

A Meta Operating System

for Brokering Hyper-Distributed Applications

on Cloud Computing Continuums

Initial Semantic Models and
Resource Discovery
Mechanism

Ref. Ares(2023)7231023 - 24/10/2023

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 2

Dissemination Level
PU Public, fully open
Type

R Document, report (excluding the periodic and final reports)

Project Acronym/Title NebulOuS: A Meta Operating System for Brokering Hyper-Distributed Applications on

Cloud Computing Continuums

Grant Agreement No.: 101070516

Call World leading data and computing technologies (HORIZON-CL4-2021-DATA-01)

Project duration 36 months | 1 September 2022 – 31 August 2025

Deliverable title Initial Semantic Models and Resource Discovery Mechanism

Deliverable reference D2.2

Version 1.2

 WP 2

Delivery Date 24/10/2023

Dissemination level PU

Deliverable lead SEERC

Authors Simeon Veloudis, Evangelos Barmpas, Iraklis Paraskakis, Yiannis Verginadis, Andreas

Tsagkaropoulos, Ioannis Patiniotakis, Geir Horn, Marta Różańska, Alexandros Sarros

Reviewers Radosław Piliszek (7bulls.com), Dimitris Kardaras (ICCS)

Abstract

This document discusses NebulOuS’ approach to resource discovery. It presents the models

underpinning NebulOuS’ resource discovery mechanism, including: a declarative model of

expressing hyper-distributed components and their deployment characteristics; a declarative

model for capturing QoS requirements attached to application components; a semantic

representation of the capabilities and characteristics of a pool of CC resources; a model for

semantically representing QoS requirements; and finally, a model for determining optimal

application component placement based on the current available resource capabilities and

characteristics, the component’s QoS requirements, as well as any user-expressed preferences

regarding deployment. The document also presents an initial description of a prototype of

NebulOuS resource discovery mechanism.

Keywords
Fog computing, Cloud Continuum, application deployment, resource discovery, declarative

description, semantic models, brokerage, QoS, quality assurance

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 3

Version Date Owner Author(s) Changes to previous version
0.1 2023-07-13 SEERC Simeon Veloudis Initial table of contents
0.2 2023-07-15 UBI Christos Alexandros Sarros Addition of KubeVela to the table

of contents
0.2 2023-07-15 ICCS Ioannis Patiniotakis Addition of the YAML metric

model section to the table of
contents

0.2 2023-07-19 ICCS Andreas Tsagaropoulos Addition of the TOSCA/CAMEL
section to the table of contents

0.3 2023-08-25 SEERC Simeon Veloudis Initial writing about CoCoOn
0.3 2023-08-27 SEERC Evangelos Barmpas Initial writing about OWL-Q and

Q-SLA
0.4 2023-09-8 SEERC Simeon Veloudis Completed content writing about

CoCoOn
0.4 2023-09-10 SEERC Evangelos Barmpas Completed content writing about

OWL-Q and Q-SLA
0.5 2023-09-12 SEERC Simeon Veloudis Editing of the OWL-Q and Q-SLA

sections
0.6 2023-09-13 UBI Christos Alexandros Sarros Completed content on KubeVela
0.6 2023-09-13 ICCS Ioannis Patiniotakis Completed content on the YAML

metric model
0.6 2023-09-13 ICCS Andreas Tsagaropoulos Completed the TOSCA/CAMEL

section to the table of contents

0.7 2023-09-15 SEERC Evangelos Barmpas Formatting, addition of references
and enumeration of tables, figures,
and listings.

0.8 2023-09-21 ICCS Yiannis Verginadis Addition of the Metadata Schema
discussion

0.9 2023-09-24 UiO Geir Horn Addition of content on
optimisation

1.0 2023-10-06 ICCS Yiannis Verginadis Added section on resource
discovery mechanism

1.1 2023-10-13 SEERC Evangelos Barmpas Final formatting and fixing for
various visual issues

1.2 2023-10-24 EUT María Navarro Final Review

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 4

Table of Contents
Table of Contents ... 4

Figures ... 6

Listings .. 7

List of Acronyms ... 8

Executive Summary .. 9

1. Introduction ... 10

1.1 Model-Driven Resource Discovery .. 11

1.2 Semantic Technologies for Optimisation and Quality Assurance ... 11

1.3 NebulOuS Resource Discovery ... 12

2. Describing Application Placement in the Cloud Continuum ... 14

2.1 Existing Work .. 14

2.2 Application Definition and Deployment in NebulOuS ... 15

2.2.1 Open Application Model introduction .. 15

2.2.2 KubeVela Model details ... 16

3. Metric Model .. 22

3.1 Metrics .. 22

3.1.1 Windows .. 23

3.1.2 Sensors .. 24

3.1.3 Output .. 24

3.1.4 References .. 25

3.2 Requirements ... 25

3.3 Metric Model structure .. 26

3.4 Language and Style ... 27

4. Optimisation DSL .. 29

4.1 Parameterised application topology model ... 29

4.2 Optimisation model ... 32

4.3 NebulOuS Integration ... 35

5. Resource Discovery Mechanism .. 36

5.1 Registering Fog/Edge devices to NebulOuS ... 36

5.2 Unregistering Fog/Edge devices to NebulOuS ... 38

5.3 Resource Discovery .. 39

6. Semantic Modelling ... 43

6.1 Asset Modelling .. 43

6.1.1 IoT Ontologies ... 43

6.1.2 IaaS Ontologies .. 44

6.1.3 CoCoOn .. 45

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 5

6.1.4 The NebulOuS Approach ... 50

6.2 QoS Requirements ... 51

6.2.1 Service Quality Meta-Models ... 51

6.2.2 OWL-Q .. 52

6.2.3 Q-SLA ... 56

6.2.4 Metadata Schema ... 60

7. Conclusions .. 63

References ... 64

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 6

Figures
Figure 1: Overview of the NebulOuS approach .. 13
Figure 2: OAM architecture ... 16
Figure 3: Application main abstractions .. 17
Figure 4: Application modelling abstractions in KubeVela .. 21
Figure 5: Overview of NebulOuS Resource Discovery mechaniswm ... 36
Figure 6: Sequence diagram for registering Fog/Edge devices .. 37
Figure 7: Sequence diagram for unregistering Fog/Edge devices ... 39
Figure 8: Resource Discovery mechanism dashboard ... 39
Figure 9: List of open user’s registration requests (currently empty) .. 40
Figure 10: New device registration request form ... 40
Figure 11: List of open user’s registration requests (with a new request) ... 40
Figure 12: List of open user’s registration requests – Collecting device capabilities .. 41
Figure 13: Device capabilities as collected by Resource Manager and stored in database – Request has been updated 41
Figure 14: List of open user’s registration requests (Request awaits authorization, after capabilities collection) 42
Figure 15: Admin view of open registration requests awaiting authorization .. 42
Figure 16: List of open user’s registration requests (device is being onboarded) ... 42
Figure 17: List of open user’s registration requests (successful device onboarding) .. 42
Figure 18: CoCoOn v1.0.1 ... 46
Figure 19: OWL-Q facets .. 52
Figure 20: OWL-Q specification facet ... 53
Figure 21: OWL-Q Attribute facet ... 54
Figure 22: OWL-Q Metric facet ... 55
Figure 23: OWL-Q Unit facet .. 56
Figure 24: OWL-Q Value Type facet ... 56
Figure 25: OWL-Q Q-SLA facet ... 57
Figure 26: Metadata Schema overview ... 61
Figure 27: The UML class diagram for the Processing domain .. 62

file:///C:/Users/svelo/Downloads/D2.2_Final_1.docx%23_Toc148093746
file:///C:/Users/svelo/Downloads/D2.2_Final_1.docx%23_Toc148093749
file:///C:/Users/svelo/Downloads/D2.2_Final_1.docx%23_Toc148093751
file:///C:/Users/svelo/Downloads/D2.2_Final_1.docx%23_Toc148093753

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 7

Listings
Listing 1: video surveillance application modelling and deployment using the Open Application Model and KubeVela 20
Listing 2: Example of metrics ... 23
Listing 3: Example of grouping processing .. 24
Listing 4: Example of output specification .. 25
Listing 5: Example of references .. 25
Listing 6: SLO requirement specification .. 25
Listing 7: Example of scopes .. 26
Listing 8: Metric model example (reduced) ... 27
Listing 9: Examples of specification styles in detailed format ... 28
Listing 10: The resource requirements represented as decision variables with ranges of possible values 29
Listing 11: The parameterised placement instructions as index variables with value ranges... 30
Listing 12: A KubeVela defined component for facial detection with resource requirements in red boxes and component
placement instructions in the green box. ... 31
Listing 13: Representing the application deployment requirements. ... 33
Listing 14: The total multiplicity of the various worker types broken down in workers per location 33
Listing 15: Deployment node identifiers and number of worker instances per node ... 33
Listing 16: The cost constraints of the optimisation problem .. 34
Listing 17: The utility calculations for the facial detection component workers problem .. 35
Listing 18: Example compute service specification ... 47
Listing 19: Example storage service specification .. 47
Listing 20: Example load balancing service specification. ... 48
Listing 21: Example pricing specification .. 49
Listing 22: Example storage pricing specification .. 49
Listing 23: Downlink speed specification .. 50
Listing 24: Example of an attribute and its metrics ... 59
Listing 25: Example of a simple SLA ... 59
Listing 26: Example of a SL, its pricing model, and SL transition ... 59
Listing 27: Example of an SLO, its penalty, and compensation ... 60

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 8

List of Acronyms
AMPL A Mathematical Programming Language
API Application Programming Interface
ARM Architectural Reference Model
CAMEL Cloud Application Modelling and Execution Language
CC Cloud Continuum
CNCF Cloud Native Computing Foundation
CPU Central Processing Unit
CRD Custom Resource Definition
DAG Directed Acyclic Graph
DB Database
DNS Domain Name Service
DSL Domain-specific Language
EaaS Edge-as-a-Service
EDMM Essential Deployment Metamodel
EMS Event Management System
EPL Event Processing Language
GUI Graphical User Interface
IOPS Input/Output Operations per Second.
IP Internet Protocol
JSON JavaScript Object Notation
NGSI-LD Next Generation Service Interfaces Linked Data
MDS Metadata Schema
MQ Message Queues
OAM Open Application Model
OS Operating System
OWL Web Ontology Language
QUDT Quantities, Units, Dimensions, and Types
RAM Random Access Memory
RDF Resource Description Framework
SAREF Smart Application Reference
SL Service Level
SLA Service-level Agreement
SLO Service-level Objective
SOSA Sensor, Observation, Sample, and Actuator
SQL Structured Query Language
SSN Semantic Sensor Networks
IoTMA Internet of Things Model and Analytics
TOSCA Topology and Orchestration Specification for Cloud Applications
UX User Experience
VM Virtual Machine
W3C World-Wide Web Consortium
WP Work Package
XML Extensible Markup Language
XSD XML Schema Definition
YAML YAML Ain't Markup Language

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 9

Executive Summary
NebulOuS aims at designing and implementing a novel meta–Operating System (OS) that will enable secure
and optimal deployment of hyper-distributed applications across the Cloud continuum. It aspires to provide a
resource management platform that will transparently create and maintain an adaptive environment for hosting
hyper-distributed application components (in the form of containerised workloads), whilst satisfying any QoS
requirements, as well as any security and privacy constraints, attached to them. The platform will provide
facilities for resource discovery, allocation, and provisioning, as well as for dynamic application component
placement and scheduling.

This document focuses on resource description with the aim of resource discovery i.e., on the identification
of suitable CC resources for deploying hyper-distributed application components. In NebulOuS this is done by
matching the QoS requirements attached to the components against the capabilities and characteristics of a pool
of available CC resources. NebulOuS embraces a model-driven and user-centric approach to resource discovery
that enables users to declaratively define:

• Application compositions and deployments (i.e., hyper-distributed apps).
• QoS requirements attached to application components.
• Deployment preferences.
NebulOuS assures the quality of the resource discovery process, hence the quality of the provided CC

brokerage, by ensuring the quality of the QoS requirements used in this process. To this end, it relies on a
semantic model that describes the declaratively-defined application component QoS requirements. By
describing QoS requirements ontologically, we pave the way for a quality assurance mechanism that relies on
semantic reasoning for assessing the correctness of these requirements by comparing them against a set of
semantically-captured application consumption policies. These are policies that operate at a higher level of
abstraction and express a broader set of business and security requirements that characterise an application
component (as opposed to an application component workload or instance).

As its title suggests, this document provides an initial account of the semantic and declarative models
underpinning the NebulOuS discovery mechanism. More specifically, the following models are proposed:

• The Open Application Model as the de-facto standard for describing hyper-distributed applications, and
the KubeVela software as a tool for application composition and deployment. KubeVela has been chosen
due mainly to its out of the box support for Kubernetes.

• A custom model (based on the metric model from CAMEL [1]) for capturing the QoS requirements
associated with hyper-distributed applications and for addressing their monitoring aspects.

• A model based on AMPL for describing the constraints and the objectives according to which application
components are managed throughout their lifecycles.

These models are underpinned by ontological descriptions of CC resource capabilities and characteristics such
as storage capacities, network connectivity, geolocation, and price. The final version of these models, and of the
discovery mechanism, will be reported in D2.3 (due in by M34).

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 10

1. Introduction
Accessing remote computing resources in data centres provisioned by cloud providers is today the de facto model
for Internet-based applications [2]. According to this model, data generated by a wide range of devices, spanning
from smartphones and wearables to smart city cameras and factory sensors, are transferred to typically
geographically distant clouds for processing and storage. Nevertheless, this computing model is swiftly becoming
unviable [2]. Firstly, it precludes applications with hard real-time requirements that cannot tolerate the high
communication latencies incurred by long-distance data transfers. Secondly, as the number of interconnected
devices continues to increase at astonishing rates1, communication latencies also increase, degrading the Quality
of Service (QoS) even for applications with relaxed real-time requirements [3], [4].

An alternative computing model that can alleviate these problems advocates the decentralisation of a
portion of the pooled resources available in cloud data centres and their distribution across the Cloud
Continuum (CC) i.e., towards the edge of the network and closer to end users, actuators, and data sources
(sensors) [5].These resources, henceforth referred to CC resources, typically take the form of dedicated micro-data
centres, or of Internet nodes such as routers, gateways, and switches augmented with processing capabilities.

Contrary to cloud resources, fog and edge resources are [2]: (i) constrained – they typically have less compute
and storage capacity compared to cloud resources; (ii) mutually heterogeneous – they feature different machine
architectures and have different capabilities; (iii) highly dynamic – their workloads vary widely. These
characteristics render the task of managing CC resources and ensuring their optimal usage particularly complex
[2].

Managing CC resources entails several sub-processes including resource discovery, allocation, provisioning,
scheduling, and placement [6]. In this deliverable we focus on resource discovery i.e., on the identification of CC
resources capable of deploying components of hyper-distributed applications with associated and varying QoS
requirements, and based on user-expressed preferences.

In the literature, two main approaches to fog resource discovery have been proposed. In [7], the authors
propose the Edge-as-a-Service (EaaS) platform that provides, amongst others, a lightweight discovery protocol
that operates across homogeneous fog resources. The protocol is based on a master node that executes a manager
process on each resource and interacts with it by issuing commands. A major drawback is that the protocol
cannot operate in federated fog environments with heterogeneous resources; moreover, the security implications
of installing and executing a manager process on remote resources are ignored.

Closer to our work, the authors in [8] propose an algorithm that discovers fog resources by matching the
QoS requirements of an application against the capabilities of available fog resources. The protocol relies on a
programming infrastructure called Foglets and assumes that fog resources are publicly known or available for
use; a join algorithm that selects one resource from among a set of available fog resources that are equidistant
from the user is also provided. Nonetheless, the proposed protocol ignores interoperability issues stemming
from the inherent heterogeneity of fog resources and the non-standardised naming conventions used for
describing the characteristics of these resources and the QoS requirements of their workloads. Moreover, the
protocol makes no provisions for assuring the quality of the provided brokerage function.

1 Accrding to IoT Analytics (https://iot-analytics.com/number-connected-iot-devices/), the Internet of Things has increased from
around 3 billion interconnected devices in 2015 to more than 16 billion interconnected devices in 2023 generating more than 300
quintillion bytes per day.

https://iot-analytics.com/number-connected-iot-devices/

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 11

1.1 Model-Driven Resource Discovery
Following [8], NebulOuS discovers CC resources by matching their capabilities against the QoS requirements
attached to application components. It embraces a model-driven and user-centric approach that focuses on
facilitating the overall process of defining hyper-distributed applications and their workloads and deploying
them over CC resources. In particular, it enables users to declaratively define:

• Application component compositions and deployments based on the Open Application Model
(OAM2) as a de-facto standard for modelling cloud-native application deployment, and on the
Kubernetes-native KubeVela software3 as the main tool for describing application composition and
deployment.

• QoS requirements attached to application components through the use of a custom model –based on
the metric model of CAMEL4– that enables the definition of metrics over arbitrary user defined QoS
attributes i.e., any attributes for which a source of values (i.e., a sensor) can be specified.

