

A Meta Operating System

for Brokering Hyper-Distributed Applications

on Cloud Computing Continuums

D2.1 Requirements and
Conceptual Architecture of
the NebulOuS Meta-OS

[Document title]

2

Dissemination Level:
PU Public, fully open
Type

R Document, report (excluding the periodic and final reports)

Project Acronym/Title NebulOuS: A Meta Operating System for Brokering Hyper-Distributed Applications on Cloud

Computing Continuums

Grant Agreement No.: 101070516

Call World leading data and computing technologies (HORIZON-CL4-2021-DATA-01)

Project duration 36 months | 1 September 2022 – 31 August 2025

Deliverable title Requirements and Conceptual Architecture of the NebulOuS Meta-OS

Deliverable reference D2.1

Version 1.0

 WP 2

Delivery Date 01/3/2023

Dissemination level Public

Deliverable lead UBI

Authors Christos-Alexandros Sarros, Giannis Ledakis, Panagiotis Gouvas (UBI),
Andreas Tsagkaropoulos, Dimitris Apostolou, Ioannis Patiniotakis, Yiannis
Verginadis (ICCS),
Radosław Piliszek, Paweł Skrzypek (7bulls),
Gregoris Savvas, Fotis Paraskevopoulos (EXZ),
Ali Fahs (AE),
David Llordes Palou, Robert Sanfeliu Prat, Mario Reyes de los Mozos (EUT),
Evangelos Barmpas, Simeon Veloudis, Iraklis Paraskakis (SEERC),
Amir Taherkordi, Rudolf Schlatte, Geir Horn (UiO),
Cristina Hilario Gomez (TiD),
Pedro Teixeira, Sofia Rosas (UW),
Michal Klosinski (AF),
Maria Karageorgiou (AUG),
Moritz von Stietencron (BIBA),
Amir Azimian (FIRE)

Reviewers Rita Santiago (UW), Mario Reyes (EUT)

Abstract

Report on the current work in all the relevant research areas of NebulOuS project and capture

of relevant requirements. Bird’s view on the general architecture of the system and should lay

a foundation for the integration. Each component will be described through its functional and

non-functional requirements

Keywords Meta-OS, Cloud computing, Edge computing, Fog Computing, IoT

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union or European Commission. Neither the European Union nor the
granting authority can be held responsible for them. | Grant Agreement No.: 101070516

[Document title]

3

Version History

Version Date Owner Author(s)
Changes to previous
version

0.1 2023-01-05 UBI Christos-Alexandros Sarros Table of Contents

0.2 2O23-01-20 TiD Cristina Hilario Gomez
Initial draft of High-level
Requirements section

0.3 2023-01-27 UiO Geir Horn
Initial draft on SotA
section

0.4 2023-02-03 UBI Christos-Alexandros Sarros
Initial draft of
Architecture section

0.5 2023-02-10 UBI

Andreas Tsagkaropoulos, Dimitris
Apostolou, Ioannis Patiniotakis,
Yiannis Verginadis (ICCS), Radosław
Piliszek, Paweł Skrzypek (7bulls),
Gregoris Savvas, Fotis Paraskevopoulos
(EXZ),
Ali Fahs (AE),
David Llordes Palou, Robert Sanfeliu
Prat, Mario Reyes de los Mozos (EUT),
Evangelos Barmpas, Simeon Veloudis,
Iraklis Paraskakis (SEERC),
Amir Taherkordi, Rudolf Schlatte,
Geir Horn (UiO), Christos-Alexandros
Sarros, Giannis Ledakis (UBI)

Additional input on
SotA areas and
Architecture
components

0.6 2023-02-17 UBI Christos-Alexandros Sarros First full draft

0.7 2023-02-22 UBI
Rita Santiago (UW),
Mario Reyes (EUT)

Internal reviews

0.8 2023-02-24 UBI

Pedro Teixeira, Sofia Rosas (UW),
Michal Klosinski (AF), Maria
Karageorgiou (AUG), Moritz von
Stietencron (BIBA), Amir Azimian
(FIRE)

Added use case
descriptions

0.9 2023-02-28 UBI Christos-Alexandros Sarros Revised full draft
1.0 2023-03-01 UBI Maria Navarro Abellán Submitted version

[Document title]

4

Table of Contents
Version History ... 3

Table of Contents ... 4

List of Figures .. 6

List of Tables ... 6

List of Acronyms ... 7

1. Introduction ... 13

1.1 Deliverable objectives ... 13

1.2 Relation to other Deliverables and WPs ... 13

1.3 Deliverable structure .. 13

2. High-level requirements ... 14

2.1 Use Case Descriptions ... 14

UC1.1: Windmill Maintenance... 14

UC1.2: Computer Vision for City Maintenance .. 15

UC2.1: Intra-logistics Operations Improvement .. 15

UC2.2: Last Mile Delivery Optimization .. 15

UC3: Precision Agriculture.. 15

UC4: Crisis Management .. 16

2.2 Methodology... 16

2.2.1 Key Performance Indicators (KPIs) ... 16

2.2.2 Description of Key Requirements ... 18

2.3 System Requirements ... 18

2.3.1 Functional requirements ... 18

2.3.2 Non-functional requirements .. 19

3. State-of-the-art analysis.. 21

3.1 Methodology... 21

3.2 Analysis ... 21

3.2.1 Meta-Operating Systems for the Cloud Continuum .. 21

3.2.2 Multi-cloud platforms .. 30

3.2.3 Edge/IoT Platforms ... 33

3.2.4 Serverless .. 36

3.2.5 Resource Management .. 37

3.2.6 Interoperable data collection and management ... 41

3.2.7 Semantic Modelling for Interoperability .. 43

3.2.8 Cloud Service Brokerage ... 47

3.2.9 Networking and Communication ... 49

3.2.10 Cloud and Fog Monitoring ... 55

[Document title]

5

3.2.11 Anomaly Detection .. 57

3.2.12 Security and Privacy ... 58

4. The NebulOuS architecture ... 64

4.1 Methodology... 64

4.2 Architecture .. 65

4.2.1 Conceptual architecture .. 65

4.2.2 Logical architecture .. 66

4.2.3 Interactions and flows ... 68

4.3 Components ... 72

4.3.1 User Interface (UI)... 72

4.3.2 Security and Privacy Manager.. 73

4.3.3 Optimizer ... 75

4.3.4 Deployment Manager .. 79

4.3.5 Execution Adapter ... 81

4.3.6 Overlay Network Manager... 83

4.3.7 Data Collection & Management... 84

4.3.8 Cloud/Fog Service Broker... 88

4.3.9 SLA Generator ... 89

4.3.10 Brokerage Quality Assurance .. 90

4.3.11 Smart Contract Encapsulator .. 91

4.3.12 Event Management System ... 93

4.3.13 AI-driven Anomaly Detection ... 95

4.3.14 NebulOuS agent .. 96

5. Conclusions .. 98

References ... 99

[Document title]

