 

In addition, OWL-Q includes top-level concepts that span several facets (depicted in grey colour in Figure 
19). owlq:Argument represents constrained entities in QoS specifications. A constrained entity takes the form of 
either a service attribute (i.e., an instance of owlq:Attribute), in case a constraint directly concerns a service 
attribute (e.g., response time less than 1ms), or of a metric (i.e., an instance of owlq:Metric), in case a constraint 
is expressed in terms of a function on a service attribute (e.g., average response time over a period). An attribute 
is further specified by the Attribute and Value Type facets (see below). A metric is further specified by the Metric 
facet. 

Specification facet 
Represents aggregations of constraints on attributes and metrics. It revolves around the concept 
owlq:Specification which is partitioned by the classes owlq:QoSProfile and owlq:QoSRequest (see Figure 20). The 
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former represents quality characteristics set by a service provider for its offered services51. The latter represents 
quality characteristics that a service consumer requires. Quality characteristics take the form of constraints on 
service attributes or metrics. More specifically, the object properties owlq:service and owlq:property are used to 
collectively attach QoS attributes and metrics to a service specification, whereas the object property 
owlq:containsConstraint is used to attach a constraint. A constraint can be either simple or complex. A simple 
constraint directly compares its first argument (a QoS attribute or metric) with its second one (a threshold value); 
any unary, binary, or n-ary comparison operator may be used. A complex constraint is a logical combination of 
(other complex or simple) constraints to which it relates through the object property owlq:constraint (see Figure 
20). A constraint may also be associated with a context that determines: 

 

 

Figure 20: OWL-Q specification facet 

• The specific service part (if any) to which the constraint applies. 
• The number of service instances that must be accounted for determining whether the constraint is violated. 

A specification may also be associated with a preference model (represented here as an instance of the class 
owlq:PreferenceModel). A preference model enables a requester to express their preferences on certain attributes 
and metrics over others through preference elements. A preference element is associated with a quality term (a 
service attribute or a metric – see Figure 20) through the object properties owlq:preferredAttribute and 
owlq:preferredMetric, and with a weight through the data property owlq:weight. A requester may also define 
preference categories, i.e., aggregations of QoS attributes or metrics. For example, a requester may define the 
‘performance’ category as comprising the attributes response time and throughput with relative preference weights 
of 0.4 and 0.6 respectively. This assigns a normalised preference value of 0.42 to the overall ‘performance’ 
category. Note that the sum of preferences attached to the attributes of a particular category must equal to 1.  

 

 
51 For instance, a service may be offered in three different qualities: ‘high’ with a response time of at most 10ms and an availability of 
at least 0.99999; ‘medium’ with a response time of at most 15ms and an availability of at least 0.9999; ‘low’ with a response time of 
at most 20ms and an availability of at least 0.999. 
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Attribute facet 
Any attribute constrained through a QoS specification takes the form of an instance of the class owlq:Attribute 
which is partitioned into (seeFigure 21): 

• owlq:MeasurableAttribute: attributes that can be measured through owlq:Metric (see below).  
• owlq:UnmeasurableAttribute: an attribute that cannot be quantitatively measured e.g., a UX attribute. 
• owlq:DomainDependentAttribute: an attribute that is only meaningful in certain domains; round trip time 

is an example of such an attribute since it is only meaningful in network performance measurements. 
• owlq:DomainIndependentAttribute: an attribute that is meaningful across domains e.g., time. 

In NebulOuS we focus on measurable attributes. An attribute may be composite comprising other attributes in 
which case it belongs to the class owlq:CompositeAttribute and is associated with an attribute list and a function 
that determines how elements in the list are combined (see Figure 21).  
 

Metric facet 
Any metric constrained through a QoS specification takes the form of an instance of the class owlq:Metric which 
is partitioned into the classes owlq:RawMetric and owlq:CompositeMetric (see Figure 22).  Raw metrics (e.g., 
response time) are directly recorded through observation from the measurement system’s instrumentation or 
from sensors. Composite metrics (e.g., average response time) are derived by applying a (statistical) formula on 
a list of arguments. Raw metrics may be related to a sensor (instance of owlq:Sensor) and a measurement directive 
(instance of owlq:MeasurementDirective). Sensors model the instrument—whether physical such as a thermometer 
or virtual such as a piece of software measuring latency—that makes the measurement; sensors may be associated 
with a configuration (instance of owlq:Configuration) that describes their installation, invocation, and stopping. 
Measurement directives define various parameters such as whether the measured value will get pulled or pushed 
by the sensor, or the type of measurement being made (count, downtime, execution time, status, etc).  