• Optimisation goals i.e., preferences regarding application deployment, through the use of an
optimisation model based on AMPL5.

1.2 Semantic Technologies for Optimisation and Quality Assurance
NebulOuS relies on semantic technologies for describing CC resources, and for assuring the quality of the
resource discovery process, hence the quality of the provided CC brokerage. To this end, two distinct –albeit
interrelated– ontological models are provided:

1. The asset model, for describing common traits encountered in infrastructural CC services, including
compute and storage capacities, network connectivity, geolocation, and price.

2. The application component QoS requirements model that is populated with the information described in the
metric model outlined above.

The asset model provides a basis for determining how an application deployment is to be realised across a
pool of available resources given a set of user-expressed preferences, and providing that the QoS requirements
attached to the application’s components are satisfiable. More specifically, the asset model forms the basis of
NebulOuS’s opimisation model that describes the constraints and the objectives according to which application
components are managed throughout their lifecycles. This includes optimised application component placement
that considers the current capacities and capabilities of a pool of available CC resources, the component’s QoS
requirements, as well as any user-expressed preferences regarding application consumption.

The application component QoS requirements model provides the basis of NebulOuS’ quality mechanism.
More specifically, by ontologically describing QoS requirements, we pave the way for a quality assurance
mechanism that relies on semantic reasoning for assessing the correctness of these requirements by comparing
them against a set of semantically captured application consumption policies. These are policies that operate at a
higher level of abstraction and express a broader set of business and security requirements that characterise an
application component as opposed to an application component workload (instance). For example, a policy may
impose minimum limits on the compute capacity that must be assigned to an application; any QoS requirement
attached to a component of this application must respect these limits. In other words, we are envisaging a
situation whereby QoS requirements potentially vary across different deployed workloads of an application,

2https://oam.dev/
3 https://kubevela.io/
4 https://camel-dsl.org/
5 https://ampl.com/

https://oam.dev/
https://kubevela.io/
https://camel-dsl.org/
https://ampl.com/

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 12

whilst abiding by an overarching set of application consumption policies6. Evidently, our approach transforms
the process of assuring the quality of CC brokerage into one of semantic reasoning, bringing about the following
advantages: (i) reasoning based on knowledge that is semantically inferred and not necessarily available at the
syntactic level; (ii) reliance on a standards-based approach that avoids ad-hoc solutions.

1.3 NebulOuS Resource Discovery
Figure 1 provides an overview of the NebulOuS approach to resource discovery. Users define hyper-

distributed application components and their deployments using KubeVela; they describe the QoS requirements
attached to each component using an adequate for the CC metric model. QoS requirements are also mapped
to the application component QoS requirements ontology for interoperability purposes, and for assessing their
correctness7. Moreover, users specify optimisation goals regarding application deployment. Based on these goals
and on the capabilities and characteristics of the available resources (described in the asset model8), the AMPL-
based optimisation model yields the optimal application deployment.

The rest of this deliverable is structured as follows: Section 2 outlines cloud-application description languages
and introduces the Open Application Model and KubeVela. Section 3 describes the NebulOuS custom metric
model and Section 4 provides an overview of the AMPL-based optimisation model. Section 5 provides an
overview of the NebulOuS resource discovery mechanism. Section 6 outlines semantic modelling in the IoT,
overviews ontologies for QoS specification, and presents the two ontological models of NebulOuS: the asset
model and the application component QoS model. Finally, Section 7 outlines conclusions.

6 Consider, for instance, the following scenario. An organisation develops an IoT application and sets an application consumption
policy that imposes minimum limits on the CPU cores and RAM size that must be available to an application execution. The
organisation then deploys application instances at different locations to serve the needs of its customers (one deployed instance per
customer is assumed). Customers are free to set their own QoS requirements on their application instances if these abide by the
overarching application consumption policy.
7 Assessing the correctness of QoS requirements is beyond the scope of this deliverable.
8 Capabilities and characteristics are dynamically obtained from the NebulOuS monitoring system which is outside the scope of this
report.

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 13

Figure 1: Overview of the NebulOuS approach

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 14

2. Describing Application Placement in the Cloud Continuum

2.1 Existing Work
Two prominent domain specific languages (DSLs) for the description of cloud native applications are TOSCA9
and CAMEL10. TOSCA is an open OASIS standard for describing application components, their
interrelationships, their topologies, and the processes through which they are managed. It has recently been
extended to provide support for edge and serverless deployments [9], [10] but lacks an (official) orchestrator
implementation. To fill this gap, several TOSCA-compliant orchestrators have been proposed (see Table 1 for
an overview). It can be seen, from the contents of Table 1 that the most actively maintained TOSCA approaches
are the Unfurl11 and the Infrastructure Manager12 orchestrators, although based on the Github stars
Cloudify13 is the most popular solution. These, however, are either not adequately supported, or target prior
versions of the language, or are not open source, impeding their exploitation and/or further development.
Moreover, none of these orchestrators provides support for Kubernetes11 – the current de-facto standard for
automated deployment and management of containerised applications.

Table 1: TOSCA orchestrators
Solution Open

Source
Public Cloud support (claimed) Targeted

TOSCA
Last commit - last
year commits12

GitHub
stars

OpenTOSCA13 Yes Low: only one cloud supported for
spawning VMs

1.3 4/7/2023 - 10 52

EDMM14 Yes Excellent: large number of clouds
supported for spawning VMs (through
translating technologies)

TOSCA light
[11]

14/2/2023 - 1 10

Unfurl15 Yes Very good: moderate number of clouds
supported for spawning VMs

1.3 23/9/2023 - 803 90

OpenTOSCA
Vintner16

Yes Very good: moderate number of clouds
supported for spawning VMs (through
subordinate orchestrators)

1.3 25/7/2023 - 206 2

xOpera17 Yes Very good: moderate number of clouds
supported for spawning VMs

1.3 27/12/2022 - 1 32

Infrastructure
Manager18

Yes Excellent: large number of clouds
supported for spawning VMs

1.0 21/9/2023 - 450 53

Cloudify19 Partially20 Excellent: large number of clouds
supported for spawning VMs

Custom21 18/9/2023 - 319 141

9 https://www.oasis-open.org/committees/tosca
10 https://camel-dsl.org/
11 https://kubernetes.io/
12 Data as of 28/9/2023
13 https://github.com/OpenTOSCA/container
14 https://github.com/UST-EDMM/edmm
15 https://github.com/onecommons/unfurl
16 https://github.com/opentosca/opentosca-vintner
17 https://github.com/xlab-si/xopera-opera
18 https://github.com/grycap/im
19 https://github.com/cloudify-cosmo/cloudify-manager
20 Cloudify offers some its capabilities under either a community edition or a paid premium edition. The source code in the
provided repository has no documentation on the setup of Cloudify (or the completeness of the provided components), while the
license of both editions also dictates that they can be used only in binary form when downloaded in a compiled form.
21 https://github.com/cloudify-cosmo/cloudify-manager-blueprints/blob/master/simple-manager-blueprint.yaml

https://www.oasis-open.org/committees/tosca
https://camel-dsl.org/
https://kubernetes.io/
https://github.com/OpenTOSCA/container
https://github.com/UST-EDMM/edmm
https://github.com/onecommons/unfurl
https://github.com/onecommons/unfurl
https://github.com/xlab-si/xopera-opera
https://github.com/grycap/im
https://github.com/cloudify-cosmo/cloudify-manager
https://github.com/cloudify-cosmo/cloudify-manager-blueprints/blob/master/simple-manager-blueprint.yaml

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 15

CAMEL enables users to specify a wide range of aspects related to multi- and cross-cloud applications,
including domains of deployment, requirements, monitoring metrics, scalability, security, organisation, and
execution. It supports the models@runtime [12] approach so all application updates, including reconfiguration
decisions, are reflected and stored in the model. CAMEL also supports complex user preferences specifications
including utility functions for expressing the goodness of a deployment configuration from an application
owner’s perspective. CAMEL exhibits a significantly richer bundle of capabilities than TOSCA, especially in the
multi-clouds deployment management domain. Nevertheless, its high degree of verbosity and its lack of support
for Kubernetes renders its use in NebulOuS cumbersome. Moreover, the software supporting CAMEL models
is limited to the Java-based Eclipse CDO models22 repository and the CDO client, which impedes the use of
these models through C++ or Python components.

2.2 Application Definition and Deployment in NebulOuS
NebulOuS embraces a model-driven and user-centric approach to deploying hyper-distributed applications in
the Cloud-Edge continuum. It aims at offering a simple yet powerful means for end users to define customised
application compositions and deployments. NebulOuS leverages state-of-the-art technical approaches and
specifications used by the cloud native computing community for distributed application composition and
deployment. By relying on such widely adopted standards and tools, as opposed to ad-hoc solutions, we facilitate
the use of the NebulOuS platform and promote its adoptability.

The centrepiece of our approach is the adoption of the Open Application Model (OAM)23 as the de-facto
standard for describing hyper-distributed applications, and the use of the KubeVela24 software as a tool for
application composition and deployment. KubeVela is a Cloud Native Computing Foundation25 (CNCF)
incubation project, and it is increasingly adopted by the community and industry26. Although its use parallels
that of TOSCA and CAMEL, KubeVela does not offer a DSL for implementing OAM, it relies instead on the
diffused and lightweight YAML for describing application compositions and deployments. Contrary to CAMEL
and TOSCA, Kubevela is an official orchestrator for OAM applications, much more popular than any
TOSCA/CAMEL orchestrator (over 5600 Github stars) while also being actively developed (654 commits in
2023 up until 28/9/2023). KubeVela also provides out-of-the-box support for Kubernetes enabling applications
using it to take advantage of any cloud provider supporting Kubernetes. The rest of this section outlines the
Open Application Model and its KubeVela implementation aiming to shed light on the capabilities it offers to
NebulOuS.

 Open Application Model introduction
OAM23 was originally created by Alibaba and Microsoft as a collection of high-level abstractions for modelling
cloud-native applications. Although the model is designed to be agnostic to any underlying infrastructure
technology, its implementations are focused on Kubernetes. KubeVela24 is one such implementation. Others
include the Rudr27 and Crossplane28 projects that were, however, discontinued giving way to KubeVela as the
de-facto OAM implementation that currently drives the specification forward.

 OAM seeks to address the problem of how to compose distributed applications in the context of
(micro)service-oriented architectures. Its main goal is to devise a generic, infrastructure-agnostic way to describe
application deployment across hybrid environments; this absolves developers from having to understand low-
level infrastructure details, thus allowing them to focus on the architecture and actual development of

22 https://eclipse.dev/cdo/
23 https://oam.dev/
24 https://github.com/kubevela/kubevela
25 https://www.cncf.io/
26 Indicated by the large number of GitHub stars that the KubeVela project received – more that 5400 at the time of writing this report
27 https://github.com/oam-dev/rudr
28 https://github.com/crossplane/oam-kubernetes-runtime

https://eclipse.dev/cdo/
https://oam.dev/
https://github.com/kubevela/kubevela
https://www.cncf.io/
https://github.com/oam-dev/rudr
https://github.com/crossplane/oam-kubernetes-runtime

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 16

distributed applications. To this end, OAM separates the application definition from operational details. This
separation of concerns is based on a clear distinction between the platform engineer and application developer
organisational roles. It is achieved through a higher-level abstraction that decouples the description of
distributed applications from the underlying infrastructure details, using a model that is self-contained and
allows the definition of an application’s components and operational behaviours. This approach enables clarity
and extensibility, enabling re-use of application components. Figure 2 provides an overview of the OAM
architecture.

 As of September 2023, the latest official OAM specification is v0.3.0 (released in June 2021). Nevertheless,
since then a series of KubeVela versions (with the latest one being v1.9.0 released in June 2023) have overwritten
and outdated parts of the official specification. Our account of OAM is based on the KubeVela version 1.9.0.

Figure 2: OAM architecture

 KubeVela Model details
The main abstraction used in KubeVela, is that of an “Application”. An application is defined as: “a collection of
interrelated, but discrete components (services, tasks, workers) that, when coupled with configuration and instantiated in a
suitable runtime infrastructure, together accomplish a unified functional purpose.”29 Application deployments are
captured through user-defined deployment plans which are in turn defined as Directed Acyclic Graphs (DAGs).
KubeVela applications use four main abstractions:

• Component: Defines the delivery artefact (binary, Docker image, Helm Chart, etc.), or cloud service
included in an application. In KubeVela, an application typically takes the form of a microservice and,
as a result, it is recommended that it includes less than 15 components: a core service and its
dependencies (e.g., database, cache, pub/sub, etc.).

• Trait: A characteristic defined on a single component; for example: scale and rollout strategy, persistent
storage claim, gateway endpoint, etc. Traits may be used for expressing user preferences/requirements
regarding component placement.

• Policy: Defines a strategy for a certain aspect of an application (e.g., multi-cluster topology, configuration
overrides, security/firewall rules, etc.). Policies bear some similarity with traits, but they affect the entire
application (as opposed to a single component trait).

29 https://github.com/oam-dev/spec/blob/master/2.overview_and_terminology.md

https://github.com/oam-dev/spec/blob/master/2.overview_and_terminology.md

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 17

• Workflow: Allows to define every step in the delivery process. Some typical steps are manual approval,
partial deploy, notification, etc.

Each abstraction introduces a programmable module that can be referenced by an application entity (see Figure
3). Applications are expressed declaratively in YAML.

Figure 3: Application main abstractions

For illustration purposes, we provide an example of a simple video surveillance application modelled and
deployed using the Open Application Model and KubeVela (see Listing 1). The application is composed of 4
distinct components: Kafka Server, Kafka UI, Video Capture and Video Player. All components are modelled as
webservices (a specific KubeVela application type30), with their relevant properties and traits attached. As an
example of the capabilities offered by KubeVela, consider the affinity and geoLocation traits that are attached
to the face-detection component. Using these traits, a NebulOuS user can explicitly denote preferences and/or
requirements regarding component placement, based on particular aspects that need to be accommodated by
the NebulOuS Meta-OS (e.g., affinity/anti-affinity constraints, geographical requirements, etc.).

30 https://kubevela-docs.oss-cn-beijing.aliyuncs.com/docs/v1.1/end-user/components/cue/webservice

https://kubevela-docs.oss-cn-beijing.aliyuncs.com/docs/v1.1/end-user/components/cue/webservice

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 18

apiVersion: core.oam.dev/v1beta1

kind: Application

metadata:

 name: surveillance-demo

 namespace: default

spec:

 components:

 - name: kafka-server

 type: webservice

 properties:

 image: confluentinc/cp-kafka:7.2.1

 hostname: kafka-server

 ports:

 - port: 9092

 expose: true

 - port: 9093

 expose: true

 - port: 29092

 expose: true

 cpu: "1"

 memory: "2000Mi"

 cmd: ["/bin/bash", "/tmp/run_workaround.sh"]

 env:

 - name: KAFKA_NODE_ID

 value: "1"

 - name: KAFKA_LISTENER_SECURITY_PROTOCOL_MAP

 value: "CONTROLLER:PLAINTEXT,PLAINTEXT:PLAINTEXT,PLAINTEXT_HOST:PLAINTEXT"

 - name: KAFKA_LISTENERS

 value: "PLAINTEXT://0.0.0.0:9092,PLAINTEXT_HOST://0.0.0.0:29092,CONTROLLER://0.0.0.0:9093"

 - name: KAFKA_ADVERTISED_LISTENERS

 value: "PLAINTEXT://kafka-server:9092,PLAINTEXT_HOST://212.101.173.161:29092"

 - name: KAFKA_CONTROLLER_LISTENER_NAMES

 value: "CONTROLLER"

 - name: KAFKA_CONTROLLER_QUORUM_VOTERS

 value: "1@0.0.0.0:9093"

 - name: KAFKA_PROCESS_ROLES

 value: "broker,controller"

 traits:

 - type: storage

 properties:

 configMap:

 - name: kafka-init

 mountPath: /tmp

 data:

 run_workaround.sh: |-

 #!/bin/sh

 sed -i '/KAFKA_ZOOKEEPER_CONNECT/d' /etc/confluent/docker/configure

 sed -i 's/cub zk-ready/echo ignore zk-ready/' /etc/confluent/docker/ensure

 echo "kafka-storage format --ignore-formatted -t NqnEdODVKkiLTfJvqd1uqQ== -c

/etc/kafka/kafka.properties" >> /etc/confluent/docker/ensure

 /etc/confluent/docker/run

 - name: kafka-ui

 type: webservice

 properties:

 image: provectuslabs/kafka-ui:cd9bc43d2e91ef43201494c4424c54347136d9c0

 exposeType: NodePort

 ports:

 - port: 8080

 expose: true

 nodePort: 30001

 cpu: "0.3"

 memory: "512Mi"

 env:

 - name: KAFKA_CLUSTERS_0_BOOTSTRAPSERVERS

 value: "kafka-server:9092"

 - name: video-capture

 type: webservice

 properties:

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 19

 - name: kafka-ui

 type: webservice

 properties:

 image: provectuslabs/kafka-ui:cd9bc43d2e91ef43201494c4424c54347136d9c0

 exposeType: NodePort

 ports:

 - port: 8080

 expose: true

 nodePort: 30001

 cpu: "0.3"

 memory: "512Mi"

 env:

 - name: KAFKA_CLUSTERS_0_BOOTSTRAPSERVERS

 value: "kafka-server:9092"

 - name: video-capture

 type: webservice

 properties:

 image: registry.ubitech.eu/nebulous/use-cases/surveillance-dsl-demo/video-capture:1.1.0

 cpu: "0.2"

 memory: "100Mi"

 env:

 - name: KAFKA_URL

 value: "kafka-server:9092"

 - name: KAFKA_DETECTION_TOPIC

 value: "surveillance"

 - name: CAPTURE_VIDEO

 value: "False"

 - name: CAPTURE_DEVICE

 value: "/dev/video0"

 - name: DEBUG

 value: "True"

 - name: HOSTNAME

 value: "docker-capture"

 volumeMounts:

 hostPath:

 - name: video

 mountPath: "/dev/video1"

 path: "/dev/video0"

 traits:

 - type: affinity

 properties:

 nodeAffinity:

 required:

 nodeSelectorTerms:

 - matchExpressions:

 - key: "kubernetes.io/hostname"

 operator: "In"

 values: ["nebulousk8s-worker-1"]

 - name: face-detection

 type: webservice

 properties:

 image: registry.ubitech.eu/nebulous/use-cases/surveillance-dsl-demo/face-detection:1.2.0

 edge:

 cpu: "1.2"

 memory: "512Mi"

 env:

 - name: KAFKA_URL

 value: "kafka-server:9092"

 - name: KAFKA_DETECTION_TOPIC

 value: "surveillance"

 - name: THREADS_COUNT

 value: "1"

:

 - labelSelector:

 matchExpressions:

 - key: "app.oam.dev/component"

 operator: "In"

 values: ["video-capture"]

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 20

Listing 1: video surveillance application modelling and deployment using the Open Application Model and KubeVela

 - name: THREADS_COUNT

 value: "1"

 - name: STORE_METRIC

 value: "False"

 - name: DEBUG

 value: "True"

 traits:

 - type: affinity

 properties:

 podAntiAffinity:

 required:

 - labelSelector:

 matchExpressions:

 - key: "app.oam.dev/component"

 operator: "In"

 values: ["video-capture"]

 topologyKey: "test"

 - type: nodePlacement

 properties:

 cloudWorkers:

 count: 6

 nodeSelector:

 - name: node1

 value: 2

 - name: node2

 value: 1

 - name: node3

 value: 3

 edgeWorkers:

 count: 3

 nodeSelector:

 - name: node4

 value: 2

 - name: node5

 value: 1

 - type: geoLocation

 properties:

 affinity:

 required:

 - labelSelector:

 - key: "continent"

 operator: "In"

 values: ["Europe"]

 - name: video-player

 type: webservice

 properties:

 image: registry.ubitech.eu/nebulous/use-cases/surveillance-dsl-demo/video-player:1.1.0

 exposeType: NodePort

 env:

 - name: KAFKA_URL

 value: "kafka-server:9092"

 - name: DEBUG

 value: "True"

 - name: SERVER_PORT

 value: "8081"

 ports:

 - port: 8081

 expose: true

 nodePort: 30002

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 21

KubeVela uses Custom Resource Definitions (CRDs) to implement OAM abstractions on top of
Kubernetes. It manages application components and cloud resources by leveraging Kubernetes’ capability to set
up control loops (Controllers) for keeping the actual state of component instances in line with a desired
configuration, thus avoiding configuration drift31. Desired configurations are expressed declaratively.

KubeVela uses the concept of OAM “Definitions” to provide automation for custom capabilities that may
be attached to an Application. A Definition is written in the CUE language32, and it is then shared, discovered
and used to compose an Application. Its goal is to hide complexity from developers by abstracting away
significant chunks of underlying logic and allowing them to reuse out-of-the-box elements that have been created
to implement a particular piece of functionality. There are four different types of definitions –
ComponentDefinition

33, TraitDefinition34, PolicyDefinition35, and WorkflowstepDefinition36 – each extending the
corresponding application. KubeVela does provide built-in definitions that are readily available upon
installation – examples include cron-task, webservice (ComponentDefinitions), affinity, gateway, hpa
(TraitDefinitions), apply-once, override, take-over (PolicyDefinitions), apply-component, build-push-image and deploy-
cloud-resource (WorkflowStepDefinitions). Available definitions can be found in the project’s GitHub repo37. A set
of OAM definitions, along with their CRD controllers can be grouped into a KubeVela Addon. An Addon is a
scenario-oriented extension of KubeVela, which is uploaded to a community-maintained registry and installable
by any user. NebulOuS aims to take advantage of Definitions to automate interaction with underlying resources
and thus offer to its users an intuitive way to deploy applications.

Figure 4: Application modelling abstractions in KubeVela

31 When deploying app components across different environments, changes are made according to each individual use case. This can
lead to deployments drifting away from the original baseline configuration. As these changes add up, systems eventually start behaving
inconsistently across environments. These issues are often difficult to diagnose and fix, especially since the changes are often
undocumented. This process is commonly known as configuration drift.
32 https://cuelang.org/
33 https://kubevela.io/docs/end-user/components/references/
34 https://kubevela.io/docs/end-user/traits/references/
35 https://kubevela.io/docs/end-user/policies/references/
36 https://kubevela.io/docs/end-user/workflow/built-in-workflow-defs/
37 https://github.com/kubevela/kubevela/tree/master/vela-templates/definitions

https://cuelang.org/
https://kubevela.io/docs/end-user/components/references/
https://kubevela.io/docs/end-user/traits/references/
https://kubevela.io/docs/end-user/policies/references/
https://kubevela.io/docs/end-user/workflow/built-in-workflow-defs/
https://github.com/kubevela/kubevela/tree/master/vela-templates/definitions

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 22

3. Metric Model

The NebulOuS metric model provides a technology-agnostic modelling framework for capturing the QoS
requirements associated with hyper-distributed applications and for addressing their monitoring aspects. It is
based on the metric model offered by the CAMEL DSL which it extends, amends, and rationalises for shifting
its attention from multi-cloud apps to hyper-distributed ones in the Cloud computing continuum.

The NebulOuS metric model is underlain by the tenet that the different parts, or components, comprising a
hyper-distributed app (e.g., app servers, databases, load balancers, etc.) may have different QoS requirements in
terms of attributes being measured and attributes being computed. For this reason, it organises QoS-related
artefacts around component types, or logical groupings of component types, called scopes. These artefacts
include:

• Metrics. Quantifiable attributes for monitoring a property. Metrics can be raw, collected directly by
monitoring sensors (also referred as measurements), or composite, computed using raw metrics or other
composite metrics. Metrics are further elaborated in Section 3.1.

• Requirements. Top-level constructs used to express performance "expectations" from the application
and the monitoring system. They take the form of metric constraints that are referred to as service level
objectives (SLOs). Metric constraints are acceptable/desired or unacceptable/undesired metric values and
value ranges. Requirements can be specified either per component type or per component scope, or at
the application level (see Table 2). They are further specified in Section 3.2.

Scopes are introduced to facilitate the definition of common or combinatorial constraints that apply across
different component types. Moreover, applications may be viewed as universal scopes, comprising all
component types.

Table 2: Different types of scopes

Scope Types Requirements Metrics

Component pertaining per component type
used in component type
requirements

Scope pertaining per scope used in scope requirements

Application-scope pertaining application-wide
used in application-wide
requirements

3.1 Metrics
A metric is a measure that quantifies an application/system/environment attribute, which can be used to
characterise the progress, performance, or status of an application aspect. Metrics are used to track specific data
points over time15. Metric values (either raw or computed) are recorded as events and exchanged through event
streams. Events are immutable, time-stamped, real-world facts (for a raw metric, e.g., a sensor measurement) or
computations thereof (for a composite metric, e.g., the average over the last-minute sensor measurements).

Metric specifications implicitly define namesake event streams for conveying metric values. They also include
several parameters describing how a metric is captured or computed, thus providing crucial information for
configuring monitoring agents. These parameters are collectively referred to as the metric context and include:
the sensor specification; the input metric windows in case of composite metrics (see below); the location/level
where computations occur; the sampling rates of measurements or the times at which computations are
performed, as different numbers and types of parameters may apply. For instance, a composite metric must
include a formula that specifies the computation expression. On the other hand, a raw metric must include a

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 23

sensor definition. In case parameters are left unspecified, the corresponding default values will be used, however
not all parameters have defaults, in which case they must be explicitly specified.

Listing 2 specifies a composite and a raw metric. The composite metric is calculated by averaging the
cpu_util_instance raw metric values included in the corresponding data window. The formula parameter gives
the computation expression (in the next example is 'mean(cpu_util_instance)'), and the window section specifies
how many and which input metric values (of cpu_util_instance) will be used in the computation (in the next
example, it is all cpu_util_instance values arrived in the last 5 minutes). The output section specifies how often
the resulting average will be calculated (i.e., every 30 seconds to cpu_util_prct). The raw metric collects its values
using the sensor specified in the sensor section. Again, the output section specifies how often the measured
values will be sent to the output event stream (every 30 seconds).

The rest of this subsection elaborates on the main metric context parameters.

 metrics:

 - name: cpu_util_prct

 type: composite

 formula: 'mean(cpu_util_instance)'

 window:

 type: sliding

 size: '5 min'

 output:

 type: all

 schedule: '30 sec'

 - name: cpu_util_instance

 type: raw

 sensor:

 type: netdata

 affinity: netdata__system__cpu__total

 output:

 type: all

 schedule: '30 sec'

Listing 2: Example of metrics

 Windows
Windows are finite sets of metric values, received from one or many input event stream(s) and retained based
on a set of criteria. For instance, a window can contain the 𝑀 latest events emitted on an event stream, or the
events that arrived in the last 𝑁 seconds. Windows can be either sliding or batch (tumbling). The former type
has moving bounds and events can be added and removed as time passes (for example, events received in the last
10 seconds are retained in a 10-sec sliding window and older events are automatically removed). The latter type
has fixed bounds and events can be added as long as the window is open; all events are automatically removed
when the window closes/expires (for example, all events received during the interval 00:00:00 – 00:00:30 are
retained until 00:00:30 and then automatically removed). Windows can be time-based or length-based or a
combination of them. Time-based windows typically have a fixed time span (for example last 10 seconds), while
length-based windows typically have a maximum allowed number of events (for example the last 10 events).
Windows are required for operations such as aggregations, and pattern matching where several metric values
(spanning time) are needed (for example an average over last 10 minutes, or detecting if an event occurred after
another, while other events might have occurred in between).

Window Processings
Window processings are operations on windows that rearrange retained events based on a set of criteria. Three
processing types are currently considered: Grouping, Sorting and Ranking. The first type segments window events
into groups; the second type sorts window events and retains the top/bottom of them; the third type is similar
to Sorting but retains only the most recent occurrence of an event based on uniqueness criteria. Any number of
processings can be defined on a window but grouping processings take precedence. It is to be stressed that

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 24

processings are not data operations; for example, they do not aggregate or join data. They may influence,
however, the scope of data operations. For instance, a Grouping processing may segment window data per IP
address, and a subsequent averaging operation may be applied per window segment as opposed to the entire
window. Sort and rank processings can influence the outcome of a data join (order of joined events) or the
outcome of first / last event operations.

Listing 3 gives the specification of a grouping processing included in the window of vc_instance_number
metric. The criteria parameter specifies how the window events will be grouped. In this case they will be grouped
per application component instance, which can be implemented using the instance IP address. A number of
predefined criteria are provided; namely PER_INSTANCE, PER_HOST, PER_ZONE, and PER_REGION. Apart from them,
custom criteria can also be specified.

 metrics:

 - name: vc_instance_number

 formula: 'add(vc_instance_number_raw)'

 window:

 type: sliding

 size: '5 min'

 processing:
 - type: grouping

 criteria: PER_INSTANCE
Listing 3: Example of grouping processing

 Sensors
Sensors are software units that measure an attribute or set of related attributes. They can be classified in various
ways e.g., system or application-specific sensors (depending on their provider and what attributes they measure)
or pull or push sensors. Pull sensors provide solicited-only measurements (e.g., in response to queries from the
monitoring sensor), whereas push sensors actively emit unsolicited measurements. All sensor measurements are
converted to timestamped events and sent to the event stream attached to the defining metric. For system-specific
attribute measurements the well-known Netdata38 monitoring agent will be used. Application-specific metrics
can be obtained in a number of ways, including posting exporting them to Netdata, exposing them as
Prometheus endpoint, or sending them to the monitoring system directly using AMQP protocol39. Additional
methods might be added if required by use cases.

 Output
Output specifies how often events are sent to the metric’s output stream. Metric values can be collected or
calculated at any rate based on the availability of input data (either sensor measurements or input events);
however, it may be desirable that their rate of emission is limited (throttling). Output is an optional parameter
that specifies such a rate limit. In the example of Listing 4, the schedule parameter specifies the rate for sending
metric events to the corresponding output stream. The ‘type’ parameter is meaningful if more than one output
events can be generated (measured or calculated) per period: ‘all’ value causes all collected/calculated events to
be sent, ‘first’ value causes only the first one to be sent (the rest are discarded), and ‘last’ value causes only the
last one to send. If the output parameter is left unspecified, metric values are immediately relayed to the event
stream upon collection from the corresponding sensor, or upon calculation.

38 https://www.netdata.cloud/
39 https://www.amqp.org/

https://www.netdata.cloud/
https://www.amqp.org/

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 25

 metrics:

 - name: cpu_util_prct

 output:
 type: all
 schedule: '30 sec'

Listing 4: Example of output specification

 References
References are pointers from one metric model building block to another that are used to avoid repetition of
identical specifications. References use the name of the referenced block to refer to it; their effect is equivalent
to replacing the references by the referenced block specifications. In the example of Listing 5 the ref value must
be the name of another metric. The name must be fully qualified if the referenced metric is defined in another
component or scope; i.e., <component/scope_name>.<metric/requirement_name>. Otherwise, the component or
scope part can be omitted.

 metrics:
 - name: VideoCaptureCardinality
 ref: '[video-capture].[instances]'

Listing 5: Example of references

3.2 Requirements
Requirements are named metric model structures defined per component type or scope, or application-wide.
The content and interpretation of these structures depend on their subsequent usage (beyond the metric model).
Currently, a single kind of requirements is provided, namely Service-Level Objectives (SLOs), but more can be
added in the future (e.g., if the NebulOuS use cases require it). SLOs are the target values or value ranges for a
service level that is measured by a service-level metric. They provide a means for measuring the performance of
a service. They are modelled as named constraints, where each constraint is a boolean expression evaluating a
condition, typically whether a metric (usually computed) falls within an acceptable (or non-acceptable) value
range. When the metric values fall within the acceptable range, the service performs as expected and the
corresponding SLO is fulfilled. Otherwise, the corresponding SLO is violated, which is an indication that the
service is not functioning at an adequate performance level. Such an event will generate a signal, which will also
be a metric; the metric value is not important, only the presence of the violation metric is significant. This signal
is called an SLO violation event.

 requirements:

 - name: cpu_slo

 type: slo

 constraint: 'cpu_util_prct > 80'

 - name: ram_slo

 type: slo

 constraint: 'ram_util_prct > 80'

Listing 6: SLO requirement specification

Listing 6 illustrates an example specification of two SLO requirements. Their names (cpu_slo and ram_slo)
implicitly specify two named event streams (with the same names, or with names deriving from them) for sending
any SLO violation events. Their constraints are simple threshold checks involving a single metric (e.g.,
cpu_util_prct or ram_util_prct respectively), but more complex expressions are possible. The specifications of
the metrics are given in the metric section of the metric model (see below).

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 26

3.3 Metric Model structure
A metric model document loosely follows the Kubernetes resource files style, and it typically comprises the
following sections:

• Header and Metadata
• Components
• Scopes

Header
A header includes vital information for identifying the document type and determining how the remaining
contents will be processed and interpreted. It must include at least the type and version of the model.

Metadata
The metadata section typically follows the header and includes additional information such as a display name
for the model, as well as tags/labels characterizing the model (among many metric models) that can be used in
conjunction with selectors.

Components
The components section contains a list of entries with each entry including a component name, a requirements
subsection, and/or a metrics subsection. The requirements subsection encompasses component-specific
requirements (SLOs), whereas the metrics subsection encompasses component-specific metric specifications. All
component names must be defined in the corresponding application model documents (i.e., in KubeVela
specifications).

 scopes:
 - name: app-wide-scope
 requirements:

 metrics:

 - name: app-wide-scope
 components: [MysqlDb, AppServer]
 requirements:

 metrics:

Listing 7: Example of scopes

Scopes
The scopes section contains a list of named scopes. As already mentioned, scopes are logical groupings of two
or more component types that facilitate the definition of requirements and metrics pertaining to more than one
component type. A metric model specification may use the metrics from any component participating in the
scopes section. Thus, scopes facilitate the specification of metrics combining input data from different
component types. Each scope has a unique name and optionally a list of participating components. It also
contains a requirements sub-section (with SLOs), and/or a metrics sub-section. The former subsection includes
requirements that conjunctively bind all scope components. The latter subsection encompasses metrics available
to the components participating in the scope. The example of Listing 7 gives the specification of two scopes: an
application-wide scope, and one encompassing only the MySqlDB and AppServer components. The components
parameter is an array declaring the components participating in the scope. Omitting this parameter means all
components are included, hence it is an application-wide scope.