6

List of Figures
Figure 1: Application Model .. 39

Figure 2: eBPF hooks ... 50

Figure 3: XDP overview [141] ... 51

Figure 4: Wireless technologies used in the IoT .. 53

Figure 5: Attribute-Based Access Control (ABAC) .. 60

Figure 6: The NebulOuS conceptual architecture - overview of supported functionality ... 65

Figure 7: The NebulOuS logical architecture .. 66

Figure 8: Component interactions in the NebulOuS architecture .. 69

Figure 9: Service deployment sequence diagram .. 71

Figure 10: Real-time reconfiguration sequence diagram ... 71

Figure 11: Cloud service brokerage and SLAs sequence diagram ... 71

Figure 13: Resource management in NebulOuS ... 82

List of Tables
Table 1: Use case identifiers ... 14
Table 2: Key Performance Indicators ... 16
Table 3: Functional System Requirements .. 18
Table 4: Non-functional System Requirements ... 19
Table 5: Main characteristics of wireless IoT protocols... 54
Table 6: User Interface - relation to system requirements .. 73
Table 7: Security and Privacy Manager - relation to system requirements.. 74
Table 8: Optimizer - relation to system requirements ... 78
Table 9: Deployment Manager - relation to system requirements .. 80
Table 10: Execution Adapter - relation to system requirements ... 82
Table 11: Overlay Network Manager - relation to system requirements .. 83
Table 12: Pub/sub mechanism - relation to system requirements .. 85
Table 13: IoT time series data store - relation to system requirements .. 86
Table 14: IoT data processing pipelines orchestration tool - relation to system requirements.. 87
Table 15: Intercomponent Communications Middleware - relation to system requirements ... 88
Table 16: Cloud/Fog Service Broker - relation to system requirements .. 89
Table 17: SLA Generator - relation to system requirements ... 90
Table 18: Brokerage Quality Assurance - relation to system requirements .. 91
Table 19: Smart Contract Encapsulator - relation to system requirements .. 92
Table 20: Event Management System - relation to system requirements ... 94
Table 21: Anomaly Detection - relation to system requirements .. 95
Table 22: NebulOuS agent - relation to system requirements .. 97

[Document title]

7

List of Acronyms

6LoWPAN IPv6 over Low power Wireless Personal Area Networks
ABAC Attribute-based access control
ACK Alibaba Container service for Kubernetes
AI Artificial Intelligence
AIS Artificial Immune Systems
AKS Azure Kubernetes Service
ALFA Abbreviated Language For Authorization
AMQP Advanced Message Queuing Protocol
API Application Programming Interface
ARIMA Integrated Moving Average
ARM Advanced RISC Machines
ARMA Auto Regressive Moving Average
AuG Augmenta
AWS Amazon Web Services
BaaS Backend-as-a-Service
BC Blockchain
BGP Border Gateway Protocol
BLE Bluetooth Low Energy
BQA Brokerage Quality Assurance
CaaS Container-as-a-Service
CAMEL Cloud Application Modelling and Execution Language
CAPI Cluster API
CCTV Closed-circuit television
CEP Complex Event Processing
CFSB Cloud & Fog Service Brokerage
CIM Context Information Management
CIS Center for Internet Security
CLI Command Line Interface
CNCF Cloud-Native Computing Foundation
CNI Container Network Interface
CNN Convolutional Neural Networks
CoAP Constrained Application Protocol
CORD Central Office Re-architected as a Datacenter
CP Critical Path
CPU Central Processing Unit
CRD Custom Resource Definitions
CRI Container Runtime Interface
CRI Container Runtime Interface
DAC Discretionary Access Control
DAG Directed Acyclic Graph
DB Database
dB decibel

[Document title]

8

DC/OS Distributed Cloud Operating System
DCA Dendritic Cell Algorithm
DKP D2iQ Enterprise Kubernetes Platform
DNS Domain Name Service
DPDK Data Plane Development Kit
DSL Domain-Specific Language
DSP Data Stream Processing
DUM Distribució Urbana de Mercaderies (Urban goods distribution)
eBPF extended Berkeley Packet Filter
EC2 (Amazon) Elastic Compute Cloud
EIP Enterprise Integration Patterns
EKS Elastic Kubernetes Service
EMS Event Management System
ESB Enterprise Service Bus
ETSI European Telecommunications Standards Institute
FaaS Function-as-a-Service
FIPS Federal Information Processing Standard
GA Grant Agreement
GAMMA Gateway API for Mesh Management and Administration
GAN Generative Adversarial Networks
GB GigaByte
GHz GigaHertz
GKE Google Kubernetes Engine
GPS Global Positioning System
GPU Graphics Processing Unit
GSM Global System for Mobile Communications
GUI Graphical User Interface
H2020 Horizon 2020
HA High Availability
HCI Hyper-Converged Infrastructure
HPA Horizontal Pod Autoscaler
HPC High-Performance Computing
HTTP HyperText Transfer Protocol
HW Hardware
I/O Input/Output
IaaS Infrastructure-as-a-Service
IAM Identity and Access Management
IBAC Identity Based Access Control
IEEE Institute of Electrical and Electronics Engineers
IoT Internet of Things
IoTMA Internet of Things Model and Analytics
IP Internet Protocol
IPE Interworking Proxy Entities
IT Information Technology
JMX Java Management Extensions
JSON JavaScript Object Notation

[Document title]

9

JSON JavaScript Object Notation
JSON-LD JavaScript Object Notation for Linked Data
K8s Kubernetes
KEDA Kubernetes-based Event Driven Autoscaling
KP Knowledge Processors
KPI Key Performance Indicator
L1/L2/Lx Layer 1/Layer 2/Layer x
LKE Linode Kubernetes Engine
MAC Mandatory Access Control
MCC Mobile Cloud Computing
MCDM MultiCriteria Decision Making
MEC Mobile Edge Computing
MKE Mirantis Kubernetes Engine
ML Machine Learning
MQTT MQ Telemetry Transport
MrB Mercabarna
mTLS mutual TLS
NDI Several non-destructive inspection methods
NFC Near Field Communication
NFV Network Function Virtualization
NGAC Next Generation Access Control
NGSI-LD Next Generation Service Interfaces - Linked Data
NVGRE Network Virtualization using Generic Routing Encapsulation
OAM Open Application Model
OASIS Organization for the Advancement of Structured Information Standards
OPC UA OPC Unified Architecture
ORDGE Organisational Requirements Definition Governance and Enforcement
OS Operating System
OSI Open Systems Interconnection
OVN Open Virtual Network
OvS Open vSwitch
OWL Web Ontology Language
PaaS Platform-as-a-Service
PAP Policy Administration Point
PCA Principal Component Analysis
PCP Partial Critical Path
PDP Policy Decision Point
PEP Policy Enforcement Point
PIP Policy Information Point
QoE Quality of Experience
QoS Quality of Service
RAM Random Access Memory
RBAC Role-Based Access Control
RBAC Role-based access control
RDBMS Relational Database Management Systems
RDF Resource Description Framework

[Document title]