 

Figure 21: OWL-Q Attribute facet 
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Figure 22: OWL-Q Metric facet 

Composite metrics are related to a formula (instance of owlq:Formula) which represents the computation 
needed to produce a measurement. Each formula consists of a statistical function (e.g., mean, median, min, 
max, etc.) and a list of arguments that can be constants, other formulae, or other metrics. A composite metric 
may also be related to a owlq:MetricList that contains all other metrics that it comprises. Both raw and composite 
metrics may be related to a schedule (instance of owlq:Schedule) that defines their temporal dimensions (e.g., 
when the metric starts/stops being active), how many measurements should be taken, how often they should be 
taken, and the type of schedule used (fixed delay, fixed rate, single event). Raw and composite metrics may also 
be related to a window (instance of owlq:Window) specifying other properties such as measurement type and size, 
and measurement window type (sliding vs fixed). 
 

Unit facet 
Models units of measurement. Units can be classified into single, derived, and dimensionless. Derived units are 
computed from single ones through the application of mathematical operations, typically division and 
multiplication (e.g., bits per second). Both single and derived units may be associated with a dimension, 
represented as an instance of owlq:QuantityKind, and with a quantity, represented as an instance of owlq:Quantity 
(see Figure 10) For example, the unit “bits per second” is related to the speed “dimension” (an instance of 
owlq:QuantityKind), and to the network speed “quantity” (an instance of owlq:Quantity) respectively. 
Dimensionless units (e.g. number of times a threshold value has been exceeded) are represented as instances of 
the namesake class. Finally, the object property owlq:multipleOf is used to denote compatibility between units 
that are multiples of each other (e.g. bits, bytes, kilobytes, etc.).  
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Value Type facet 
The value type facet focuses on representing allowable value types and ranges, enabling the validation of metric 
measurements. It comprises two main classes: owlq:Value and owlq:ValueType (see Figure 24). The former 
represents any kind of value that can be a component of a value type. It is further subdivided into specialised 
sub-classes mapping to widely used XSD data types, such as integers and doubles. Value types are distinguished 
into scalar value types and value lists. A scalar value type can be bounded or unbounded. Bounded value types 
are separated into ranges and unions of ranges. Ranges are characterised by two equivalently typed limits that 
may or may not be included in the range and directly map to a certain Value. Unions of ranges comprise non-
overlapping ranges that contain the same kind of values (e.g., integers). Unbounded value types map to 
numerical types (Integers, Floats and Doubles) and Strings. 
 
 

 
Figure 24: OWL-Q Value Type facet 

 Q-SLA 
An extended version of OWL-Q, namely Q-SLA, has been proposed for semantically describing SLAs [37]. Q-
SLA introduces an SLA facet as an extension of the Specification facet, reflecting the fact that SLAs are a kind 
of quality specification including, alongside constraints and user preferences, contractual information such as 
the entities bound by an SLA, validity periods, the various service levels offered, pricing, as well as compensation 
schemes in case of SLA violations.  

More specifically, SLAs are represented as instances of the class owlq:SLA which is a subclass of 
owlq:Specification (see Figure 25). The entities52 bound by an SLA assume one of the roles “requester”, 

 
52 Either legal entities or physical persons.  

Figure 23: OWL-Q Unit facet 
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“provider”, or “third party”. Entity-role assignments take the form of instances of the class owlq:RoleAssignment. 
SLAs are associated with their entity-role assignments through the object property owlq:roleAssignment, and 
entity-role assignments are associated with entities through the data property owlq:role (Figure 25). SLA validity 
periods are determined through the data property owlq:validity. 

The service levels (SLs) specified in an SLA determine the different performance behaviours that a service 
can exhibit; they are thus a kind of complex constraints [37]. SLs are represented as instances of the class owlq:SL 
– a subclass of owlq:ComplexConstraint. Any SL comprises at least one simple constraint termed service level 
objective (SLO). SLOs are modelled as instances of the class owlq:SLO which is a subclass of 
owlq:SimpleConstraint. An SL is associated with its constituent SLOs through the object property 
owlq:constraint (see Figure 20). An SLO is bound to a service or service component through the 
owlq:applicableService property (see Figure 20). An SLO is also associated with:  

• The entities responsible for monitoring and assessing it, as well as with the entity obliged to guarantee it, 
through the data properties owlq:monitoringEntity, owlq:assessmentEntity, and owlq:obliged respectively. 