Listing 8 provides an example of a metric model (repetitive parts have been omitted to reduce length).

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 27

apiVersion: nebulous/v1

kind: MetricModel
metadata:
 name: face-detection-deployment
 labels:
 app: surveillance-demo-app
spec:
 components:
 - name: face-detection
 requirements:
 - name: cpu_slo

 type: slo

 constraint: 'cpu_util_prct > 80'

 - name: ram_slo

 type: slo

 constraint: 'ram_util_prct > 80'

 metrics:
 - name: cpu_util_prct

 type: composite
 template: &prct_tpl

 id: 'prct'

 type: real
 range: [0, 100]
 formula: 'mean(cpu_util_instance)'

 window:
 type: sliding
 size: '5 min'
 output:
 type: all
 schedule: '30 sec'
 - name: cpu_util_instance

 type: raw
 template: *prct_tpl

 sensor:
 type: netdata

 affinity: netdata__system__cpu__total

 output:
 type: all
 schedule: '30 sec'

 scopes:
 - name: app-wide-scope
 components: [face-detection,]

 requirements:
 - name: sample_slo_combining_data_across_components

 type: slo

 constraint: ' sample_metric_combining_data_across_components > 10'
 - name: sample_optimisation_goal

 type: slo

 constraint: utility_var

 metrics:
 - name: sample_metric_combining_data_across_components

Listing 8: Metric model example (reduced)

3.4 Language and Style
The metric model provides two ways of defining a building block: (a) single-line/compact definition, and (b)
multi-line/detailed definition. The former requires writing the definition as a string following a building-block-

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 28

specific convention/format, hence enabling its automatic conversion into a detailed definition (case b). The
latter requires each setting to be provided on separate lines. The compact definition significantly improves
readability, but manual editing can be error prone. The detailed definition is the one that should be used
internally by the NebulOuS components. Listing 9 provides an example in compact format.

The metric model may be expressed in any popular serialisation format including YAML, JSON, and XML.
In NebulOuS, we opt for YAML as it is the most human-readable syntax.

 window: 'sliding 5 min'

 output: 'all 30 sec'

The same example in detailed format:

 window:

 type: sliding
 size: '5 min'
 output:

 type: all
 schedule: '30 sec'

Listing 9: Examples of specification styles in detailed format

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 29

4. Optimisation DSL
Any operating system deals primarily with the management and distribution of resources to satisfy the needs of
running applications. Seen from one application, NebulOuS is therefore fundamentally about automatic
application management across several underlying infrastructures hosting the resources necessary for running
the application. Automating application management requires combining knowledge in four different areas: the
application topology, the information about available resources, measurements of the current state of the
application and the environment, and the definition of the goals and objectives for the application.

4.1 Parameterised application topology model
Figure 3 showed the fundamental structure of a KubeVela YAML application specification. For deployment, this
model must be entirely specified and unique. However, this implies that all necessary decisions have been made
à priori. Hence, this model cannot be used as input for the automatic application management since there is no
information about the possible alternatives for the application configuration.

As an example, consider the description of one application component labelled "video surveillance" from a
video stream application shown in Listing 1. There are resource requirements for the component in lines 116-
118 and 130-132 of Listing 10. These requirements restrict the choices for the resources necessary to deploy and
execute the component. Furthermore, there are placement restrictions for the component and the number of
component instances in lines 157-172 of Listing 11. In their current form, none of these requirements exhibit
any variability.

To use the KubeVela description with NebulOuS, one must indicate where decisions are to be made and
values from the decision process inserted. Adopting the notation that square braces mean items to be specialised,
and a dot notation to bind it to the right semantic understanding of the meaning of the variables, one adopts a
notation for the KubeVela file like the one illustrated in Listing 1 for the resource requirements with ranges for
the possible values the application component can properly use. The initial application deployment will always
happen with the least possible resources.

Listing 10: The resource requirements represented as decision variables with ranges of possible values

The same idea and illustrative syntax can be adopted for the deployment specifications as shown in Listing
13. This example specification is incomplete without the supporting constraints: there should be constraints
among the proposed variables since there is now nothing preventing the maximum possible Cloud worker
instances to be deployed on every possible Cloud node, even if the total number of Cloud nodes in that case
would exceed the upper limit for the total number of Cloud workers.

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 30

Listing 11: The parameterised placement instructions as index variables with value ranges

It should be emphasized that the terms and modelling concepts used in the parameterised KubeVela model
must be anchored in the semantic asset (see section 6) model describing the available resources and vocabulary
across all application models. Furthermore, the ranges for the different variable domains indicated in the
example of Listing 13 are defined in the user interface and exported from there to the optimisation model.
Therefore, they need not be a part of the parameterized component model. However, leaving the domains out
may be confusing since some of the domains may have secondary index variable definitions, like the
faceDetection.cloudWorkers.edge.node.count, and then it may not be possible to validate the parameterized
model for debugging purposes. On the other hand, since all the information necessary for the parameterized
model will be collected in the user interface, and explicit export of this knowledge as a parameterized model file
may not be necessary at all.

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 31

Listing 12: A KubeVela defined component for facial detection with resource requirements in red boxes and component placement
instructions in the green box.

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 32

4.2 Optimisation model
The optimisation model fundamentally describes the constraints and objectives of the automatic application
management problem. The constraints define when a deployment configuration is valid, and a new
configuration should be found when the current configuration is infeasible. All the decision variables described
above from the parameterised KubeVela file, and the metrics of the metric model can be used in the constraints
and utility objective function(s) defining the goals of the application management from the perspective of the
owner of the application. The application utility typically has many different dimensions, i.e., possibly conflicting
goals, and it is assumed that these dimensions are modelled as individual utility functions that may or may not
be scalarised into a single utility function to maximise.

The need to specify an optimisation problem in a machine interpretable format has long been recognized
by the operational research community, and A Mathematical Programming Language (AMPL40) appeared first
in 1985 and has since been continuously expanded and improved. AMPL is an algebraic DSL capable of
describing large and complex optimisation problems [13]. The AMPL parser, runtime interface and interpreter
are today commercial software, but there is a free community version41 available for research and industrial
prototyping. AMPL has been adopted as a starting point for the NebulOuS project, with the understanding that
the runtime interface and interpreter require replacement in the integrated NebulOuS. This should happen
without the need to change the textual AMPL program description.

The AMPL struct ‘param’ is used to represent constants and metric values, this includes parameters coming
from the selection of the node candidates to be used for the deployment of the application. This could be for
instance the negotiated price to use a virtual machine (VM) on an Edge server, as this price could fluctuate
according to demand for using the Edge server and the actual price to be used ‘now’ will vary with the time of
the resource availability request. Other parameters of the models can be given as a static data, for instance, the
Cloud providers and Edge providers that can be used for the deployment. The variables of AMPL are used to
represent the decision variables exemplified in the previous section.

The information in the AMPL file is used in expressions to calculate the utility value in the unit interval
giving a value between zero and unity. The optimisation aims to find assignments to the variables so that the
utility value is maximized. These value assignments are subject to constraints over the variables and the
parameters of the problem. An example of an AMPL formulation of the parameterized topology model for the
facial recognition component of the previous subsection will be presented next. The example also presents the
naming convention that will be used in the AMPL models used in NebulOuS, where the type of the variable is
indicated by the last part of the name, after the component type, and the deployment type (e.g.,
faceDetection.edge.cpu).

Listing 13 shows the definition of the requirements for the component to run and the allowed options for
the deployment. The intervals mean any real number in the range and the integer interval means any integer
value in the range; hence, one may want to rather replace the intervals for the memory requirements with a set
of possible values instead of allowing all integer values in the given range. Listing 14 shows the definitions for
the multiplicity variables for the number of workers. There are two scalar variables representing the total number
of workers in the Cloud and in the Edge respectively. Then there are index variables over the set of providers of
each type to represent the number of workers on each provider and each type. Since the total number of workers
of a type on all providers must add up to the total number of workers for that type, there are constraints to
enforce this restriction per provider type.

40 https://ampl.com/
41 https://ampl.com/ce/

https://ampl.com/
https://ampl.com/ce/

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 33

Listing 13: Representing the application deployment requirements.

Listing 14: The total multiplicity of the various worker types broken down in workers per location

Listing 15 presents the node identifiers on each provider as parameters that must be given as sparse matrices
where the first, row index is for the named providers, and the second, column index is for the number of workers
at that provider. Hence, not all rows need to have the same number of columns. The number of worker instances
allocated to each node at each provider is represented similarly. Finally, there must be constraints to ensure that
the allocation of workers across all nodes of a provider matches the number of workers to be allocated to that
provider.

Listing 15: Deployment node identifiers and number of worker instances per node

Listing 16 shows the definition of deployment cost starting from the individual node costs based on the
already established node identifiers. This is essentially given as two vectors of values for the possible deployment
nodes. Since the cost is changing dynamically depending on the market demand for each type of node, the
available nodes and the cost tables will be continuously updated to reflect the current availability for deployment.
Then two auxiliary parameters are calculated to compute the cost of the selected nodes from each provider. This
is done by summing over all possible node indices, but selecting only those node indices for which the number

Illustrative model for the 'face-detection' component
Component resource requirements
Values in meaningful units
var faceDetection.edge.cpu in interval [1.2, 3.0];
var faceDetection.edge.memory in integer [250, 1000];
var faceDetection.cloud.cpu in interval [3.0, 6.0];
var faceDetection.cloud.memory in integer [1000, 4000];
Cloud and edge providers
set CloudProviders := AWS Google Azure; set EdgeProviders := TID Orange Vodaphone Swisscom;

Number of workers to deploy and at different locations paint
var faceDetection.cloudWorkers.count in integer [2, 10];
var faceDetection.edgeWorkers.count in integer [0, 5];
var faceDetection.cloudWorkers.location{ p in CloudProviders } in integer [0, faceDetection.cloudWorkers.count];
var faceDetection.edgeWorkers.location{ p in EdgeProviders } in integer [0, faceDetection.edgeWorkers.count];
Making sure to deploy correct number of workers over all locations
subject to CloudWorkerLimit :
 sum{ p in CloudProviders } faceDetection.cloudWorkers.location[p] == faceDetection.cloudWorkers.count;
subject to EdgeWorkerLimit :
 sum{ p in EdgeProviders } faceDetection.edgeWorkers.location[p] == faceDetection.edgeWorkers.count;

Label the nodes at each provider the range is set so that there are as many nodes as
there are workers at each provider to accommodate the case where there is only one worker per node.
param CloudNodeIDs{ p in CloudProviders, 0..faceDetection.cloudWorkers.location[p] };
param EdgeNodeIDs{ p in EdgeProviders, 0..faceDetection.edgeWorkers.location[p] };
Specific deployment decision variables with the constraint that the sum of nodes on
each provider matches the sum of all providers
var faceDetection.cloudWorkers.cloud.node.instances { p in CloudProviders,

1..faceDetection.cloudWorkers.location[p] } in integer [0, faceDetection.cloudWorkers.location[p]];
var faceDetection.edgeWorkers.cloud.node.instances { p in EdgeProviders, 1..faceDetection.edgeWorkers.location[p]

} in integer[0,faceDetection.edgeWorkers.location[p]];
subject to CloudNodeWorkerLimit:
 sum{ p in CloudProviders, id in integer [1, faceDetection.cloudWorkers.location[p] }
 faceDetection.cloudWorkers.cloud.node.instances[p, id] == faceDetection.cloudWorkers.location[p];
subject to EdgeNodeWorkerLimit:
 sum{ p in EdgeProviders, id in integer [1, faceDetection.edgeWorkers.location[p] }
 faceDetection.edgeWorkers.edge.node.instances[p, id] == faceDetection.edgeWorkers.location[p];

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 34

of instances is larger than zero. The result of these calculations is stored in two vectors indexed by the Cloud
providers and Edge providers respectively. Finally, given the deployment budget parameter, the total
deployment cost for the Cloud part and the Edge part are calculated individually and then compared against
the budget in a constraint.

Listing 16: The cost constraints of the optimisation problem

Given all the variable and constraint definitions of the previous listings, one must formulate at least one
deployment goal or objective. This could be to deploy at minimal cost. However, the minimal cost is an
application that has zero worker instances, and it is therefore not a realistic objective without also providing a
goal related to the application performance. Since the role of the facial detection component is to analyse images,
one can imagine that the number of images awaiting processing over the next time unit, for instance minutes,
will be measured by the application and submitted to the event management system via an appropriate sensor
to a metric, which is here called ImagesToProcess. Recall that the optimiser will subscribe to all ‘parameters’ that
are not composite parameters that can be directly calculated from other definitions, and so this parameter will
be replaced with it current metric value before optimising the configuration.

Secondly, there must be a way to measure the processing capabilities of the facial recognition component.
This capacity depends on the complexity of each image, but also on the node hosting the facial recognition
component since the underlying hardware has different capabilities. The result is that the processing time per
image will be a stochastic quantity that can be reported by the facial component after completing the processing
of each image. The event management system will then be able to compute the empirical distribution of these
measurements and calculate the upper quantile of this distribution. Essentially, this quantile will represent an
upper bound on the computing time needed to finish computation, for instance that 80% of the images are
processed using less computing time than this upper quantile value. The upper bound on the number of images
that is to be served by one single facial recognition component is then the length of the time interval divided by
the upper bound on the image computation time. Hence, this can be used to find the number of facial
recognition components needed to process the images in the queue over the time interval available for their
processing.

The utility of the application is obviously best if exactly the number of queued images can be processed in
the next time interval as the application provides the correct amount of facial processing components. The utility
is decreased if less than the queued number of images can be served, but also if more than the number of queued

Cost parameters to be set for the available node candidates
Values in some currency
param CloudNodeCost{ id in CloudNodeIDs };
param EdgeNodeCost{ id in EdgeNodeIDs };
Then calculate the total deployment cost for Cloud and Edge
param TotalProviderCloudCost{ p in CloudProviders }
 = sum{ n in faceDetection.cloudWorkers.location[p] :
 aceDetection.cloudWorkers.cloud.node.instances[p, n]>0 }
 (CloudNodeCost[CloudNodeIDs[p, n]]);
param TotalProviderEdgeCost{ p in EdgeProviders }
 = sum{ n in faceDetection.edgeWorkers.location[p] :
 faceDetectionedgeWorkers.edge.node.instances[p, n]>0 }
 (EdgeNodeCost[EdgeNodeIDs[p, n]]);
Cost constraint on the number of workers
param DeploymentBudget;
param TotalCloudCost = sum{ p in CloudProviders } TotalProviderCloudCost[p];
param TotalEdgeCost = sum{ p in EdgeProviders } TotalProviderEdgeCost[p];
subject to DeploymenCostConstraint :
 TotalCloudCost + TotalEdgeCost <= DeploymentBudget;

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 35

images will be served as it is an indication of overprovisioning, and therefore a costlier deployment than needed
to do the job. The utility function calculations are shown in Listing 17.

Listing 17: The utility calculations for the facial detection component workers problem

4.3 NebulOuS Integration
As can be seen from the worked example in the previous sections, there must be a strong consistency between
the variability definitions in the parameterised topology model; the metric model providing advanced
calculations of composite metrics whose values are functional combinations of other metric values, e.g., the
quantile of the empirical computation time distribution used in this example; and the formulation of the
constraints and the utility functions. The semantic model will provide a framework for this modelling and the
capabilities of the infrastructure available for the deployment, and the user interface will support the application
owner’s definitions of the involved functional expression linking these to the available metrics and component
variability variables.

There will be two utility objectives for this deployment:
The first objective aims at minimising the total cost of the deployment.
minimize Cost:
 TotalCloudCost + TotalEdgeCost;
The second objective aims to provide enough facial detection components to be
able to process the queued number of images.
param ImagesToProcess;
param UpperQuantileImagesProcessingTime;
param TimeIntervalLength = 60s;
param UpperQuantileNoImagesPerComponent = TimeIntervalLength /
 UpperQuantileImagesProcessingTime;
maximize Performance:
 1/exp((ImagesToProcess - UpperQuantileNoImagesPerComponent
 * (faceDetection.cloudWorkers.count + faceDetection.edgeWorkers.count))^2);

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 36

5. Resource Discovery Mechanism

This section outlines a Resource Discovery mechanism designed to efficiently register, discover, monitor, and
manage fog and edge devices within the cloud computing continuum. It emphasizes secure communication,
detailed device profiling, health monitoring, administrative control, and data persistence for auditing and
resource management purposes.