10

REST Representational state transfer
RFID Radio-Frequency Identification
RKE Rancher Kubernetes Engine
RM Resource Manager
RNN Recurrent Neural Network
RPC Remote Procedure Call
SaaS Software-as-a-Service
SAL Scheduling Abstraction Layer
SAREF Smart Applications Reference
SCB Support and Confidence-based Monitoring
SCE Smart Contract Encapsulator
SDK Software Development Kit
SDN Software-Defined Networking
SIB Semantic Information Brokers
SLA Service-Level Agreements
SLO Service Level Objectives
SME Small and Medium Enterprise
SMG Semantic Mediation Gateways
SMI Service Mesh Interface
SOA Service-Oriented Architecture
SOSA Sensor, Observation, Sample, and Actuator ontology
SotA State-of-the-Art
SQL Structured Query Language
SSN Semantic Sensor Network ontology
SVM Support Vector Machines
TCP Transmission Control Protocol
TLS Transport Layer Security
TOSCA Topology and Orchestration Specification for Cloud Applications
TSA Time Series Analysis
TSDBMS Time Series Database Management Systems
UDP User Datagram Protocol
UI User Interface
UML Unified Modeling Language
VLAN Virtual Local Area Network
VM Virtual Machine
VNet (Azure) Virtual Network
VPA Vertical Pod Autoscaler
VPC Virtual Private Cloud
VPN Virtual Private Network
VXLAN Virtual Extensible Local Area Network
W3C World Wide Web Consortium
WebRTC Web Real-Time Communication
WLAN Wireless Local Area Networks
WP Work Package
WPAN Wireless Personal Area Networks
XACML Access Control Markup Language

[Document title]

11

XDP eXpress Data Path
XML Extensible Markup Language
YAML YAML Ain't Markup Language
Zenoh Zero Overhead Network Protocol

[Document title]

12

Executive Summary
The NebulOuS project aims to design and implement a novel Meta Operating System which enables secure and optimal
application provisioning and reconfigurations over the cloud computing continuum. To this end, disparate resources from
the far edge to public and private cloud offerings, as well as processing nodes with significant capacity in between, will be
exploited to augment modern hyper-distributed applications. Our vision is to enable transient fog brokerage ecosystems
that seamlessly exploit edge and fog nodes, in conjunction with multi-cloud resources, to cope with the requirements
posed by low latency applications.

This document provides the system requirements, scientific and technological state of the art and architecture of the
NebulOuS Meta-OS. Driven by the use cases, we first present the high-level system requirements. Subsequently, we survey
the relevant scientific and technological state-of-the-art and document the current work in each relevant area. Last, we
provide the conceptual and logical views of the NebulOuS architecture, along with its constituent components and
interrelations. Each component is described in relation to the functional and non-functional requirements it covers.

As this is the first technical deliverable of the NebulOuS project, which presents the general architecture of the system, it
provides the main point of reference for the technical implementation and integration work that follows. The physical
architecture that details the actual implementation along with the respective integration work, will be reported in D6.1
“1st Release of the NebulOuS Integrated Platform & Use Case Planning” (M18) and D6.2 “Final Release of the NebulOuS Integrated
Platform & Pilot Demonstrators Evaluation Report” (M36).

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

13

1. Introduction

1.1 Deliverable objectives
The objective of NebulOuS is to create a Meta-Operating System for brokering Hyper-distributed applications on cloud
computing continuums. To achieve this, the design of an architecture that is capable to support fog brokerage in different
cloud computing continuum settings is needed.

This architecture is presented at the conceptual and logical level in the present deliverable. Furthermore, this deliverable
includes all work that was performed to arrive at the NebulOuS architecture, including its high-level requirements and the
current state of the respective scientific and technical fields.

Based on the above, D2.1 has three inter-related objectives: First, to capture the high-level system requirements for the
NebulOuS Meta-OS, by focusing on the use cases to be supported and analysing their individual requirements. Second,
to report the scientific and technological state-of-the-art in all research areas that are relevant to the NebulOuS project.
Third, based on the previous analysis, to present the NebulOuS conceptual and logical architecture, which lays the
foundation for the technical implementation which will be performed during the following months. In this respect, it
describes the individual components which constitute the NebulOuS platform along with their interactions, as well as
their relation to the functional and non-functional requirements.

1.2 Relation to other Deliverables and WPs

Deliverable D2.1 presents the work carried out in the context of Task 2.1: “Scientific and technological State-of-the-art analysis”,
Task 2.2: “High-level requirements analysis” and Task 2.3: “NebulOuS Platform Architecture”. By arriving at the NebulOuS
architecture, D2.1 is a reference point for the work to be performed in all technical Work Packages (WP2-WP5), in the
context of which the individual components and mechanisms will be developed. As such, D2.1 forms the 1st project
Milestone.

Furthermore, D2.1 is closely related to the work performed in the context of WP6 “Integrated Meta-OS & Pilot
Demonstrators”. This is especially true of the integration work, which effectively begins with the definition of the
architecture. In this respect, two particular deliverables are closely related to D2.1: Deliverable D6.1 “1st Release of the
NebulOuS Integrated Platform & Use Case Planning” and Deliverable D6.2 “Final Release of the NebulOuS Integrated Platform &
Pilot Demonstrators Evaluation Report”. As this deliverable presents the logical architecture of the NebulOuS Meta-OS, it
does not incorporate the technical decisions made by the respective tasks. The technical architecture - which incorporates
those results - will be formulated and reported on D6.1 and D6.2.

1.3 Deliverable structure
The following structure is followed by this deliverable:

• Section 1 introduces the deliverable objectives, its relation to other deliverables and work packages and its overall
structure

• Section 2 defines the high-level system requirements (functional and non-functional). For presentation purposes,
it first provides an overview of the use cases and subsequently provides the methodology that was followed.

• Section 3 analyses the scientific and technological state-of-the-art. It begins by presenting the consortium
methodology and subsequently focuses on the individual areas that are relevant to NebulOuS.

• Section 4 details the NebulOuS architecture. It first provides an overview of the methodology followed towards
its definition, before proceeding to the presentation of the conceptual and logical view. After introducing the

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

14

architecture, the section focuses on the individual components and their interrelation, discussing how each one
covers the requirements identified in Section 2.

• Finally, Section 5 concludes the document.

2. High-level requirements
This section presents the high-level requirements for the NebulOuS platform. First, the use cases that will validate the
platform will be described. Next, the methodology used to gather the requirements will be introduced. Finally, the system
requirements will be presented.

As described in the proposal, there are 4 pilot demonstrators, with the numbering shown in the first column of Table 1.
The 2nd pilot covers 2 main objectives, which are (i) Development of Mercabarna’s internal traffic Digital Twin to support
Mercabarna’s intra-logistics operations management, and (ii) Capture and management of the data on trucks’ destination
(city areas) to improve the last-mile goods distribution in the city. Every objective will be addressed in a separate application.
For this reason, the pilot has been divided into the 2 use cases described in the second column of Table 1.

Overall, 6 use cases will be developed, since the 1st pilot also involves 2 use cases. To be able to identify the requirements
relevant to each application, an identifier has been assigned to each use case, that is different from those originally assigned
in the GA. The list of pilots and use case identifiers are described in the table below.