• Compensations, through the object property owlq:sloSettlement (see Figure 25). Compensations are 
penalties or rewards that apply, respectively, when the SLO is violated or when service performance 
exceeds pre-set thresholds; they are represented as instances of the class owlq:SLOCompensation.  

• A qualifying condition that must hold for the SLO to be assessable (and possibly compensable). Such a 
condition can refer to contextual restrictions at the requester side such as the number of concurrent 
incoming requests that can be served over a period. Qualifying conditions are a kind of constraint. They 
are modelled as instances of the class owlq:QualifyingCondition – a subclass of owlq:Constraint.  

Lastly, an SLO may be soft and/or negotiable as determined by the namesake data properties (see Figure 25). 
SLOs are soft if their violation is deemed unimportant when matching provider-defined SLs with requester-
defined SLs. In other words, SLOs are soft when their violation does not affect the match making process. SLOs 
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are negotiable when the value ranges that they enable may be shaped after negotiation between the requester 
and provider. 

SLs are further associated with a price model that specifies the cost of consuming a service or service 
component (at the particular service level). Price models are represented as instances of the class owlq:PriceModel. 
Pricing details such as the minimum and maximum chargeable prices for a service, and its base price, are 
captured through the data properties owlq:minPrice, owlq:maxPrice, and owlq:basePrice respectively (see Figure 
25). Base prices are the prices charged under normal service operation; minimum chargeable prices define the 
least cost for a service in case of SLO violation penalties (in other words, the maximum penalty that an SLO 
violation can incur); maximum chargeable prices define an upper cost boundary applicable when more resources 
are assigned to a service. Price models comprise price components modelled as instances of the class 
owlq:PriceComponent. Each price component focuses on a particular cost aspect. For instance, a price component 
may focus on the cost of consuming compute resources, while other components may focus on network 
resources and data exchange costs. The cost charged by a price component is calculated through a formula over 
relevant quality terms and attributes. A price model is also related to a reservation type stating if charging can 
be performed periodically, via advanced reservations, or on demand (spot pricing). Price model instances are 
attached to SLO compensations. 

If the number of SLO violations is kept below a threshold, only SLO compensations may be paid. However, 
if the number of SLO violations over a period is high, it must be determined if the SLA is viable and whether it 
should be cancelled, renegotiated, or re-enforced (i.e., the service has to be re-executed). This is achieved through 
settlements. Settlements are activities that are associated with SLs and assess what has happened during service 
execution (i.e., with respect to the SL’s SLOs), and which are each signatory party’s responsibilities in case of 
SLO violations. Formally, settlements are instances of the namesake class (Figure 25). The data properties 
owlq:settlementAction, owlq:evaluationPeriod, and owlq:settlementCount are used, respectively, to determine a 
settlement’s actions in case of SLO violations (cancellation, renegotiation, re-enforcement), the number of SLO 
violations that activates the settlement, and the service execution length over which this number must be 
observed. Settlements are associated with SLAs through the owlq:settlement object property (Figure 25) and are 
attached to SLs through the owlq:concernedSL property. 

Q-SLA also includes the concept of SL transitions (formally represented by the namesake class in Figure 25) 
to enable movement between two SLs and hence between different performance levels. Transitions may be 
event-driven: triggered when too many SLO violations over a period occur, or when SLO expectations are 
exceeded beyond a certain threshold for a period. This is captured through the data properties 
owlq:evaluationPeriod, owlq:rewardThreshold and owlq:violationThreshold (see Figure 25). Transitions may also 
be chronologically driven, occurring at pre-set time points. Transitions are associated with their corresponding 
SLs – the transitioned from and the transitioned to SLs – via the object properties owlq:firstSL and 
owlq:secondSL respectively. 

As an example, let us consider a face detection service with the following QoS attributes: response time, 
availability, and throughput. Each attribute is evaluated by measuring a pertinent raw metric, or by calculating 
a composite metric. Listing 24 demonstrates how an attribute is evaluated either by directly measuring (through 
a relevant sensor) a raw response time metric, or by calculating an average response time over a period. 
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Listing 24: Example of an attribute and its metrics 

An SLA for this service specifies: the involved parties (owlq:entity) and their roles (owlq:roleAssignment), 
the concerned service (owlq:service), the available SLs (owlq:serviceLevel) alongside their SLOs 
(owlq:constraint), settlements in case of failure to meet SLOs (owlq:solSettlement), validity periods 
(owlq:validity) (see Listing 25). SLs are specified in terms of the constraints that they impose in the form of SLOs 
(owlq:constraint), a pricing model (owlq:priceModel), and a transition specification to enable movement to 
different performance levels under certain conditions (owlq:SLTransition)(see Listing 26). 