Figure 5: Overview of NebulOuS Resource Discovery mechaniswm

5.1 Registering Fog/Edge devices to NebulOuS
The Resource Discovery mechanism allows fog and edge device owners to register their devices with NebulOuS.
These devices are potential candidates for deploying application component instances (or workloads). As seen
in Figure 1, device owners use a graphical user interface (GUI) to provide necessary details of their devices, such
as Device Id, Public IP, Credentials, Location etc. Public IP and connection credentials are important for
allowing NebulOuS to connect and set up these fog or edge devices, while other additional details collected (e.g.,
Location) will be used later on by the Cloud/Fog Service Broker to generate the available resource pools that
are appropriate for a specific application. These details are then used by the Fog/Edge Resources Manager, a
dedicated component of the Resources Discovery mechanism, to connect to the device through an SSH
connection and execute appropriate scripts to detect/identify the capabilities of the device, and to install an
appropriate monitoring agent for collecting health status data. Once all the information is collected the device
details are persisted in a no-SQL database that holds details for all Fog/Edge resources available to the system.
They are also ontologically captured as part of the asset model for interoperability purposes.

Incoming registration requests are checked against predefined access control rules and application
consumption policies. More specifically:

• A first pre-authorization step takes place by invoking the NebulOuS Security and Privacy Manager to
check against available access control rules. At this stage a filtering of allowed devices can be made based
on the rights of the owner of the device and/or its location (e.g., providers/users whitelist/blacklist,
permitted geographical regions etc.).

• A second authorization step takes place after the Fog/Edge Resources Manager has aggregated all device
capabilities. This authorization step comprises a comparison check between the nominal and real device
capabilities and/or a check based on the real capabilities and the minimum requirements that have been
defined for security or performance/quality assurance purposes. For the latter, the Broker Quality

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 37

Assurance mechanism is invoked in order to infer the device’s abidance to higher-level application
consumption policies. These are policies that operate at a higher level of abstraction and express a broader
set of business and security requirements that characterise an application as opposed to an application
workload (instance). For example, a policy may impose minimum limits on the compute capacity that
must be assigned to an application component; any QoS requirement attached to a workload (running
instance) of this component must respect these limits. In other words, we are envisaging a situation
whereby QoS requirements potentially vary across different deployed workloads of an application
component, whilst abiding by an overarching set of application consumption policies. Consider, for
instance, the following scenario. An organisation develops an IoT application and sets an application
consumption policy that imposes minimum limits on the CPU cores and RAM size that must be
available to an application execution. The organisation then deploys application instances at different
locations to serve the needs of its customers (one deployed instance per customer is assumed).
Customers are free to set their own QoS requirements on their application instances if these abide by
the overarching application consumption policy.

Figure 6: Sequence diagram for registering Fog/Edge devices

Through the GUI a NebulOuS administrator is able to accept or reject the registration of any new device.
All incoming devices registration requests are persisted in a no-SQL store for auditing purposes. Figure 6 depicts
a sequence diagram that encapsulates the Fog/Edge devices registration process.

The list of available devices, along with their details (location, processing capacity, network quality etc.), will
be used by the Optimiser (see Section 4) to determine, based on the set of user preferences, which subsets of

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 38

these resources can satisfy application provisioning requirements and preferences, and therefore formulate an
adequate resource pool.

5.2 Unregistering Fog/Edge devices to NebulOuS
Fog and edge devices are unregistered in three occasions: i) when a device owner requests the withdrawal of a
device; ii) when a NebulOuS administrator requests the withdrawal of a device; iii) when the monitoring system
detects that the device is unreachable for more than a given amount of time (and retries). If the unregistered
device is already commissioned hosting application instances, a reconfiguration process is triggered that relocates
all hosted application instances.

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 39

Figure 7: Sequence diagram for unregistering Fog/Edge devices

An authorization step takes place every time an unregistration request arrives at the Fog/Edge Resources
Manager, by invoking the NebulOuS Security and Privacy Manager. This check:

• Determines whether the device is already commissioned hosting specific component instance(s).
• Evaluates the request against the available access control rules that determine the entities that are allowed

to perform a device unregistration.
The Resource Discovery mechanism maintains a data collection with records of all devices that have been

unregistered from the pool of available resources. This database can be used for tracking device lifecycle events,
and for reference when assessing resource availability and providers' reputation. Figure 7 depicts a sequence
diagram that analyses the “unregistration” process of Fog/Edge devices.

5.3 Resource Discovery
As part of Task 2.4, we designed and developed a first prototype of the NebulOuS Resource Discovery
mechanism that is capable of registering/unregistering fog and edge devices. These devices form part of the
transient cloud computing continuum, and therefore consolidate resource pools that will be used by the
NebulOuS Optimiser as node candidates for deploying application components. This first release of the
mechanism implements only basic functionality and can be accessed here:
https://opendev.org/nebulous/resource-manager. More comprehensive functionality including the
authentication steps outlined above is deferred for the 2nd release. The rest of this section provides screenshots
of the Resource Discovery mechanism’s GUI.

After successful authentication, the user (either admin or device owner) is directed to the Resource
Discovery mechanism’s dashboard. From there they can navigate to specific service sections, like new device
registration (for onboarding), onboarded devices monitoring and management, archived registration requests
and devices offboarded, and a settings section.

Figure 8: Resource Discovery mechanism dashboard

In the device registration section, a device owner can view a list of all open registration requests he/she has
submitted, as well as create new ones. Past requests that completed either successfully or unsuccessfully are listed
at the History section.

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 40

Figure 9: List of open user’s registration requests (currently empty)

When creating a new request, the device owner is required to fill important device data like its IP address, a
unique device Id, SSH connection credentials, as well as optional information like a human-readable device
name, device capabilities etc.

Figure 10: New device registration request form

After submitting the registration request, it will receive a unique Request Id, its status will be set to NEW_REQUEST
and certain administrative info will be recorded (like creation date and owner). It will also be listed in the list of
open requests.

Figure 11: List of open user’s registration requests (with a new request)

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 41

Periodically the Resource Manager will process new requests, by attempting to connect to the described devices
and detect their capabilities. The collected capability data are then stored along with the request. During device
capability collection the request status changes to DATA_COLLECTION_REQUESTED.

Figure 12: List of open user’s registration requests – Collecting device capabilities

The collected device capability data can be viewed and edited in the request form.

Figure 13: Device capabilities as collected by Resource Manager and stored in database – Request has been updated

After device capability data collection, the Resource Manager will request authorization for onboarding the
device. This is indicated by setting request’s status to PENDING_AUTHORIZATION.

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 42

Figure 14: List of open user’s registration requests (Request awaits authorization, after capabilities collection)

Administrator can manually authorize a device onboarding. However automated authorization procedures will
also be employed.

Figure 15: Admin view of open registration requests awaiting authorization

Resource Manager will periodically process the authorized requests and instruct the appropriate component to
carry out the onboarding process. During onboarding the request status is ONBOARDING_REQUESTED.

Figure 16: List of open user’s registration requests (device is being onboarded)

After successful onboarding completion the request status changes to SUCCESS and the onboarded device will
be listed in the list of active devices. Device owner can view only the devices he/she has registered (and had
onboarded), but the administrator can view all of them.

Figure 17: List of open user’s registration requests (successful device onboarding)

Eventually, the Resource Manager can periodically archive old requests that have completed either successfully
or with an error (data collection error, onboarding error, authorization error or rejection).

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 43

6. Semantic Modelling

As explained in the Introduction, NebulOuS provides the following ontological models: 1) the asset model, for
describing common traits encountered in infrastructural CC services, including compute and storage capacities,
network connectivity, geolocation, and price; 2) the application component QoS requirements model that is populated
with the information described in the metric model outlined above. These models are elaborated in Sections
6.1 and 6.2.

6.1 Asset Modelling
The asset model provides the basis for determining how an application component deployment is to be realised
across a pool of available resources given a set of user-expressed preferences, and providing that the application
component’s QoS are satisfiable. The asset model forms the basis of NebulOuS’s optimisation model that describes
the constraints and the objectives according to which application components are managed throughout their
lifecycles (see Section 4). This includes optimised application component placement that considers the current
capacities and capabilities of a pool of available CC nodes, the component’s QoS requirements, as well as any
user-expressed preferences regarding the consumption of the component.

Before presenting NebulOuS’ asset model, we outline related work on semantic modelling in the IoT, as
well as on semantic modelling of IaaS offerings.

 IoT Ontologies
Several ontologies targeting interoperability in the IoT have been proposed. The "Semantic Sensor Networks"
(SSN) ontology [14], [15] is a comprehensive W3C recommendation for providing a formal representation of
sensor properties (sensing modalities, units, and ranges of measurement), actuators, the types of phenomena –
or features of interest– being observed or affected by actuations, and the procedures involved in realising
observations and actuations. SSN incorporates a lightweight, self-contained, core ontology called SOSA (Sensor,
Observation, Sample, and Actuator). Through their different, albeit complementary, scopes and degrees of
axiomatization, SSN and SOSA are together able to provide interoperability across a wide gamut of applications
and use cases ranging from satellite imagery to social sensing and citizen science. Both SSN and SOSA are based
on W3C’s Resource Description Framework (RDF) and are thus extensible and reusable. In [16] IoT-Lite, a
lightweight semantic model that includes the least number of concepts required for classifying IoT data, is
defined as an instantiation of SSN42. IoT-Lite is not intended to be a fully-fledged ontology but a lightweight
core extensible with application-specific semantic models.

The Smart Applications Reference (SAREF) [17] ontology provides a common vocabulary for describing the
functionalities, features, and services of smart appliances, as well as the communication and data exchange
protocols that these devices use. SAREF is intended to enable interoperability and support the development of
smart home and building automation applications; to this end, it provides a modular representation of the
service that an appliance provides in terms of its functions and the actual commands that invoke these functions.
Notably, SAREF is narrower-in-scope than SSN and based on a more domain-specific nexus of interrelated
concepts.

The IoT-A ontology [18] is part of the wider IoT Architectural Reference Model (ARM). It provides a formal
representation of the key components and their relationships in an IoT architecture. The ontology is modular
comprising different facets or “models”: the domain model that includes fundamental concepts such as services
and virtual entities, the entity model representing digital twins, the resource model carrying device-specific
information, the service description model that describes the services offered by an IoT device, the event model

42 An ontology is considered to be an instantiation of another “parent” ontology when it builds upon or specializes the concepts and
relationships defined in the parent ontology to create a more specific or domain-specific representation. This relationship is often
described as a hierarchy, where the parent ontology is more general, and the child ontology is more specific.

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 44

describing the events and changes that a device may engage in, the functional model that encodes lower-level
concerns such as protocols and device management, as well as concepts for describing data flows and
intercomponent interactions.

The NGSI-LD ontology [19] is a formal representation of the concepts and relationships of the NGSI-LD
data model that aims at allowing the exchange of data across IoT devices and systems. It includes the usual prose
for the representation of IoT entities and the properties thereof, as well as a set of interrelated concepts for
representing and sharing contextual awareness. It fails to support actuation environments.

In [20], an ontology is proposed for enabling the development of ‘generic’ IoT applications that are agnostic
of the underlying sensing or actuating devices that they interact with. The ontology enables seamless device-to-
application communication by abstracting away from vendor-specific device details through the annotation and
classification of the data streams that these devices generate/accept. The ontology is based on an old version of
SSN (prior to the integration of SOSA) extended with the authors’ own ontological actuation model.

In a similar vein, the SEMIC ontology [21] aspires to introduce an interoperability layer that bridges the
world of IoT applications with the realm of sensing and actuating devices. SEMIC extends SSN through a nexus
of interrelated concepts that enables the modelling of virtual (software) sensors and their interrelations with
underlying physical sensors, and of virtual observations. Virtual observations are aggregations of physical
observations that collectively provide the kind of higher-level information sought by IoT applications (e.g.,
deriving room occupancy information based on data from cameras and Wi-Fi access points).

IoTMA (Internet of Things Model and Analytics) [22] is another SSN-based ontology that provides a
common vocabulary for describing the capabilities and properties of IoT devices. IoTMA emphasises formalising
context awareness, i.e., including concepts for characterising observations gathered in a particular IoT context,
and determining/prioritising any future actuations in that context based on that awareness.

The above ontologies are primarily designed as generic frameworks for capturing the delivery and
consumption of heterogeneous sensor data, and the actuation of IoT devices. They focus on formally
representing sensors, actuators, observations, and the phenomena being observed. They are, however, unsuitable
for describing CC resources for they fail to incorporate concepts for modelling common traits such as compute
and storage capacity, data transfer capability, geographical location, and price. Such concepts are the main focus
of another class of ontologies, henceforth referred to as IaaS ontologies, that primarily aim at generically
describing infrastructural cloud offerings. A brief overview of such ontologies is in order.

 IaaS Ontologies
Several ontologies targeting interoperability across IaaS offerings have been defined. In [23], a series of ontologies
are proposed, including one for describing compute instances (virtual machine characteristics), one for
describing pricing schemes, one for describing regions and availability zones, and one for describing SLAs. A
main drawback of these ontologies is that they typically associate domains and ranges of object properties
through global scope constraints (rdfs:domain and rdfs:range): this is overly restrictive and can lead to
unintended inferences [24].

In [25], the mOSAIC ontology is proposed for cloud service discovery and composition. It provides a
platform and set of APIs for resolving interoperability issues in federated clouds. Its main “drawback” is that it
predates the development of major standard domain ontologies such as schema.org, QUDT, SSN, and
Wikidata, thus failing to rely on –and link to– them. Moreover, it seems not be maintained anymore.

In [26], the Cloud Description Ontology is presented for facilitating cloud service brokerage at the IaaS,
PaaS and SaaS levels. The ontology features a rather simplistic price model that is insufficient for modelling real
world scenarios. It is unavailable online and seems not to be maintained anymore.

In [27], an OWL ontology for generically describing the lifecycle of cloud services is proposed. The ontology
provides concepts and relations for modelling generic processes such as (cloud) service discovery, negotiation,
composition, and consumption. It does not, however, provide any concepts and relations for modelling lower-
level technical service specifications such as compute and storage capacity, network connectivity, geographical

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 45

location, and price; for such specifications it relies instead on (now outdated) external ontologies such as
DReggie [28].
In [24], the Cloud Computing Ontology (CoCoOn) [24] is proposed for semantically describing cloud service
offerings. CoCoOn reuses existing established domain ontologies including SSN [15], schema.org43, and
QUDT44 (Quantities, Units, Dimensions and dataTypes). This brings about several advantages:

• Interoperability. Reusing terms from different ontologies enhances interoperability between different
systems and datasets for it facilitates the unambiguous exchange and integration of information.

• Standardization. Reusing terms from established ontologies that typically represent industry standards
or widely accepted vocabularies helps avoiding ambiguities and reducing redundancies (duplicate terms),
whilst it increases credibility and understandability, hence acceptance, among domain experts.

• Evolution and maintenance. Reusing concepts and properties from established ontologies facilitates
evolution and updates over time (regarding at least the reused concepts and properties).

Moreover, CoCoOn adheres to the principle of minimal commitment [29] leading to a more flexible and extensible
model [24]. This is achieved by defining object property domains and ranges through guarded restrictions (i.e.,
through the property owl:someValuesFrom) and cardinality constraints (e.g., owl:qualifiedCardinality and
owl:maxQualifiedCardinality), instead of the usual rigid global scope constraints (rdfs:domain and rdfs:range).

Due to the above advantages, we have decided to base our ontological asset model for describing
infrastructural CC service offerings on CoCoOn. More specifically, we have decided to reuse CoCoOn’s
concepts and properties for providing a schema against which queries regarding QoS capabilities of CC resources
can be executed. Notably, due to CoCoOn’s reliance on SSN, this schema is easily extensible to serve queries
that incorporate, in addition to QoS requirements, requirements on sensors/actuators (e.g., discover all CC
resources that have certain QoS characteristics and are in proximity to sensors with a certain specification). This
clearly leads to a more holistic approach to CC resource discovery that can take into account a multitude of
requirements. Section 5.1.3 provides a summary of CoCoOn’s main concepts and properties with emphasis on
terms adopted and reused in our model. A fuller account of CoCoOn can be found in [30].

 CoCoOn
Figure 18 provides an overview of CoCoOn’s hierarchically structured classes45. cocoon:CloudService is the main
class hosting vocabularies for describing features and attributes of cloud service offerings at three different levels:
IaaS, PaaS, and SaaS. Here we focus on IaaS. IaaS services are classified as compute, storage, and network
(modelled, respectively, through the classes cocoon:ComputeService, cocoon:StorageService, and
cocoon:NetworkService).
Compute Service
The following Virtual Machine (VM) attributes are modelled through data properties of cocoon:ComputeService:

• Number of cores available to a Virtual Machine (VM) (cocoon:numberOfCores).
• CPU performance power (cocoon:hasCPUcapacity).
• RAM size available to a VM (cocoon:hasMemory).

43 https://schema.org/
44 https://www.qudt.org/
45 Undecorated lines represent subclassing relations.