Table 1: Use case identifiers

Pilot Demonstrator Use case ID

1st Pilot: Maintenance

UC1.1: Windmill maintenance

UC1.2: Computer vision for city maintenance

2nd Pilot: Efficient, Connected and Sustainable management of

infrastructure, freights and resources

UC2.1: Intra-logistics operations improvement

UC2.2: Last mile delivery optimization

3rd Pilot: Precision Agriculture UC3

4th Pilot: Crisis Management UC4

2.1 Use Case Descriptions
This subsection describes each use case that will evaluate the platform.

UC1.1: Windmill Maintenance
This Use Case exploits AI models for identifying windmill blade damage based on images collected by drones (both actual
and prospective damages will be considered). Given bandwidth and connection stability constraints coupled with the
limited flight time of a drone which is typically below 30 minutes, the selection of relevant images (including objects that
need to be further analyzed or general non-repetitive images of clear regions) occurs at the edge (ground station) and only
relevant data are transmitted over the edge-cloud channel. Edge processing will also call for a new acquisition (detailed
images of certain regions) when required. Inspection time and operator effort can be significantly reduced at IoT level (on
the drone, exploiting power/weight-efficient GPU modules, already available as prototypes today) by providing image
quality feedback to the operator, allowing less conservative flight. Additionally, real-time feedback from AI-powered image
analysis can be used as input for a drone’s autonomous mission control unit. Tools provided by NebulOuS will provide
means to deploy, monitor and orchestrate platform components effectively.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

15

UC1.2: Computer Vision for City Maintenance
This use case exploits computer vision solutions to detect damage in public buildings and infrastructures. The current
solution is based on edge-deployed computer vision algorithms to detect damage, publishing this information into a cloud-
centric persistence layer. The output of this use case – alarmistics on damage on buildings – should be provided by city
managers and maintenance crews as fast as possible, hence the need for a low latency solution within this use case. In
addition, it is expected that the current computer vision algorithms need to be retrained, updated or new models added,
with the necessary repositories needing a seamless scaling and configuring across edge and cloud resources. The NebulOuS
project will provide the tools to decrease the overall necessary time to train a new computer vision model and deploy a
new instance or test and train new models.

UC2.1: Intra-logistics Operations Improvement
Mercabarna (MrB) is a small living city, where many vehicles of all types (from big trucks to vans, cars or forklifts) work
together to carry on MrB’s customers’ operations. Effective management of internal traffic is of utmost importance to
enable smooth operations and prevent jams or bottlenecks that would delay the lifecycle of the entire MrB. With this
objective, a real-time traffic monitoring system for intra-logistics operations will be developed. The system will be based on
a network of strategically located CCTV cameras recording the movements of vehicles along MrB roads. AI algorithms
will analyse the live streams of these cameras to identify the vehicles (read plate numbers and vehicle typology). The actions
they take (continue straight on a road, turn right, turn left, etc..). Crossing the events detected by the different cameras,
the solution will be able to track the routes of the vehicles inside MrB. This information presented by MrB managers will
allow them to evaluate the traffic in real-time and take decisions on how to mitigate congestion. Moreover, a Decision
Support System will be developed to allow these managers to simulate traffic management policies (e.g: make one street
to be one direction only) and evaluate the impact on the traffic.

UC2.2: Last Mile Delivery Optimization
Mercabarna (MrB) is a food city that operates 24 hours a day to guarantee the supply of fresh food to the public. The
facility houses 600 companies specialising in distributing, preparing, importing and exporting fresh and frozen products.
More than 7,000 small trucks leave MrB’s facilities every day and go to the city and its premises to distribute goods.
For this, this case study will focus on developing a real-time system to monitor transport vehicles and propose optimal
routes for efficient goods delivery. Before the delivery vehicles leave MrB’s facilities, the system will be responsible for
planning the optimal delivery route for each of them, taking into account: i) the locations they have to visit and their time
constraints; ii) the traffic conditions; iii) the expected occupation of the parking areas for delivery vehicles near the delivery
locations (DUM areas). Once the vehicles leave MrB’s facilities, the system will constantly monitor the fulfilment of the
delivery route to detect any deviation from the said planning. This monitoring will be performed thanks to the analysis of
real-time GPS data provided by vehicles. Moreover, changes to external conditions that might affect the viability of the
proposed plan will be observed (e.g: unexpected traffic volume or DUM area usage). Should any of these events occur
(delays on the schedule or changes in the predictions), the system will evaluate the necessity to trigger an automatic re-
planification of the vehicle’s routes to mitigate the possible delays.

UC3: Precision Agriculture
Augmenta (AuG) is a company that provides live precision agriculture solutions using IoT devices to many customers
worldwide. Some of the most critical services that provide are the post-processing of operation data and its transformation
into useful and high-quality visual information with the aim of each user being able to monitor the progress of their crops
also to identify possible problems in their fields. The implementation of these services has been done through various data
processing pipelines, depending on the number and size of the tasks, can become lengthy and time-consuming. Therefore,
the current use case aims to exploit the existing infrastructure of IoT devices when they remain idle for a significant time
in the field. The ultimate goal is the reduction of the tasks assigned to the cloud provider, which will bring significant cost
decrease but also an optimization of the results in terms of time and the number of completed tasks. Given the network
bandwidth and connection stability, NebulOuS will provide the demanding task scheduling that will take over the
distribution of processes on active devices, ensuring a smooth completion of the tasks and secure data transmission.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

16

UC4: Crisis Management
The coordination of response crews, materials and equipment from different stakeholders is one of the major challenges
in handling large-scale disasters like floods, earthquakes or wildfires. For the operational management of the situation,
obtaining a clear picture of the situation in the concerned area is paramount, to allow for the efficient and safe deployment
of the available resources. The technological potential for data collection and processing has rapidly increased in the last
decade and is increasingly employed in most sectors. In disaster situations, however, the established structures for
communication and, thus, processing capabilities are disrupted and cannot easily be used. Planning tools for day-to-day
emergency services can thus often only be utilised to a limited extent. This use case will experiment with the flexible
NebulOuS fog computing platform to enable broad use of communication and computing even in disaster situations by.
Thus enabling the utilisation of AI algorithms in the edge-cloud-continuum to process the available data to verify the
information and significantly enhance the situational awareness of the crisis management staff and response teams.

2.2 Methodology

The requirements presented in this document have been collected during several brainstorming sessions and online
meetings with use case partners and the consortium. The information gathered has taken into account the architectural
requirements of the platform, considering several aspects of the use cases, such as technical challenges, infrastructure
requirements or security and privacy aspects.

The methodology involved, as a first step, the collection of the key requirements of each use case using a template and, as
a second step, dividing them into functional and non-functional. As defined in the proposal, functional requirements
specify the design-time and run-time capabilities of the platform. Non-functional requirements specify characteristics of
security, privacy, scalability, reliability, elasticity, and system robustness.

2.2.1 Key Performance Indicators (KPIs)
This subsection describes the set of Key Performance Indicators (KPIs) defined for each use case. Each of them are linked
to the list of requirements described in Section 2.3.