 

 
Listing 25: Example of a simple SLA 

 
Listing 26: Example of a SL, its pricing model, and SL transition 

Listing 27 provides an example of an SLO specification that includes a constraining operator (less or equal 
than), a metric as the SLO’s first argument, and a threshold value as the SLO’s second argument again which 
this metric is compared through the constraining operator. A settlement that defines what happens in case of 

### Measurable attribute denoting response time. 

:RESPONSE_TIME rdf:type owl:NamedIndividual , 

        owlq:MeasurableAttribute ; 

        owlq:measuredBy :AVERAGE_RESPONSE_TIME_METRIC , :RAW_RESPONSE_TIME_METRIC . 

 

### Metric measuring the raw response time. 

:RAW_RESPONSE_TIME_METRIC rdf:type owl:NamedIndividual , 

        owlq:RawMetric ; 

        owlq:context :RAW_RESPONSE_TIME_METRIC_CONTEXT ; 

        owlq:directive :RAW_RESPONSE_TIME_METRIC_DIRECTIVE ; 

        owlq:schedule :RAW_RESPONSE_TIME_SCHEDULE ; 

        owlq:sensor :RAW_RESPONSE_TIME_SENSOR . 

 

### Metric calculating the average response time. 

:AVERAGE_RESPONSE_TIME_METRIC rdf:type owl:NamedIndividual , 

        owlq:CompositeMetric ; 

        owlq:context :AVERAGE_RESPONSE_TIME_CONTEXT ; 

        owlq:formula :AVERAGE_RESPONSE_TIME_FORMULA ; 

        owlq:schedule :AVERAGE_RESPONSE_TIME_SCHEDULE . 
 

 

### Example of an SLA. 

:SLA_AC rdf:type owl:NamedIndividual, owlq:SLA ; 

        owlq:roleAssignment :PROVIDER, :REQUESTER ; 

        owlq:service :FACE_DETECTION_SERVICE ; 

        owlq:serviceLevel :LOW_SL, :NORMAL_SL ; 

        owlq:settlement :SET_LOW ; 

        owlq:validity "2024-05-30T09:00:00"^^xsd:dateTime . 

 

 

### Example of a service level. 

:LOW_SL rdf:type owl:NamedIndividual, owlq:SL ; 

        owlq:constraint :LOW_AV, :LOW_THR, :LOW_RT ; 

        owlq:priceModel :PM_LOW . 

 

### Example of pricing model. 

:PM_LOW rdf:type owl:NamedIndividual, owlq:PriceModel ; 

        owlq:minPrice 600 ; 

        owlq:reservationType "PER_MONTH" . 

 

### Example of SL transition. 

:NOR_TO_LOW rdf:type owl:NamedIndividual, owlq:SLTransition ; 

        owlq:firstSL :NORMAL_SL ; 

        owlq:secondSL :LOW_SL ; 

        owlq:evaluationPeriod 0.5 ; 

        owlq:violationThreshold 4 . 
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SLO violation (e.g., the price is reduced to only 5% of the originally agreed-upon price – see Listing 27) is also 
specified. 
 

 
Listing 27: Example of an SLO, its penalty, and compensation 

 Metadata Schema 
OWL-Q provides a comprehensive set of data properties for describing various aspects of the quality provided 
by a computing service. Albeit, OWL-Q was not designed to cater for the particular needs of resources in the 
cloud continuum. It is therefore likely that, during the course of NebulOuS, it will be extended with additional 
data properties that enable capturing a richer set of aspects related to application deployment across 
heterogeneous CC resources and multi-clouds. To this end, the Metadata Schema (MDS) will be utilised.  

MDS provides a rich schema covering essential aspects related to application deployment and big data 
management in the cloud continuum. MDS aggregates several classes and properties that correspond to concepts 
used for describing DevOps requirements and constraints, and infrastructural service offerings in multi-cloud 
placement decisions. Its objective is to create the background modelling layer for any Domain Specific Language 
(DSL) that aspires to describe application deployments in multi-cloud and fog environments. It was used as the 
formal means for extending the CAMEL language [1] with appropriate concepts related to big data management, 
the placement optimisation of processing jobs and access control in multi-cloud environments. In a similar vein, 
it may be used for extending NebulOuS’ CoCoOn— and OWL-Q —based ontologies if the project’s use cases 
require it. 