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 46

The local storage available to a VM is modelled through the object property cocoon:hasStorage that maps a
compute service instance to an instance of the class cocoon:LocalStorage (see below); the maximum number of
disks and storage capacity assignable to a VM (if any) are specified through the data properties
cocoon:hasMaxNumberOfDisks and cocoon:hasMaxStorageSize respectively. Turning now to pricing, the class
cocoon:ComputeService inherits from its parent cocoon:CloudService class the object property
gr:hasPriceSpecification which maps a compute service instance to a pricing specification from the class
gr:UnitPriceSpecification (of the GoodRelations ontology46). More details on CoCoOn’s price modelling are
provided later. Listing 18 provides an example of a compute service instance specification47. Note the use of the
class schema:TypeAndQuantityNode to describe integer and decimal values that are associated with units of
measurement as part of data properties (e.g., “a compute service instance has 86.4GB of memory”).

46 GoodRelations is part of Schema.org ontology.
47 The data properties cocoon:inRegion and cocoon:hasProvider are covered later.

Figure 18: CoCoOn v1.0.1

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 47

Listing 18: Example compute service specification

Storage Service
Two kinds of storage service are defined: cocoon:LocalStorage and cocoon:NetworkStorage. For either kind, size is
defined through the data property cocoon:hasStorageSize, whereas the amount of input/output operations per
second (IOPS), and the throughput, are specified through the data properties cocoon:hasStorageIOMax and
cocoon:hasStorageThroughputMax respectively. Pricing specifications are associated with storage service instances
in the same way as with compute service instances. Listing 19 provides an example of a storage service
specification.

Listing 19: Example storage service specification

@prefix schema: <https://schema.org/> .

@prefix unit: <http://qudt.org/vocab/unit#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix gr: <http://purl.org/goodrelations/v1#> .

@prefix cocoon: <https://w3id.org/cocoon/v1.0.1#> .

@base <https://w3id.org/cocoon/data/v1.0.1/> .

<2019-02-12/ComputeService/Gcloud/CP-COMPUTEENGINE-VMIMAGE-N1-HIGHCPU-96-PREEMPTIBLE>

a cocoon:ComputeService ;

rdfs:label "CP-COMPUTEENGINE-VMIMAGE-N1-HIGHCPU-96-PREEMPTIBLE" ;

gr:hasPriceSpecification [a cocoon:CloudServicePriceSpecification ;

gr:hasCurrency "USD" ;

gr:hasCurrencyValue 0.72 ;

gr:hasUnitOfMeasurement unit:Hour ;

cocoon:inRegion <Region/Gcloud/us-east1>

] ;

cocoon:hasMemory [a schema:TypeAndQuantityNode ;

schema:amountOfThisGood 86.4 ;

schema:unitCode cocoon:GB

] ;

cocoon:hasProvider cocoon:Gcloud ;

cocoon:numberOfCores "96"^^xsd:decimal ;

schema:dateModified "2019-02-12"^^xsd:date .

@base <https://w3id.org/cocoon/data/v1.0.1/> .

<2019-03-07/NetworkStorage/Azure/premiumssd-p30>

a cocoon:NetworkStorage ;

rdfs:label "premiumssd-p30" ;

gr:hasPriceSpecification [a gr:CloudServicePriceSpecification ;

 gr:hasCurrency "USD" ;

 gr:hasCurrencyValue 0.13200195133686066 ;

 gr:hasUnitOfMeasurement cocoon:GBPerMonth ;

 cocoon:inRegion <Region/Azure/australia-east>

] ;

cocoon:hasProvider cocoon:Azure ;

cocoon:hasStorageIOMax [a schema:TypeAndQuantityNode ;

 schema:amountOfThisGood "5000"^^xsd:nonNegativeInteger ;

 schema:unitCode cocoon:IOPs

] ;

cocoon:hasStorageSize [a schema:TypeAndQuantityNode ;

 schema:amountOfThisGood "1024"^^xsd:nonNegativeInteger ;

 schema:unitCode cocoon:GB

] ;

cocoon:hasStorageThroughputMax [a schema:TypeAndQuantityNode ;

 schema:amountOfThisGood "200"^^xsd:nonNegativeInteger ;

 schema:unitCode unit:MegabitsPerSecond

].

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 48

Network Service
Several kinds of network service are defined: cocoon:InternetService, cocoon:LoadBalancing,
cocoon:StaticIPService, and cocoon:DNSService.

• cocoon:InternetService. Uses the object property cocoon:hasDirection to indicate traffic direction by
mapping to the class cocoon:TrafficDirection which is partitioned by the singletons cocoon:Egress and
cocoon:Ingress. The object properties cocoon:hasDestination and cocoon:excludesDestination are used to
specify destination ranges by mapping to the class cocoon:Location (see later).

• cocoon:LoadBalancing. A load balancing service is modelled in terms of load balancing data, modelled as
instances of the subclass cocoon:LoadBalancingData, and forwarding rules, modelled as instances of the
subclass cocoon:ForwardingRule. Load balancing data are associated with a direction, modelled through
the object property cocoon:hasDirection, and with a pricing specification; the latter association is
achieved in the same way as with compute service instances.

Static IP and DNS services shall not further concern here for they do not directly relate to our work. Listing 21
provides an example of a load balancing service specification.

Listing 20: Example load balancing service specification.

Price modelling
The class cocoon:CloudServicePriceSpecification is defined as a subclass extension of the class
gr:UnitPriceSpecification. The regional dimension of service pricing is addressed through the object property
cocoon:inRegion which maps a price specification instance to an instance of the class cocoon:Region (see later).
Disjoint specialisation subclasses are defined to handle different kinds of pricing specification: VM pricing
(cocoon:CloudOSPriceSpecification), storage transactions pricing (cocoon:CloudStorageTransactionsPrice
Speficition), and network services pricing (cocoon:CloudNetworkPriceSpecification). The reason for introducing
these specialisation subclasses is to accommodate, through appropriate object and data properties, the different
requirements of each kind of pricing specification.

• VM pricing. cocoon:CloudOSPriceSpecification features three main properties: cocoon:chargedPerCore
that specifies the price charged per CPU core; cocoon:forCoresMoreThan that specifies the price charged
for machines with more than the specified number of cores; cocoon:forCoresLessEqual that specifies the
price charged for machines with less than the specified number of cores. Listing 21 provides an example
of a VM pricing specification.

• Storage transactions pricing. No additional object or data properties are defined for this class. Listing 22
provides an example of a storage pricing specification.

• Network service pricing. The data properties cocoon:forUsageLessEqual and cocoon:forUsageMoreThan are
used to specify upper and lower usage limits for network pricing schemes (e.g. the price for 0-1TB of
egress Internet traffic, the price for 1-10TB of egress Internet traffic, and the price for 10+TB of egress
Internet traffic). Special rates that apply e.g. to egress traffic between zones in the same region may be
modelled through the data property cocoon:specialRateType.

@base <https://w3id.org/cocoon/data/v1.0.1/2019-02-12/> .

<LoadBalancingData/Gcloud>

a cocoon:LoadBalancingData ;

gr:hasPriceSpecification [a gr:CloudServicePriceSpecification ;

 gr:hasCurrency "USD" ;

 gr:hasCurrencyValue 0.008 ;

 gr:hasUnitOfMeasurement cocoon:GB ;

 cocoon:inRegion <Region/Gcloud/us>

] ;

cocoon:hasDirection cocoon:Ingress ;

cocoon:hasProvider cocoon:Gcloud ;

schema:dateModified "2019-02-12"^^xsd:date .

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 49

Listing 21: Example pricing specification

QoS modelling
The quality with which a service is being delivered depends on the capabilities of the infrastructure allocated to
it (i.e., compute and storage capacity, and network bandwidth), as well as on the actual data transfer speed and
latency48. As already seen, infrastructural capabilities are modelled through the classes cocoon:ComputeService,
cocoon:StorageService, and cocoon:NetworkService. Data transfer speed and latency are defined through the class
cocoon:QualityOfService, specifically through the subclasses cocoon:DataTransferSpeed and
cocoon:DNSQueryLatency respectively. cocoon:DataTransferSpeed is further partitioned by cocoon:DownlinkSpeed
and cocoon:UplinkSpeed. Listing 23¡Error! No se encuentra el origen de la referencia. provides an example of a
downlink speed specification for a specific data size. which is defined as equivalent to the class ssn-
system:SystemProperty.

Listing 22: Example storage pricing specification

QoS measurement
QoS measurements are grouped under the class cocoon:Measurement which is defined as equivalent to the class
sosa:Observation, enabling the use of sosa:hasFeatureOfInterest to specify the particular feature being measured

48 Latency refers here to round trip time. It is affected by several uncontrollable factors including network congestion, routing
efficiency, network infrastructure quality. The same as the ones affecting data transfer rate.

@base <https://w3id.org/cocoon/data/v1.0.1/2019-02-12/> .

<SystemImage/Gcloud/suse-sap>

a cocoon:SystemImage ;

rdfs:label "suse-sap" ;

gr:hasPriceSpecification [a cocoon:CloudOSPriceSpecification ;

 gr:hasCurrency "USD" ;

 gr:hasCurrencyValue 0.41 ;

 cocoon:chargedPerCore false ;

 cocoon:forCoresMoreThan "4"^^xsd:decimal

] ;

gr:hasPriceSpecification [a cocoon:CloudOSPriceSpecification ;

 gr:hasCurrency "USD" ;

 gr:hasCurrencyValue 0.34 ;

 cocoon:chargedPerCore false ;

 cocoon:forCoresLessEqual "4"^^xsd:decimal ;

 cocoon:forCoresMoreThan "2"^^xsd:decimal

] ;

gr:hasPriceSpecification [a cocoon:CloudOSPriceSpecification ;

 gr:hasCurrency "USD" ;

 gr:hasCurrencyValue 0.17 ;

 cocoon:chargedPerCore false ;

 cocoon:forCoresLessEqual "2"^^xsd:decimal

] .

@base <https://w3id.org/cocoon/data/v1.0.1/> .

<2019-03-07/CloudStorageTransactionsPriceSpecification/Azure/managed_disk/transactions-ssd>

a cocoon:CloudStorageTransactionsPriceSpecification ;

rdfs:label "transactions-ssd" ;

gr:hasPriceSpecification [a gr:CloudServicePriceSpecification ;

 gr:hasCurrency "USD" ;

 gr:hasCurrencyValue 0.0000002 ;

 cocoon:inRegion <Region/Azure/brazil-south>

] .

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 50

each time. The devices that are used for measuring QoS are described through the class cocoon:Device which is
a subclass of sosa:Sensor.

Listing 23: Downlink speed specification

Location and region
The class cocoon:Location represents any kind of geographical location. In contrast, its subclass cocoon:Region is
a specialisation class used to represent cloud regions. Regions are mapped to their geographical locations
through the cocoon:inPhysicalLocation and cocoon:inJurisdiction object properties depending on whether
locations are known exactly or approximately respectively. A region is typically mapped to a single physical
location. The continent to which a region belongs is specified through the cocoon:continent data property,
whereas a region’s provider is specified through the data property cocoon:hasProvider (maps to an rdfs:label
describing a provider).

 The NebulOuS Approach
Infrastructural CC service offerings are characterised by the same traits as IaaS cloud offerings: compute and
storage capacity, data transmission capability, geographical location, and price. They may thus be modelled in
terms of the same concepts and properties as IaaS cloud offerings. In NebulOuS, such modelling is based on
CoCoOn. More specifically, in our ontological model a CC service takes the form of a contextualised cloud
service i.e., one that is offered from outside the context of a cloud data centre. A CC service is thus represented
as an instance of the class cocoon:CloudService that is associated with a price specification whose location –
specified through the cocoon:inRegion property – lies outside the subclass cocoon:Region. Formally, we define the
class nebulous:FogService in the Description Logic 𝒮ℛ𝒪ℐ𝒞49 as50:

𝑛𝑒𝑏𝑢𝑙𝑜𝑢𝑠: 𝐹𝑜𝑔𝑆𝑒𝑟𝑣𝑖𝑐𝑒 ≡
(= 1 𝑔𝑟. ℎ𝑎𝑠𝑃𝑟𝑖𝑐𝑒𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛. ((= 1 𝑐𝑜𝑐𝑜𝑜𝑛: 𝑖𝑛𝑅𝑒𝑔𝑖𝑜𝑛. 𝑐𝑜𝑐𝑜𝑜𝑛: 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛)

⊓ (< 1 𝑐𝑜𝑐𝑜𝑜𝑛: 𝑖𝑛𝑅𝑒𝑔𝑖𝑜𝑛. 𝑐𝑜𝑐𝑜𝑜𝑛: 𝑅𝑒𝑔𝑖𝑜𝑛)))
where ((= 1 𝑐𝑜𝑐𝑜𝑜𝑛: 𝑖𝑛𝑅𝑒𝑔𝑖𝑜𝑛. 𝑐𝑜𝑐𝑜𝑜𝑛: 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛) ⊓ (< 1𝑐𝑜𝑐𝑜𝑜𝑛: 𝑖𝑛𝑅𝑒𝑔𝑖𝑜𝑛. 𝑐𝑜𝑐𝑜𝑜𝑛: 𝑅𝑒𝑔𝑖𝑜𝑛)) is the abstract class
encompassing all those instances of the class cocoon:CloudServicePriceSpecification that are associated with
locations that are not cloud data centre locations.

49 OWL 2 is known to provide the expressiveness of the 𝒮ℛ𝒪ℐ𝒞 Description Logic [31] which may thus be used to describe OWL 2
abstract classes such as 𝑛𝑒𝑏𝑢𝑙𝑜𝑢𝑠: 𝐹𝑜𝑔𝑆𝑒𝑟𝑣𝑖𝑐𝑒.
50 Note that, for any object property 𝑃 and concept 𝐶, (= 1 𝑃. 𝐶) represents the abstract class that comprises all those individuals
that feature exactly one association through P with an instance of C; it is an abbreviation for the Description Logic notation (≤
1 𝑃. 𝐶) ⊓ (≥ 1 𝑃. 𝐶). (≤ 1 𝑃. 𝐶) represents the class of all individuals that have at most one association through P with an instance
of C, and (≥ 1 𝑃. 𝐶) represents the class of all individuals that have at least one association through P with an instance of C.

@base <https://w3id.org/cocoon/data/v1.0.1/> .

<256-KB> a schema:TypeAndQuantityNode;

 schema:amountOfThisGood "256"^^xsd:interger;

 schema:unitText "KB";

 schema:unitCode "2P".

<QualityOfService/DownlinkSpeed-256-10240-KB> a cocoon:DownlinkSpeed;

 cocoon:transferedFileSizeMin <256-KB>;

 cocoon:transferedFileSizeMax <10240-KB>.

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 51

6.2 QoS Requirements
We have hitherto focused on modelling capabilities and features of infrastructural CC services. We shall now
focus on QoS requirements.

 Service Quality Meta-Models
Several ontology-based meta-models have been proposed for describing QoS requirements. These include:
WSAF-QoS [32], DAML-QoS [33], QoSOnt [34], WSMO-QoS [35], OWL-Q [36], [37], onQoS-QL [38], and
PCM [39]. Nevertheless, only OWL-Q can be claimed to provide a rich metric model for describing QoS
requirements in NebulOuS. We assess richness according to the following criteria based on modelling
capabilities [40]:

• Metric value types. A metric value type defines a range of possible values, which are applicable in
constraints related to that metric. When dealing with continuous numeric domains, which have an
inherent order, it is sufficient to model only the highest and lowest values along with their numeric type
(e.g., real, integer, etc.). If the domain is numeric but not continuous, it can be represented as a
combination of multiple continuous domains. In practical applications, numeric domains are commonly
employed for the majority of quality metrics. However, set and enumeration domains lack a predefined
order, so the user must specify the ordering of elements within the domain.

• Metric unit. Metric values are typically measured using specific units, such as seconds for measuring
execution time. However, it's insufficient to model just the unit name; we must also capture information
on how to convert a value from one unit to another. To achieve this, units can be categorized into basic
and derived units. Basic units are defined with a name and a concise abbreviation. Derived units, on the
other hand, are created by multiplying a base unit by a specific float value, representing multiples of
those base units. For instance, the unit for minutes can be derived by multiplying the unit for seconds
by 1/60, while the unit for throughput quality is expressed by dividing the unit for "bytes" by the unit
for "seconds". It is important to model these multiplying coefficients for derived units to ensure accurate
conversions.

• Metric measurement directive or function. Quality metrics are categorized into resource and composite
metrics. Resource or raw metrics are directly obtained from the service's instrumentation system by
following measurement directives. These directives should include a URI that specifies how to retrieve
the value of a managed resource, as well as information about the data type of the returned value.
Additionally, the access model (either push or pull) must be defined to determine whether the party
responsible for measurement will actively request the value or passively receive it when it becomes
available. Furthermore, specific measurement directives may require a timeout attribute to specify the
maximum waiting time for obtaining the measurement value. Composite metrics, on the other hand,
are calculated by applying mathematical (often statistical) functions to other metrics. Therefore, the
description of both the function used and the other metrics involved in the computation is essential.
Additionally, a function model should be provided to allow users to select the appropriate mathematical
function for each specific composite metric.

• Metric schedule. At least one of the following types of time windows should be defined for periodic or
instantaneous calculations of new values for metrics: (a) calendar time window like week, month, and/or
year; (b) sliding windows e.g., the last ten days; (c) expanding window or running total e.g., from this
year’s start until now.