Table 2 presents each KPI, defined by the following columns:

• KPI ID: Link each requirement to a KPI. The naming refers to a particular use case KPI_UCX_Y, where X is the
use case ID and Y is the requirement ID.

• Description: Brief description of the KPI.
• Baseline: Value that describes the current performance of the application.
• Target: Value that describes the expected improvement after using the NebulOuS platform.

Table 2: Key Performance Indicators

ID Description Baseline Target

KPI_UC1.1_1
Time to generate notification about one of data pipeline
components failure or abnormal operation: <1 minute

n/a 1 min

KPI_ UC1.1_2 Complete pipeline deployment time: < 5 minutes n/a 5 min

KPI_ UC1.1_3
Number of images processed during single asset inspection:
>300

0 300

KPI_ UC1.1_4 Response time for quality assessment model: <2s n/a 2s

KPI_ UC1.1_5
Initial feedback on major damages: <5 min after inspection is
completed.

1 day 5 min

KPI_ UC1.1_6
Reduction in data transferred to the cloud (defined as the ratio
of the difference between the size of gathered data set and data
sent to the cloud, to the size of the full data set): 30%

0 % 30 %

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

17

KPI_ UC1.1_7
Time to restore normal operation after connectivity is restored
(in case of temporarily lost connection): <1 minute

n/a 1 min

KPI_UC1.2_1 Vertical scaling: reducing mean time to detect by 50% n/a 1 min

KPI_UC1.2_2 Horizontal scaling: decreasing the mean time to repair by 50% n/a 1 min

KPI_UC1.2_3 Reducing data transfer from the edge to the cloud by 90% n/a 1 s

KPI_UC1.2_4 Reduce number of necessary edge nodes by 10% 4 3

KPI_UC1.2_5 Reduce number of necessary cloud resources by 10% 2 1

KPI_UC2.1_1
Reducing data transfer from the edge to the cloud (NebulOuS
KPI)

448Mbps of
video sent to
the cloud
(estimated)

0Mbps of
video sent to
the cloud

KPI_UC2.1_2 Reduce number of necessary cloud resources (NebulOuS KPI) n/a

Video
streams
processed on
edge

KPI_UC2.1_3 Improve road usage patterns awareness (APP KPI)
Qualitative
knowledge
from managers

Historical
quantitative
data available

KPI_UC2.1_4 Less than 5 minutes to identify potential traffic issues (APP KPI) 15 min 5 min

KPI_UC2.2_1
Detect delays in delivery route and trigger a re-planification in
less than 2 minutes (APP KPI)

15 min 2 min

KPI_UC2.2_2 Reduce average delivery route duration by 10% (APP KPI) 3h 2h40 min

KPI_UC2.2_3
Reduction of data transfer from the edge/fog to the cloud. Less
than 5% of inconsistent data traces are sent (NebulOuS KPI)

n/a <5%

KPI_UC2.2_4 Increase the number of tasks executed in fog in (NebulOuS KPI) None

Vehicle
routing
should
happen at
fog.

KPI_UC2.2_5
NebulOuS takes less than a minute to allocate computational
power for the application (NebulOuS KPI)

n/a <1 min

KPI_UC3_1 Decrease cost of operation by 10% 1 day
10% cost
reduction

KPI_UC3_2 Decrease time of completing a task by 20% 40 tasks 20% less time

KPI_UC3_3 Increase total completed tasks by 20% 2 hours
20% more
completed
tasks

KPI_UC4_1
Increase of total information processed digitally in disaster
management

2 % 10 %

KPI_UC4_2
Increase Local data communication coverage during the early
stages of disaster situations

5 % 60 %

KPI_UC4_3
The Acquisition of individual situational information (e.g.,
weather info), shall be automated and personnel effort shall be
eliminated. Time to acquire data points.

15-60 mins 1 min

KPI_UC4_4
Increase the capacity of Average number of individual
situational information points available (e.g., water level)

30 1000

KPI_UC4_5
Complementary information automatically derived in disaster
management

0 100

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

18

2.2.2 Description of Key Requirements
Each requirement is defined by the following columns:

• ID: Column containing the ID for each requirement. The naming is composed of two parts:
<ReqType>_<ReqID>

o <ReqType>: Identifies the type of requirement:
i. F: Functional requirement

ii. NF: Non-Functional requirement
o <ReqID>: Is the number that identifies the requirement

• Description: Brief explanation of the requirement

• Requirement Level: indicates the level of priority of the requirement:

o M: Mandatory
o R: Recommended to be met
o O: Optional

• KPI ID: Link each of the requirements to a KPI in section 2.1.1.

2.3 System Requirements
This section presents the list of the requirements for the NebulOuS platform, divided into functional (Table 3) and non-
functional (Table 4) requirements.

2.3.1 Functional requirements

Table 3: Functional System Requirements

ID Description
Req.
Level

KPI ID

F_01

The NebulOuS platform provides orchestration mechanisms
and data streaming capabilities that allow implementing flexible
data processing workflows. It ensures workloads are distributed
on the appropriate computing continuum (just edge, just cloud,
edge + cloud)

M

KPI_ UC1.1_3, KPI_
UC1.1_4, KPI_ UC1.1_5,
KPI_ UC1.1_6,
KPI_UC1.2_3, KPI_UC1.2_4,
KPI_UC1.2_5,
KPI_ UC2.1_2,
KPI_UC2.2_1, KPI_UC2.2_3,
KPI_UC2.2_4, KPI_UC2.2_5,
KPI_UC3_1, KPI_UC3_2,
KPI_UC3_3,
KPI_UC4_1, KPI_UC4_2,
KPI_UC4_3, KPI_UC4_4,
KPI_UC4_5

F_02

The NebulOuS platform offers a lightweight resilient event
pub/sub mechanism with persistence, access control and
consumer-group capacities to orchestrate communication
between the different modules of the solution.
The system shall provide events publish and subscribe based
communication “bus” for the interaction of components

M/R

KPI_UC2.1_1, KPI_UC2.1_2,
KPI_UC2.2_1,
KPI_UC4_1, KPI_UC4_2
KPI_UC4_3

F_03
The system shall provide a graphic user interface for the
administration of the deployed components

M

KPI_UC1.1_2,
KPI_UC3_1, KPI_UC3_2,
KPI_UC3_3,
KPI_UC4_1, KPI_UC4_2

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

19

F_04

In addition to the Processing Capacity the system shall take
into consideration the following factors when deciding on the
deployment location of software components/containers:
Bandwidth, Storage Capacity, Power Availability, Physical
Location of edge device

M

KPI_UC2.1_1,
KPI_UC2.1_2, KPI_UC2.1_4,
KPI_UC2.2_1, KPI_UC2.2_3,
KPI_UC2.2_4, KPI_UC2.2_5,
KPI_UC3_1, KPI_UC3_2,
KPI_UC3_3,
KPI_UC4_1, KPI_UC4_2,
KPI_UC4_4

F_05
NebulOuS should constantly monitor the QoS required by the
different application components (as specified by their SLA)
and apply necessary actions to remediate QoS violations.