MDS was introduced as part of the Melodic53 project for addressing the multi-clouds requirements and 
offerings description and it was extensively updated during the Morphemic54 project for coping with additional 
kinds of resources like HPC and hardware accelerated ones, while supporting polymorphic adaptations (i.e., 
allowing the descriptions of different technical implementation forms for the relevant application components).  

 

 
53 https://www.melodic.cloud/ 
54 https://www.morphemic.cloud/ 

### Example of SLO. 

:LOW_RT rdf:type owl:NamedIndividual, owlq:SLO ; 

        owlq:firstArgument :AVERAGE_RESPONSE_TIME_METRIC ; 

        owlq:operator owlq:LESS_EQUAL_THAN ; 

        owlq:sloSettlement :P1 ; 

        owlq:secondArgument 2 . 

### Example of a penalty. 

:P1 rdf:type owl:NamedIndividual, owlq:Penalty ; 

        owlq:compensation :C1 . 

### Example of an SLO compensation. 

:C1 rdf:type owl:NamedIndividual, owlq:SLOCompensation ; 

        owlq:settlementPricePercentage "0.05"^^xsd:double . 

 

https://www.melodic.cloud/
https://www.morphemic.cloud/
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Figure 26: Metadata Schema overview 

MDS comprises the Application Placement, Big Data and Context Aware Security models that group a 
number of classes and properties to be used for defining where a certain big data application should be placed; 
what are the unique characteristics of the data artefacts that need to be processed; and what are the contextual 
aspects that may be used for restricting the access to the sensitive data. 

For example, one of the classes of the Application Placement sub-model of MDS is the Processing. This class 
involves any infrastructural feature bound to the processing capability of virtualised resources.  One of its 
subclasses is the Accelerator class which refers to application-specific hardware designed or programmed to 
compute operations faster than a general-purpose computer processor. It involves the subclasses such as GPU, 
ASIC, FPGA and VPU for defining different accelerator types offered or required in a DSL description. The 
complete class diagram for the Processing domain can be seen in Fig. 10. MDS55 was serialized in XMI56 as an 
Ecore-based language encoding form to enable the re-use of its elements for annotating CAMEL models. A bird’s 
eye view of the complete MDS taxonomy can be found here57. 
 

 
55 https://gitlab.ow2.org/melodic/camel/-/tree/rc3.1/metadata-schema/current 
56 http://www.omg.org/spec/XMI/ 
57 https://melodic.cloud/UuTf-KRW.png 

https://gitlab.ow2.org/melodic/camel/-/tree/rc3.1/metadata-schema/current
http://www.omg.org/spec/XMI/
https://melodic.cloud/UuTf-KRW.png


D2.2 Initial Semantic Models and Resource Discovery Mechanism 
 

 

 62 

 
Figure 27: The UML class diagram for the Processing domain 
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7. Conclusions 
This document provides a first account of NebulOuS’ approach to resource discovery. It presents the three 
distinct, albeit interrelated, declarative models that underpin NebulOuS’ resource discovery mechanism, 
namely:  

• Application component compositions and deployments. A KubeVela-based model for describing 
application composition and deployment.  

• QoS requirements attached to application components.  A custom model (based on the metric model 
from CAMEL) for enabling the definition of custom metrics over arbitrary user-defined QoS attributes.   

• Optimisation. An AMPL-based model for describing the constraints and the objectives according to 
which application components are managed throughout their lifecycles. This model is underpinned by 
an ontologically-described asset model that captures the capabilities and characteristics of a pool of CC 
resources across which an application component is to be hosted. 

Moreover, this document presents an ontological model for capturing application workload QoS 
requirements that forms the basis for NebulOuS’ quality mechanism. More specifically, by ontologically 
describing QoS requirements, we pave the way for a quality assurance mechanism that relies on semantic reasoning 
for assessing the correctness of these requirements by comparing them against a set of semantically captured 
application consumption policies.   

Finally, this document provides an initial account of a prototype of the NebulOuS resource discovery 
mechanism. The fully-fledged NebulOuS resource discovery mechanism, alongside the final version of the 
models, will be reported in D2.3 (due in by M35). 
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