• Metric weight relative to its implicit domain and user preferences. This weight can be used to calculate
the rank of a service quality offer and indicates the impact that this metric has to the overall quality
offered by a service.

• Aggregation of the values of a composite service’s metric. It is imperative to provide a formal description
of how the value of a metric for a complex service can be derived from the values of the corresponding

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 52

metrics of the individual services it comprises. This description is critical for automating the estimation
of metric values for composite services.

 We therefore opt for OWL-Q as basis for the NebulOuS ontological model for modelling QoS requirements.

 OWL-Q
OWL-Q [36], [37] is an ontology designed to capture QoS requirements. It offers a comprehensive set of concepts
(represented as OWL 2 classes) and properties for semantically describing and constraining virtually any QoS
attribute. Through its Q-SLA facet, OWL-Q provides adequate support for semantic SLA specification. To the
best of knowledge, no other existing ontology provides such support. We have therefore decided to base our
ontological model for describing QoS requirements on OWL-Q.

OWL-Q comprises a collection of facets serving as logical boundaries between conceptually different parts
of the ontology (see Figure 19). Each facet is designed to address a particular aspect of QoS modelling. The
Specification facet focuses on modelling QoS characteristics as constraints on service attributes and metrics; such
characteristics may be defined by a service requester as part of a service request, or by a service provider as part
of service offerings. The Attribute facet captures knowledge about the attributes constrained in quality
specifications; service response time, availability, and network bandwidth are all examples of such attributes.
The Metric facet encapsulates knowledge about the (statistical) formulae –if any— applied on the constrained
attributes in quality specifications; average response time, minimum availability, and minimum bandwidth over
a period are all examples of such metrics. Lastly, the Unit facet focuses on modelling units of measurement, and
the Value Type facet specifies allowable types and value ranges for the attributes constrained in quality
specifications. More details on facets can be found in the following paragraphs.

Figure 19: OWL-Q facets

In addition, OWL-Q includes top-level concepts that span several facets (depicted in grey colour in Figure
19). owlq:Argument represents constrained entities in QoS specifications. A constrained entity takes the form of
either a service attribute (i.e., an instance of owlq:Attribute), in case a constraint directly concerns a service
attribute (e.g., response time less than 1ms), or of a metric (i.e., an instance of owlq:Metric), in case a constraint
is expressed in terms of a function on a service attribute (e.g., average response time over a period). An attribute
is further specified by the Attribute and Value Type facets (see below). A metric is further specified by the Metric
facet.

Specification facet
Represents aggregations of constraints on attributes and metrics. It revolves around the concept
owlq:Specification which is partitioned by the classes owlq:QoSProfile and owlq:QoSRequest (see Figure 20). The

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 53

former represents quality characteristics set by a service provider for its offered services51. The latter represents
quality characteristics that a service consumer requires. Quality characteristics take the form of constraints on
service attributes or metrics. More specifically, the object properties owlq:service and owlq:property are used to
collectively attach QoS attributes and metrics to a service specification, whereas the object property
owlq:containsConstraint is used to attach a constraint. A constraint can be either simple or complex. A simple
constraint directly compares its first argument (a QoS attribute or metric) with its second one (a threshold value);
any unary, binary, or n-ary comparison operator may be used. A complex constraint is a logical combination of
(other complex or simple) constraints to which it relates through the object property owlq:constraint (see Figure
20). A constraint may also be associated with a context that determines:

Figure 20: OWL-Q specification facet

• The specific service part (if any) to which the constraint applies.
• The number of service instances that must be accounted for determining whether the constraint is violated.

A specification may also be associated with a preference model (represented here as an instance of the class
owlq:PreferenceModel). A preference model enables a requester to express their preferences on certain attributes
and metrics over others through preference elements. A preference element is associated with a quality term (a
service attribute or a metric – see Figure 20) through the object properties owlq:preferredAttribute and
owlq:preferredMetric, and with a weight through the data property owlq:weight. A requester may also define
preference categories, i.e., aggregations of QoS attributes or metrics. For example, a requester may define the
‘performance’ category as comprising the attributes response time and throughput with relative preference weights
of 0.4 and 0.6 respectively. This assigns a normalised preference value of 0.42 to the overall ‘performance’
category. Note that the sum of preferences attached to the attributes of a particular category must equal to 1.

51 For instance, a service may be offered in three different qualities: ‘high’ with a response time of at most 10ms and an availability of
at least 0.99999; ‘medium’ with a response time of at most 15ms and an availability of at least 0.9999; ‘low’ with a response time of
at most 20ms and an availability of at least 0.999.

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 54

Attribute facet
Any attribute constrained through a QoS specification takes the form of an instance of the class owlq:Attribute
which is partitioned into (seeFigure 21):

• owlq:MeasurableAttribute: attributes that can be measured through owlq:Metric (see below).
• owlq:UnmeasurableAttribute: an attribute that cannot be quantitatively measured e.g., a UX attribute.
• owlq:DomainDependentAttribute: an attribute that is only meaningful in certain domains; round trip time

is an example of such an attribute since it is only meaningful in network performance measurements.
• owlq:DomainIndependentAttribute: an attribute that is meaningful across domains e.g., time.

In NebulOuS we focus on measurable attributes. An attribute may be composite comprising other attributes in
which case it belongs to the class owlq:CompositeAttribute and is associated with an attribute list and a function
that determines how elements in the list are combined (see Figure 21).

Metric facet
Any metric constrained through a QoS specification takes the form of an instance of the class owlq:Metric which
is partitioned into the classes owlq:RawMetric and owlq:CompositeMetric (see Figure 22). Raw metrics (e.g.,
response time) are directly recorded through observation from the measurement system’s instrumentation or
from sensors. Composite metrics (e.g., average response time) are derived by applying a (statistical) formula on
a list of arguments. Raw metrics may be related to a sensor (instance of owlq:Sensor) and a measurement directive
(instance of owlq:MeasurementDirective). Sensors model the instrument—whether physical such as a thermometer
or virtual such as a piece of software measuring latency—that makes the measurement; sensors may be associated
with a configuration (instance of owlq:Configuration) that describes their installation, invocation, and stopping.
Measurement directives define various parameters such as whether the measured value will get pulled or pushed
by the sensor, or the type of measurement being made (count, downtime, execution time, status, etc).

Figure 21: OWL-Q Attribute facet

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 55

Figure 22: OWL-Q Metric facet

Composite metrics are related to a formula (instance of owlq:Formula) which represents the computation
needed to produce a measurement. Each formula consists of a statistical function (e.g., mean, median, min,
max, etc.) and a list of arguments that can be constants, other formulae, or other metrics. A composite metric
may also be related to a owlq:MetricList that contains all other metrics that it comprises. Both raw and composite
metrics may be related to a schedule (instance of owlq:Schedule) that defines their temporal dimensions (e.g.,
when the metric starts/stops being active), how many measurements should be taken, how often they should be
taken, and the type of schedule used (fixed delay, fixed rate, single event). Raw and composite metrics may also
be related to a window (instance of owlq:Window) specifying other properties such as measurement type and size,
and measurement window type (sliding vs fixed).

Unit facet
Models units of measurement. Units can be classified into single, derived, and dimensionless. Derived units are
computed from single ones through the application of mathematical operations, typically division and
multiplication (e.g., bits per second). Both single and derived units may be associated with a dimension,
represented as an instance of owlq:QuantityKind, and with a quantity, represented as an instance of owlq:Quantity
(see Figure 10) For example, the unit “bits per second” is related to the speed “dimension” (an instance of
owlq:QuantityKind), and to the network speed “quantity” (an instance of owlq:Quantity) respectively.
Dimensionless units (e.g. number of times a threshold value has been exceeded) are represented as instances of
the namesake class. Finally, the object property owlq:multipleOf is used to denote compatibility between units
that are multiples of each other (e.g. bits, bytes, kilobytes, etc.).

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 56

Value Type facet
The value type facet focuses on representing allowable value types and ranges, enabling the validation of metric
measurements. It comprises two main classes: owlq:Value and owlq:ValueType (see Figure 24). The former
represents any kind of value that can be a component of a value type. It is further subdivided into specialised
sub-classes mapping to widely used XSD data types, such as integers and doubles. Value types are distinguished
into scalar value types and value lists. A scalar value type can be bounded or unbounded. Bounded value types
are separated into ranges and unions of ranges. Ranges are characterised by two equivalently typed limits that
may or may not be included in the range and directly map to a certain Value. Unions of ranges comprise non-
overlapping ranges that contain the same kind of values (e.g., integers). Unbounded value types map to
numerical types (Integers, Floats and Doubles) and Strings.

Figure 24: OWL-Q Value Type facet

 Q-SLA
An extended version of OWL-Q, namely Q-SLA, has been proposed for semantically describing SLAs [37]. Q-
SLA introduces an SLA facet as an extension of the Specification facet, reflecting the fact that SLAs are a kind
of quality specification including, alongside constraints and user preferences, contractual information such as
the entities bound by an SLA, validity periods, the various service levels offered, pricing, as well as compensation
schemes in case of SLA violations.

More specifically, SLAs are represented as instances of the class owlq:SLA which is a subclass of
owlq:Specification (see Figure 25). The entities52 bound by an SLA assume one of the roles “requester”,

52 Either legal entities or physical persons.

Figure 23: OWL-Q Unit facet

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 57

“provider”, or “third party”. Entity-role assignments take the form of instances of the class owlq:RoleAssignment.
SLAs are associated with their entity-role assignments through the object property owlq:roleAssignment, and
entity-role assignments are associated with entities through the data property owlq:role (Figure 25). SLA validity
periods are determined through the data property owlq:validity.

The service levels (SLs) specified in an SLA determine the different performance behaviours that a service
can exhibit; they are thus a kind of complex constraints [37]. SLs are represented as instances of the class owlq:SL
– a subclass of owlq:ComplexConstraint. Any SL comprises at least one simple constraint termed service level
objective (SLO). SLOs are modelled as instances of the class owlq:SLO which is a subclass of
owlq:SimpleConstraint. An SL is associated with its constituent SLOs through the object property
owlq:constraint (see Figure 20). An SLO is bound to a service or service component through the
owlq:applicableService property (see Figure 20). An SLO is also associated with:

• The entities responsible for monitoring and assessing it, as well as with the entity obliged to guarantee it,
through the data properties owlq:monitoringEntity, owlq:assessmentEntity, and owlq:obliged respectively.

• Compensations, through the object property owlq:sloSettlement (see Figure 25). Compensations are
penalties or rewards that apply, respectively, when the SLO is violated or when service performance
exceeds pre-set thresholds; they are represented as instances of the class owlq:SLOCompensation.

• A qualifying condition that must hold for the SLO to be assessable (and possibly compensable). Such a
condition can refer to contextual restrictions at the requester side such as the number of concurrent
incoming requests that can be served over a period. Qualifying conditions are a kind of constraint. They
are modelled as instances of the class owlq:QualifyingCondition – a subclass of owlq:Constraint.

Lastly, an SLO may be soft and/or negotiable as determined by the namesake data properties (see Figure 25).
SLOs are soft if their violation is deemed unimportant when matching provider-defined SLs with requester-
defined SLs. In other words, SLOs are soft when their violation does not affect the match making process. SLOs

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 58

are negotiable when the value ranges that they enable may be shaped after negotiation between the requester
and provider.

SLs are further associated with a price model that specifies the cost of consuming a service or service
component (at the particular service level). Price models are represented as instances of the class owlq:PriceModel.
Pricing details such as the minimum and maximum chargeable prices for a service, and its base price, are
captured through the data properties owlq:minPrice, owlq:maxPrice, and owlq:basePrice respectively (see Figure
25). Base prices are the prices charged under normal service operation; minimum chargeable prices define the
least cost for a service in case of SLO violation penalties (in other words, the maximum penalty that an SLO
violation can incur); maximum chargeable prices define an upper cost boundary applicable when more resources
are assigned to a service. Price models comprise price components modelled as instances of the class
owlq:PriceComponent. Each price component focuses on a particular cost aspect. For instance, a price component
may focus on the cost of consuming compute resources, while other components may focus on network
resources and data exchange costs. The cost charged by a price component is calculated through a formula over
relevant quality terms and attributes. A price model is also related to a reservation type stating if charging can
be performed periodically, via advanced reservations, or on demand (spot pricing). Price model instances are
attached to SLO compensations.

If the number of SLO violations is kept below a threshold, only SLO compensations may be paid. However,
if the number of SLO violations over a period is high, it must be determined if the SLA is viable and whether it
should be cancelled, renegotiated, or re-enforced (i.e., the service has to be re-executed). This is achieved through
settlements. Settlements are activities that are associated with SLs and assess what has happened during service
execution (i.e., with respect to the SL’s SLOs), and which are each signatory party’s responsibilities in case of
SLO violations. Formally, settlements are instances of the namesake class (Figure 25). The data properties
owlq:settlementAction, owlq:evaluationPeriod, and owlq:settlementCount are used, respectively, to determine a
settlement’s actions in case of SLO violations (cancellation, renegotiation, re-enforcement), the number of SLO
violations that activates the settlement, and the service execution length over which this number must be
observed. Settlements are associated with SLAs through the owlq:settlement object property (Figure 25) and are
attached to SLs through the owlq:concernedSL property.

Q-SLA also includes the concept of SL transitions (formally represented by the namesake class in Figure 25)
to enable movement between two SLs and hence between different performance levels. Transitions may be
event-driven: triggered when too many SLO violations over a period occur, or when SLO expectations are
exceeded beyond a certain threshold for a period. This is captured through the data properties
owlq:evaluationPeriod, owlq:rewardThreshold and owlq:violationThreshold (see Figure 25). Transitions may also
be chronologically driven, occurring at pre-set time points. Transitions are associated with their corresponding
SLs – the transitioned from and the transitioned to SLs – via the object properties owlq:firstSL and
owlq:secondSL respectively.

As an example, let us consider a face detection service with the following QoS attributes: response time,
availability, and throughput. Each attribute is evaluated by measuring a pertinent raw metric, or by calculating
a composite metric. Listing 24 demonstrates how an attribute is evaluated either by directly measuring (through
a relevant sensor) a raw response time metric, or by calculating an average response time over a period.

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 59

Listing 24: Example of an attribute and its metrics

An SLA for this service specifies: the involved parties (owlq:entity) and their roles (owlq:roleAssignment),
the concerned service (owlq:service), the available SLs (owlq:serviceLevel) alongside their SLOs
(owlq:constraint), settlements in case of failure to meet SLOs (owlq:solSettlement), validity periods
(owlq:validity) (see Listing 25). SLs are specified in terms of the constraints that they impose in the form of SLOs
(owlq:constraint), a pricing model (owlq:priceModel), and a transition specification to enable movement to
different performance levels under certain conditions (owlq:SLTransition)(see Listing 26).

Listing 25: Example of a simple SLA

Listing 26: Example of a SL, its pricing model, and SL transition

Listing 27 provides an example of an SLO specification that includes a constraining operator (less or equal
than), a metric as the SLO’s first argument, and a threshold value as the SLO’s second argument again which
this metric is compared through the constraining operator. A settlement that defines what happens in case of

Measurable attribute denoting response time.

:RESPONSE_TIME rdf:type owl:NamedIndividual ,

 owlq:MeasurableAttribute ;

 owlq:measuredBy :AVERAGE_RESPONSE_TIME_METRIC , :RAW_RESPONSE_TIME_METRIC .

Metric measuring the raw response time.

:RAW_RESPONSE_TIME_METRIC rdf:type owl:NamedIndividual ,

 owlq:RawMetric ;

 owlq:context :RAW_RESPONSE_TIME_METRIC_CONTEXT ;

 owlq:directive :RAW_RESPONSE_TIME_METRIC_DIRECTIVE ;

 owlq:schedule :RAW_RESPONSE_TIME_SCHEDULE ;

 owlq:sensor :RAW_RESPONSE_TIME_SENSOR .

Metric calculating the average response time.

:AVERAGE_RESPONSE_TIME_METRIC rdf:type owl:NamedIndividual ,

 owlq:CompositeMetric ;

 owlq:context :AVERAGE_RESPONSE_TIME_CONTEXT ;

 owlq:formula :AVERAGE_RESPONSE_TIME_FORMULA ;

 owlq:schedule :AVERAGE_RESPONSE_TIME_SCHEDULE .

Example of an SLA.

:SLA_AC rdf:type owl:NamedIndividual, owlq:SLA ;

 owlq:roleAssignment :PROVIDER, :REQUESTER ;

 owlq:service :FACE_DETECTION_SERVICE ;

 owlq:serviceLevel :LOW_SL, :NORMAL_SL ;

 owlq:settlement :SET_LOW ;

 owlq:validity "2024-05-30T09:00:00"^^xsd:dateTime .

Example of a service level.

:LOW_SL rdf:type owl:NamedIndividual, owlq:SL ;

 owlq:constraint :LOW_AV, :LOW_THR, :LOW_RT ;

 owlq:priceModel :PM_LOW .

Example of pricing model.

:PM_LOW rdf:type owl:NamedIndividual, owlq:PriceModel ;

 owlq:minPrice 600 ;

 owlq:reservationType "PER_MONTH" .