M

KPI_UC2.1_4,
KPI_UC2.2_1,
KPI_UC3_3,
KPI_UC3_2,
KPI_UC3_1

F_06
The NebulOuS platform provides infrastructure monitoring
capabilities.

M KPI_UC1.1_1

F_07

The NebulOuS platform provides application components
lifecycle management for all components of the application
regardless of where a component is deployed (cloud, edge, IoT
device). It is able to start, stop components and react to
monitoring alerts (if a component requires restarting for
example).

M KPI_ UC1.1_1

F_08

The NebulOuS platform provides a deployment mechanism
that makes it easy to deploy and manage data processing
pipelines across various resource types (cloud/edge/fog).

M KPI_UC1.1_2

F_09
The NebulOuS platform provides near-real-time
communication between application components.

O KPI_UC2.1_4, KPI_UC2.2_1

F_10
NebulOuS offers a mechanism to partition streaming analysis
jobs between a variable number of workers (similar to Spark
partitioning)

R
KPI_UC2.2_1,
KPI_UC2.2_3,KPI_UC2.2_4

F_11
NebulOuS should offer a mechanism to deploy and invoke
serverless computation functions.

R
KPI_UC2.2_3,
KPI_UC2.2_4,KPI_UC2.2_5

F_12

Monitor and predict downtime of registered resources to
maximize time/cost ratio. NebulOuS should be able to
accommodate applications that prioritize resources with lower
down time, in comparison with the opposite.

R KPI_UC3_1, KPI_UC3_2

F_13

Handle paused or dropped tasks O
KPI_UC3_1,
KPI_UC3_2KPI_UC3_3

F_14
The system shall be able to be started and operated during run-
time with minimal prior training

M KPI_UC4_1, KPI_UC4_2

2.3.2 Non-functional requirements

Table 4: Non-functional System Requirements

ID Description
Req.
Level

KPI ID

NF_01

Fast decisions from NebulOuS, regarding the resources to
allocate and fast execution of these decisions (fast
communication, internal processing to take decisions etc.).

R/M

KPI_UC1.2_1, KPI_UC2.1_4
KPI_UC2.2_4,
KPI_UC2.2_5,
KPI_UC3_1, KPI_UC3_2,
KPI_UC3_3,
KPI_UC4_3

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

20

NF_02
The NebulOuS platform will be able to operate even if available
bandwidth between edge infrastructure and the cloud is limited
or connection is temporarily lost.

R

KPI_UC1.1_7,
KPI_UC3_1, KPI_UC3_2,
KPI_UC3_3
KPI_UC4_1, KPI_UC4_2,
KPI_UC4_5

NF_03

The platform provides secure access to the resources (clouds,
edge resources etc.) (i.e provides user
Identification/Authentication, User/application manager roles
etc.)

M

KPI_UC2.1_2,
KPI_UC2.2_3, KPI_UC2.2_4,
KPI_UC3_1, KPI_UC3_2
KPI_UC3_3,
KPI_UC4_1, KPI_UC4_2

NF_04
NebulOuS platform should be able to deploy applications in a
Raspberry Pi 3 Model B+ or similar ARM architecture.

R KPI_UC2.1_1, KPI_UC2.1_2,

NF_05
Data transferred between edge nodes and between edge nodes
and clouds should be secured

M KPI_UC2.1_1, KPI_UC2.2_4

NF_06
The system provides elasticity capabilities along with the cloud
continuum so HW resources are provisioned or freed
depending on the workload

M KPI_UC2.2_4, KPI_UC2.2_5

NF_07
The system shall be able to cope with a sudden loss of
connection to individual computational units

M KPI_UC4_1, KPI_UC4_5

NF_08
The system shall be able to adapt the maximum load of the
edge devices to the available power supply.

R KPI_UC4_1, KPI_UC4_2

NF_09
The NebulOuS platform provides near-real-time processing of
big data

M/R
KPI_UC2.1_4,
KPI_UC2.2_1, KPI_UC2.2_2,
KPI_UC2.2_3

NF_10

The NebulOuS platform will allow effective scaling of the cloud
resources (in the edge/cloud computing).

R

KPI_UC1.1_3, KPI_UC1.1_5
KPI_UC1.2_1, KPI_UC1.2_2,
KPI_UC1.2_3,
KPI_UC2.1_2,
KPI_UC2.2_4, KPI_UC2.2_5,
KPI_UC3_1, KPI_UC3_2,
KPI_UC3_3, KPI_UC3_5,
KPI_UC4_1, KPI_UC4_4,
KPI_UC4_5

NF_11

The NebulOuS platform ensures data privacy when transferring
data from one node to another.

R

KPI_UC1.2_3,
KPI_UC2.1_1,
KPI_UC2.2_3, KPI_UC2.2_4,
KPI_UC3_1, KPI_UC3_2,
KPI_UC3_

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

21

3. State-of-the-art analysis

3.1 Methodology
Most partners in the project have contributed with their expertise in the state-of-the-art analysis, structured in two parts:

1. First a broad information gathering resulting in an extensive concept map shared among the partners using the
Mindomo1 platform. The purpose is to establish a live infrastructure that can be used by the project team
throughout the project duration and also for the more specific academic state-of-the-art in research to be analysed
in the technical work packages. The results of this continuous analysis will be reported in the thematic deliverables
later.

2. A more focused analysis of technologies and tools necessary for defining the NebulOuS architecture and starting
the implementation. Over the decade of Cloud computing several tools, platforms, and technologies have been
created and many of these could help NebulOuS implement a set of specific features and functionalities. Putting
them in the concept map allowed us to discuss relations and overlap among the different technologies and identify
the most central technologies NebulOuS should integrate or interface.

These technologies most relevant for the NebulOuS architecture are analysed and discussed in the following subsections.
The placement of the technologies according to high-level topics is our best classification, even though some technologies
are relevant to many topics, and there will inevitably be some overlaps among the subsections.

3.2 Analysis

3.2.1 Meta-Operating Systems for the Cloud Continuum

In this section, we aim to provide the current state-of-the-art with respect to the development of a Meta-OS for the Cloud
Continuum. To this end, we first provide an overview of Kubernetes, which is the today’s de-facto cloud service
orchestrator and will play a central role in the NebulOuS platform. Subsequently, we shift our focus to other similar
attempts to develop some form of a Meta-OS for the cloud, such as KubeSphere, ONEedge, Mesosphere DC/OS and
Apache Mesos, as well as the recent EU initiative of SIMPL.

3.2.1.1 Enabling Technologies

Kubernetes

Kubernetes [1] is an open-source framework for managing containerized workloads and services, originally designed by
Google and now maintained by the Cloud Native Computing Foundation (CNCF). It is considered the de facto standard
for deploying and operating containerized applications and is frequently dubbed as the “OS of the Cloud”. Moreover,
with the increasing maturity of edge computing as a part of the cloud continuum, new Kubernetes distributions have been
specifically developed for the edge.

As NebulOuS aims to develop a Meta-OS for the Cloud Computing Continuum, Kubernetes support comes as a natural
choice and forms an important part of the project. A large ecosystem has been built around Kubernetes and the CNCF,
with a plethora of tools that provide several functionalities that are supplementary to each other (such as security,
observability/telemetry, service meshes, container networking, application modelling, etc.). The entire cloud-native
landscape can be found in the corresponding CNCF website2. In this section, we aspire to provide a general overview of
the internal workings of Kubernetes, as well as aspects that are relevant to the project such as application modelling,
scheduling, authentication/authorization, monitoring, etc. We note that multi-cloud and edge support are considered to

1 https://www.mindomo.com
2 https://landscape.cncf.io/

https://www.mindomo.com/
https://landscape.cncf.io/

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

22

be standalone research areas in the scope of the project and, as a result, Kubernetes support for multi-cloud and edge/IoT
environments will be analysed as a part of the respective sections (sections 3.2.2 and 3.2.3).

Kubernetes offers several functionalities to manage containerized workloads. Some of the main ones include:

1. Service discovery and Load Balancing
2. Storage Orchestration
3. Automated rollouts and rollbacks
4. Automatic bin packing
5. Self-Healing
6. Secret and configuration management

A key concept in Kubernetes is that it follows a declarative approach to achieve its goals, meaning that given a description
about the system’s desired state (cluster), the framework tracks any drifts between the desired and current state, and applies
all the necessary actions to ensure consistency between them.

There are two major logical entities in a Kubernetes cluster, which consist of various components.

1. Control Plane
2. Worker Nodes

Both entities support redundancy to ensure High-Availability (HA) requirements.

The Control Plane is where the core administrative components reside:

• API Server: An HTTP REST API Server, which exposes the Kubernetes API. It provides endpoints for all the
resources managed by the framework. Communication between the framework’s components is carried out
through the API.

• etcd: A distributed key-value store, in which the desired and current state of all the cluster’s resources are stored.
When interacting with the API-Server, the etcd database backends the results.

• Controller Manager: The controller monitors the current state of the cluster via calls made to the API Server,
and changes the current state to match the desired state described in the cluster’s declarative configuration.

• Scheduler: Detects pending pods that have not been assigned to a node yet. Performs a series of Scheduling
Policies to find the most suitable node for the pod to be assigned.

• Cloud Controller Manager: Enables linking a Kubernetes cluster with a cloud provider's API, and separates out
the components that interact with that cloud platform from components that only interact with the cluster.

The worker nodes are machines that run Kubernetes workflows and to which pods are assigned. Their core components
are:

• Kubelet: The primary agent responsible for running and monitoring the containers in a Pod. Any event derived
from a container action is propagated to the API Server.

• Kube-Proxy: The component of Kubernetes that handles routing traffic for services within the cluster.

Extensibility
Kubernetes provides an interface for supporting user defined objects to extend the framework’s capabilities. It allows the
creation and registration of Custom Resource Definitions (CRDs) in the API Server, as well as monitoring through
custom Controllers (namely Operators).
This seamless integration with the ecosystem has already enabled the establishment of a marketplace, which supports many
well-known application solutions provided as CRDs, ready to be used and integrated into any Kubernetes cluster.

Application Modelling Approach:
The native approach of describing a Kubernetes object is via a .yaml file. The syntax is related to the Server’s API endpoint
with which this object is associated. After the application of the .yaml file, the cluster’s desired state will be altered through
the respective API call.

Kustomize provides post-processing template-like functionality to structure the native .yaml files.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

23

Helm is a Kubernetes package manager which uses the Chart format. It enables an easier definition, installation, and
upgrade of Kubernetes resources, by containing a collection of files that describe a related set relative to an application.
Charts can be published through a public or private repository and installed directly to a Kubernetes cluster. They can
and are ultimately translated to native .yaml files.
Worth Mentioning: Open Application Model, is an abstraction model describing an application as a specific type, for
instance a Web Service.
The application’s .yaml definition shall declare only the resources that are directly associated with this type of application,
and not the extra resources needed by Kubernetes e.g. to configure the network rules, scale the app etc. This approach
distinguishes between the definition of an application and the Kubernetes’ specific resources that the devops team is
responsible for. KubeVela implements the Open Application Model for Kubernetes, which provides CRDs for abstracting
different kinds of well-established application types.

Authentication-Authorization:
Kubernetes provides out-of-the-box RBAC authorization for communicating with the API Server. It can be backed by:

1. Cluster’s CA signed certificates
2. User Stores
3. File System
4. Token authentication for service accounts

It enables the creation of roles and role bindings for authorising defined roles with various Kubernetes resources.

Computable Resources:
Two types of computable resources supported by Kubernetes:

• CPU: Measured in cpu units. 1 CPU unit equals 1 physical CPU core or 1 virtual core. In a contended
environment, the system will favour processes with higher requested CPUs with more CPU time.

• Memory: Measured in bytes.

When defining a container, a request and a limit parameter of these resources can be applied. The scheduler ensures that,
for each resource type, the sum of the scheduled containers’ requests is supported by the capacity of the node running the
workload. When the container is executed, the kubelet agent passes the specified values to the container runtime interface
(CRI), which applies and enforces those policies based on a defined driver, like a cgroup driver in a linux environment.
During execution, the kubelet constantly monitors and exposes these resources.

Extending Computable Resources:
CPU and Memory are the two resources supported natively by Kubernetes. Custom computable resources can be registered
through the API Server and extend the same logic of request/limit while scheduling a container for deployment. Two
kinds of custom resources can be set as quotas during scheduling:

• Node-Level extended resources
• Cluster-Level extended resources

Monitoring and Metrics:
Out of the box Kubernetes uses cAdvisor (integrated into the Kubelet’s binary). A container monitoring agent, developed
by Google, for exposing container metrics. The following metrics are exposed by cAdvisor:

• CPU
• Memory
• Disc
• Network

The de facto addon monitoring system for Kubernetes is Prometheus. An open-source application with a dimensional
data model, flexible query language, efficient time series database and alerting approach. It can be stacked with Grafana
to provide a more comprehensive depiction of the gathered data through dashboards.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

24

Liveness, Readiness and StartUp Probes:
Kubelet uses liveness probes to check the health of a container. Readiness probes indicate when a container is ready to
accept traffic. Startup probes are used to know when a container application has started. All the above can be provided as
custom commands in a container’s configuration file, which is periodically triggered to monitor a container’s status.

Automatic Optimization:
Kubernetes provides optimization using the following resources:

- Vertical Pod Autoscaler:
Scales up/down the CPU or Memory limit values declared in a pod.
The VPA Recommender tracks the metrics history, OOM events, and the VPA deployment spec and suggests
fair requests. The limits are raised/lowered based on the limits-requests ratio defined in the VPA spec. Scaling up
requires recreation of the pods, so the VPA Updater is responsible for evicting these pods and applying the VPA
Recommender deduced action, depending on the configuration update mode. The VPA Admission Controller
intercepts the redeploying of the pod, injecting the recommended actions.