Example of SL transition.

:NOR_TO_LOW rdf:type owl:NamedIndividual, owlq:SLTransition ;

 owlq:firstSL :NORMAL_SL ;

 owlq:secondSL :LOW_SL ;

 owlq:evaluationPeriod 0.5 ;

 owlq:violationThreshold 4 .

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 60

SLO violation (e.g., the price is reduced to only 5% of the originally agreed-upon price – see Listing 27) is also
specified.

Listing 27: Example of an SLO, its penalty, and compensation

 Metadata Schema
OWL-Q provides a comprehensive set of data properties for describing various aspects of the quality provided
by a computing service. Albeit, OWL-Q was not designed to cater for the particular needs of resources in the
cloud continuum. It is therefore likely that, during the course of NebulOuS, it will be extended with additional
data properties that enable capturing a richer set of aspects related to application deployment across
heterogeneous CC resources and multi-clouds. To this end, the Metadata Schema (MDS) will be utilised.

MDS provides a rich schema covering essential aspects related to application deployment and big data
management in the cloud continuum. MDS aggregates several classes and properties that correspond to concepts
used for describing DevOps requirements and constraints, and infrastructural service offerings in multi-cloud
placement decisions. Its objective is to create the background modelling layer for any Domain Specific Language
(DSL) that aspires to describe application deployments in multi-cloud and fog environments. It was used as the
formal means for extending the CAMEL language [1] with appropriate concepts related to big data management,
the placement optimisation of processing jobs and access control in multi-cloud environments. In a similar vein,
it may be used for extending NebulOuS’ CoCoOn— and OWL-Q —based ontologies if the project’s use cases
require it.

MDS was introduced as part of the Melodic53 project for addressing the multi-clouds requirements and
offerings description and it was extensively updated during the Morphemic54 project for coping with additional
kinds of resources like HPC and hardware accelerated ones, while supporting polymorphic adaptations (i.e.,
allowing the descriptions of different technical implementation forms for the relevant application components).

53 https://www.melodic.cloud/
54 https://www.morphemic.cloud/

Example of SLO.

:LOW_RT rdf:type owl:NamedIndividual, owlq:SLO ;

 owlq:firstArgument :AVERAGE_RESPONSE_TIME_METRIC ;

 owlq:operator owlq:LESS_EQUAL_THAN ;

 owlq:sloSettlement :P1 ;

 owlq:secondArgument 2 .

Example of a penalty.

:P1 rdf:type owl:NamedIndividual, owlq:Penalty ;

 owlq:compensation :C1 .

Example of an SLO compensation.

:C1 rdf:type owl:NamedIndividual, owlq:SLOCompensation ;

 owlq:settlementPricePercentage "0.05"^^xsd:double .

https://www.melodic.cloud/
https://www.morphemic.cloud/

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 61

Figure 26: Metadata Schema overview

MDS comprises the Application Placement, Big Data and Context Aware Security models that group a
number of classes and properties to be used for defining where a certain big data application should be placed;
what are the unique characteristics of the data artefacts that need to be processed; and what are the contextual
aspects that may be used for restricting the access to the sensitive data.

For example, one of the classes of the Application Placement sub-model of MDS is the Processing. This class
involves any infrastructural feature bound to the processing capability of virtualised resources. One of its
subclasses is the Accelerator class which refers to application-specific hardware designed or programmed to
compute operations faster than a general-purpose computer processor. It involves the subclasses such as GPU,
ASIC, FPGA and VPU for defining different accelerator types offered or required in a DSL description. The
complete class diagram for the Processing domain can be seen in Fig. 10. MDS55 was serialized in XMI56 as an
Ecore-based language encoding form to enable the re-use of its elements for annotating CAMEL models. A bird’s
eye view of the complete MDS taxonomy can be found here57.

55 https://gitlab.ow2.org/melodic/camel/-/tree/rc3.1/metadata-schema/current
56 http://www.omg.org/spec/XMI/
57 https://melodic.cloud/UuTf-KRW.png

https://gitlab.ow2.org/melodic/camel/-/tree/rc3.1/metadata-schema/current
http://www.omg.org/spec/XMI/
https://melodic.cloud/UuTf-KRW.png

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 62

Figure 27: The UML class diagram for the Processing domain

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 63

7. Conclusions
This document provides a first account of NebulOuS’ approach to resource discovery. It presents the three
distinct, albeit interrelated, declarative models that underpin NebulOuS’ resource discovery mechanism,
namely:

• Application component compositions and deployments. A KubeVela-based model for describing
application composition and deployment.

• QoS requirements attached to application components. A custom model (based on the metric model
from CAMEL) for enabling the definition of custom metrics over arbitrary user-defined QoS attributes.

• Optimisation. An AMPL-based model for describing the constraints and the objectives according to
which application components are managed throughout their lifecycles. This model is underpinned by
an ontologically-described asset model that captures the capabilities and characteristics of a pool of CC
resources across which an application component is to be hosted.

Moreover, this document presents an ontological model for capturing application workload QoS
requirements that forms the basis for NebulOuS’ quality mechanism. More specifically, by ontologically
describing QoS requirements, we pave the way for a quality assurance mechanism that relies on semantic reasoning
for assessing the correctness of these requirements by comparing them against a set of semantically captured
application consumption policies.

Finally, this document provides an initial account of a prototype of the NebulOuS resource discovery
mechanism. The fully-fledged NebulOuS resource discovery mechanism, alongside the final version of the
models, will be reported in D2.3 (due in by M35).

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 64

References
[1] A. P. Achilleos et al., ‘The cloud application modelling and execution language’, J. Cloud Comput., vol. 8, no. 1, p.

20, Dec. 2019, doi: 10.1186/s13677-019-0138-7.
[2] C.-H. Hong and B. Varghese, ‘Resource Management in Fog/Edge Computing: A Survey on Architectures,

Infrastructure, and Algorithms’, ACM Comput. Surv., vol. 52, no. 5, pp. 1–37, Sep. 2020, doi: 10.1145/3326066.
[3] B. Varghese and R. Buyya, ‘Next Generation Cloud Computing: New Trends and Research Directions’, 2017, doi:

10.48550/ARXIV.1707.07452.
[4] C.-H. Hong, K. Lee, M. Kang, and C. Yoo, ‘qCon: QoS-Aware Network Resource Management for Fog Computing’,

Sensors, vol. 18, no. 10, p. 3444, Oct. 2018, doi: 10.3390/s18103444.
[5] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, ‘Edge Computing: Vision and Challenges’, IEEE Internet Things J., vol.

3, no. 5, pp. 637–646, Oct. 2016, doi: 10.1109/JIOT.2016.2579198.
[6] B. Costa, J. Bachiega, L. R. De Carvalho, and A. P. F. Araujo, ‘Orchestration in Fog Computing: A Comprehensive

Survey’, ACM Comput. Surv., vol. 55, no. 2, pp. 1–34, Feb. 2023, doi: 10.1145/3486221.
[7] B. Varghese, N. Wang, J. Li, and D. S. Nikolopoulos, ‘Edge-as-a-Service: Towards Distributed Cloud Architectures’,

2017, doi: 10.48550/ARXIV.1710.10090.
[8] E. Saurez, K. Hong, D. Lillethun, U. Ramachandran, and B. Ottenwälder, ‘Incremental deployment and migration

of geo-distributed situation awareness applications in the fog’, in Proceedings of the 10th ACM International Conference
on Distributed and Event-based Systems, Irvine California: ACM, Jun. 2016, pp. 258–269. doi:
10.1145/2933267.2933317.

[9] A. Tsagkaropoulos, Y. Verginadis, M. Compastié, D. Apostolou, and G. Mentzas, ‘Extending TOSCA for Edge and
Fog Deployment Support’, Electronics, vol. 10, no. 6, p. 737, Mar. 2021, doi: 10.3390/electronics10060737.

[10] Y. Verginadis, I. Alshabani, G. Mentzas, and N. Stojanovic, ‘PrEstoCloud: Proactive Cloud Resources Management
at the Edge for Efficient Real-Time Big Data Processing’:, in Proceedings of the 7th International Conference on Cloud
Computing and Services Science, Porto, Portugal: SCITEPRESS - Science and Technology Publications, 2017, pp. 611–
617. doi: 10.5220/0006359106110617.

[11] M. Wurster, U. Breitenbücher, L. Harzenetter, F. Leymann, J. Soldani, and V. Yussupov, ‘TOSCA Light: Bridging
the Gap between the TOSCA Specification and Production-ready Deployment Technologies’:, in Proceedings of the
10th International Conference on Cloud Computing and Services Science, Prague, Czech Republic: SCITEPRESS - Science
and Technology Publications, 2020, pp. 216–226. doi: 10.5220/0009794302160226.

[12] G. Blair, N. Bencomo, and R. B. France, ‘Models@ run.time’, Computer, vol. 42, no. 10, pp. 22–27, Oct. 2009, doi:
10.1109/MC.2009.326.

[13] Robert Fourer, David M. Gay, and Brian W. Kernighan, AMPL - A Modeling Language for Mathematical Programming,
Second edition. Duxbury Press, 2003. [Online]. Available: https://ampl.com/wp-content/uploads/BOOK.pdf

[14] M. Compton et al., ‘The SSN ontology of the W3C semantic sensor network incubator group’, J. Web Semant., vol.
17, pp. 25–32, Dec. 2012, doi: 10.1016/j.websem.2012.05.003.

[15] A. Haller et al., ‘The modular SSN ontology: A joint W3C and OGC standard specifying the semantics of sensors,
observations, sampling, and actuation’, Semantic Web, vol. 10, no. 1, pp. 9–32, Dec. 2018, doi: 10.3233/SW-180320.

[16] M. Bermudez-Edo, T. Elsaleh, P. Barnaghi, and K. Taylor, ‘IoT-Lite: A Lightweight Semantic Model for the Internet
of Things’, in 2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing,
Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), Toulouse: IEEE, Jul. 2016, pp. 90–97. doi: 10.1109/UIC-ATC-
ScalCom-CBDCom-IoP-SmartWorld.2016.0035.

[17] L. Daniele, R. Garcia-Castro, M. Lefrançois, and M. Poveda-Villalon, ‘ETSI TS 103 264’. ETSI, Feb. 2020. [Online].
Available: https://www.etsi.org/deliver/etsi_ts/103200_103299/103264/03.01.01_60/ts_103264v030101p.pdf

[18] M. Bauer, M. Boussard, N. Bui, and F. Carrez, ‘Internet of Things – Architecture IoT-A Deliverable D1.5 – Final
architectural reference model for the IoT v3.0’, Technical report D1.5, Jul. 2013.

[19] P. Gilles, Guidelines for Modelling with NGSI-LD. 2021.
[20] K. Kotis and A. Katasonov, ‘An ontology for the automated deployment of applications in heterogeneous IoT

environments’, [Online]. Available: https://www.semantic-web-journal.net/sites/default/files/swj247_0.pdf

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 65

[21] R. Yus, G. Bouloukakis, S. Mehrotra, and N. Venkatasubramanian, ‘The SEMIOTIC Ecosystem: A Semantic Bridge
between IoT Devices and Smart Spaces’, ACM Trans. Internet Technol., vol. 22, no. 3, pp. 1–33, Aug. 2022, doi:
10.1145/3527241.

[22] P. Sharma, S. Lee, T. Guo, D. Irwin, and P. Shenoy, ‘Spotcheck: Designing a derivative iaas cloud on the spot
market’, presented at the Proceedings of the Tenth European Conference on Computer Systems, 2015, pp. 1–15.

[23] M. Parra-Royon and J. Benitez, ‘Data Mining Service definition in Cloud Computing’. [Online]. Available:
http://cookingbigdata.com/linkeddata/dmservices/

[24] Q. Zhang, A. Haller, and Q. Wang, ‘CoCoOn: Cloud Computing Ontology for IaaS Price and Performance
Comparison’, in The Semantic Web – ISWC 2019, vol. 11779, C. Ghidini, O. Hartig, M. Maleshkova, V. Svátek, I.
Cruz, A. Hogan, J. Song, M. Lefrançois, and F. Gandon, Eds., in Lecture Notes in Computer Science, vol. 11779. ,
Cham: Springer International Publishing, 2019, pp. 325–341. doi: 10.1007/978-3-030-30796-7_21.

[25] F. Moscato, R. Aversa, B. Di Martino, T.-F. Fortiş, and V. Munteanu, ‘An analysis of mosaic ontology for cloud
resources annotation’, presented at the 2011 federated conference on computer science and information systems
(FedCSIS), IEEE, 2011, pp. 973–980.

[26] M. Rekik, K. Boukadi, and H. Ben-abdallah, ‘Cloud Description Ontology for Service Discovery and Selection’:, in
Proceedings of the 10th International Conference on Software Engineering and Applications, Colmar, Alsace, France:
SCITEPRESS - Science and and Technology Publications, 2015, pp. 26–36. doi: 10.5220/0005556400260036.

[27] K. P. Joshi, Y. Yesha, and T. Finin, ‘Automating Cloud Services Life Cycle through Semantic Technologies’, IEEE
Trans. Serv. Comput., vol. 7, no. 1, pp. 109–122, Jan. 2014, doi: 10.1109/TSC.2012.41.

[28] D. Chakraborty, F. Perich, S. Avancha, and A. Joshi, ‘Dreggie: Semantic service discovery for m-commerce
applications’, in Workshop on reliable and secure applications in mobile environment, in conjunction with 20th symposium on
reliable distributed systems (SRDS), 2001.

[29] T. R. Gruber, ‘Toward principles for the design of ontologies used for knowledge sharing?’, Int. J. Hum.-Comput.
Stud., vol. 43, no. 5, pp. 907–928, Nov. 1995, doi: 10.1006/ijhc.1995.1081.

[30] M. Zhang, ‘CoCoOn git repository’. Jul. 21, 2022. Accessed: Sep. 13, 2023. [Online]. Available:
https://github.com/miranda-zhang/cloud-computing-schema

[31] I. Horrocks, O. Kutz, and U. Sattler, ‘The even more irresistible SROIQ’, in Proceedings of the Tenth International
Conference on Principles of Knowledge Representation and Reasoning, in KR’06. Lake District, UK: AAAI Press, Jun. 2006,
pp. 57–67.

[32] E. M. Maximilien and M. P. Singh, ‘A framework and ontology for dynamic Web services selection’, IEEE Internet
Comput., vol. 8, no. 5, pp. 84–93, Sep. 2004, doi: 10.1109/MIC.2004.27.

[33] Chen Zhou, Liang-Tien Chia, and Bu-Sung Lee, ‘DAML-QoS ontology for Web services’, in Proceedings. IEEE
International Conference on Web Services, 2004., San Diego, CA, USA: IEEE, 2004, pp. 472–479. doi:
10.1109/ICWS.2004.1314772.

[34] G. Dobson, R. Lock, I. Sommerville, and Ian Sommerville, ‘QoSOnt: a QoS Ontology for Service-Centric Systems’,
in 31st EUROMICRO Conference on Software Engineering and Advanced Applications, Porto, Portugal: IEEE, 2005, pp.
80–87. doi: 10.1109/EUROMICRO.2005.49.

[35] X. Wang, T. Vitvar, M. Kerrigan, and I. Toma, ‘A QoS-Aware Selection Model for Semantic Web Services’, in Service-
Oriented Computing – ICSOC 2007, vol. 4749, B. J. Krämer, K.-J. Lin, and P. Narasimhan, Eds., in Lecture Notes in
Computer Science, vol. 4749. , Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 390–401. doi:
10.1007/11948148_32.

[36] K. Kritikos and D. Plexousakis, ‘OWL-Q for Semantic QoS-based Web Service Description and Discovery’, Found.
Res. Technol. Heraklion Greece, [Online]. Available:
https://publications.ics.forth.gr/_publications/10.1.1.93.9067.pdf

[37] K. Kritikos, D. Plexousakis, and P. Plebani, ‘Semantic SLAs for Services with Q-SLA’, Procedia Comput. Sci., vol. 97,
pp. 24–33, 2016, doi: 10.1016/j.procs.2016.08.277.

[38] G. Damiano, E. Giallonardo, and E. Zimeo, ‘onQoS-QL: A Query Language for QoS-Based Service Selection and
Ranking’, in Service-Oriented Computing – ICSOC 2007, vol. 4749, B. J. Krämer, K.-J. Lin, and P. Narasimhan, Eds.,
in Lecture Notes in Computer Science, vol. 4749. , Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 115–
127. doi: 10.1007/978-3-540-93851-4_12.

D2.2 Initial Semantic Models and Resource Discovery Mechanism

 66

[39] F. D. Paoli, M. Palmonari, M. Comerio, and A. Maurino, ‘A Meta-model for Non-functional Property Descriptions
of Web Services’, in 2008 IEEE International Conference on Web Services, Beijing: IEEE, Sep. 2008, pp. 393–400. doi:
10.1109/ICWS.2008.97.

[40] K. Kritikos et al., ‘A survey on service quality description’, ACM Comput. Surv., vol. 46, no. 1, pp. 1–58, Oct. 2013,
doi: 10.1145/2522968.2522969.