- Horizontal Pod Autoscaler:
Scales in/out the number of pods based on CPU and Memory utilisation. HPA natively depends on Metrics
Server for monitoring and taking auto-scaling actions. The scaling decision can be based on any custom-provided
metric, by installing appropriate resources in the Kubernetes cluster, like Prometheus, and applying actions
regarding thresholds, events or on time schedules.

- Cluster Autoscaler:
In contrast with the former autoscalers, which operate at the pod level, the cluster autoscaler scales out/in by
adjusting the available number of nodes. It takes action when:

o A Pod is deemed un-schedulable, by the scheduler, because there are not enough nodes in the Pool.
o There are nodes in the cluster that have been underutilised for an extended period of time and their pods

can be placed on other existing nodes.
There are different implementations for the Cluster Autoscaler depending on the infrastructure provider and must be
installed manually to the cluster, as the node creation process is not part of the native container orchestration.

Scheduling
Kubernetes scheduler selects a node for assigning a pod in a 2-step operation:

1. Filtering
2. Scoring

Filtering based on Node constraints is achieved by assigning specific labels or taints to the available nodes.
Pods can be configured to tolerate these taints based on defined toleration conditions, making the node deployable only
for specific Pods. A Pod can imperatively select a node by providing a specified matching label, through a NodeSelector.
The node/pod affinity/anti-affinity filtering is even more expressive than the latter:

• Node affinity functions like the nodeSelector but is more expressive and allows for specifying soft rules.
• Inter-pod affinity/anti-affinity allows constraining of Pods against labels of other Pods, with regard to a node topology

key, e.g. based on the name of the host, or a specific failure zone.
User-made scheduling configurations can be created and injected in various steps of the filtering and scoring process,
allowing the definition of custom logic to the pod assignment operation.

Kubernetes and control theory
Kubernetes adopts the basic notions of control theory3, i.e., the state has two sides to it: desired and actual, and the goal
of active k8s components is to ensure that the desired state is met with the actual state (which means that the desired state
must be stored, and the actual state must be monitored). This is achieved with control loops4, a concept applied widely in

3 https://en.wikipedia.org/wiki/Control_theory
4 https://en.wikipedia.org/wiki/Control_loop

https://en.wikipedia.org/wiki/Control_theory
https://en.wikipedia.org/wiki/Control_loop

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

25

autonomic computing5. These active k8s components are called controllers – they observe changes to the desired and
actual state and ensure the actual state meets the desired state, rinse and repeat (this is known as a closed control loop).
There is also a related term of operators which are controllers responsible for managing domain-specific resources, such
as specific application deployments. There is not a strictly technical difference between controllers and operators, but the
general naming convention is that the core ones (available in vanilla k8s) are called controllers and the extra ones are
called operators – this might be because most of the external ones deal with deployments of single applications (such as
etcd, prometheus) and they act as replacements for human operators (hence the name). All in all, controllers and operators
are just computer programs which observe and react to the state they were programmed to work with.

Kubernetes resources
Kubernetes manages a set of resources in this control loop fashion. Each resource is created with the description of the
desired state (declaration6, intent7). An example of a pre-existing resource kind is a Deployment which declares a
deployment of a single (micro)service which consists of multiple replicas of a set of co-scheduled containers. The main
definitional part of a Deployment is a Pod template. A Pod is another resource that is instantiated because of k8s
controllers processing a Deployment. In fact, the plural – controllers – here is well-deserved because there is yet another
intermediary resource – a ReplicaSet that gets created by the Deployments controller. Only after that, the ReplicaSets
controllers create the necessary pods. The closed control loop ensures that there are as many (and not more) Pods and
ReplicaSets as there should be. We can say that the three resource kinds given here are related and form a clear hierarchy:
a Deployment relates to one or more ReplicaSets and a ReplicaSet to one or more Pods. Thus, the hierarchy is this:

- Deployment
o ReplicaSet

▪ Pod

However, any dependencies are possible between the resources, not necessarily strict hierarchies.

Kubernetes custom resource kinds
Kubernetes allows operators to extend the set of managed resource kinds by letting operators define Custom Resource
Definitions (CRDs)8 which themselves are a kind of managed resource, albeit controller-less – they only affect the operation
of the API server. With new CRDs defined, appropriate custom resources will be accepted by the API server for
management. However, without further work, there is no logic beyond schema validation that applies to these new
resources. A new controller/operator must be run against the API server to be able to react to changes to the resources,
monitor them and enact necessary amendments to ensure the desired state is met (see the previous paragraph on Kubernetes
and control theory). The amendments could range from modifying other resources in k8s API (like the Deployments
controller works) or changing the state of the world (like the kubelet does for Pods – it ensures that locally-scheduled Pods
are running on the node).
(If CRDs are not enough [the linked page lists all their properties, including limitations], then there is a possibility to use
the API aggregation layer9 which means using the same principles as the k8s API but building the custom parts
independently so that they offer all that is necessary at the API level. Using either approach does not preclude using the
controller/operator pattern.)

Examples of interesting meta-level CRD-providing projects
Crossplane [2] provides meta CRDs that allow operators to define supported cloud providers and their services, letting
users create native resources based on these cloud-provider services10. This works at a meta level and requires the actual
providers to exist, such as the AWS provider, and credentials to it11. The k8s user can request e.g., an AWS RDS-backed

5 https://en.wikipedia.org/wiki/Autonomic_computing
6 https://en.wikipedia.org/wiki/Declarative_programming
7 https://datatracker.ietf.org/doc/html/rfc9315
8 https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
9 https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/apiserver-aggregation/
10 https://doc.crds.dev/github.com/crossplane/crossplane@v1.10.1
11 https://docs.crossplane.io/v1.10/getting-started/install-configure/

https://en.wikipedia.org/wiki/Autonomic_computing
https://en.wikipedia.org/wiki/Declarative_programming
https://datatracker.ietf.org/doc/html/rfc9315
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/apiserver-aggregation/
https://doc.crds.dev/github.com/crossplane/crossplane@v1.10.1
https://docs.crossplane.io/v1.10/getting-started/install-configure/

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

26

PostgreSQL instance using the familiar k8s API, and the integration with the rest of the k8-based platform is already
there12.
KubeVela [3] ports the Open Application Model (OAM) to the k8s world13. The OAM [4] is a meta-model which allows
to define components and applicable traits which can then be used to model the actual application. The components and
traits have their implementations which are then realised by KubeVela. This allows for high level of reuse and abstraction
with built-in automation for the actual realisation of „workload” resources such as Pods. Also note the traits pattern is
analogous to the decorator pattern14 from programming. One can utilise both KubeVela and Crossplane together –
KubeVela’s components or traits can be instantiated using Crossplane’s resources.

Possible outcome: Kubernetes resources as the entry point to NebulOuS
NebulOuS could very well be driven using such CRDs in k8s. In fact, even if NebulOuS went with the basis of CAMEL
[5] or TOSCA [6] in our DSL study, these could be remapped/remodelled to work in this model of thinking. Using k8s
custom resources would have two major benefits: first and foremost, the basic working formula would be the same for
existing k8s adopters – create resources and wait for magic to happen. Second, NebulOuS would be able to reuse any other
well-developed resource to create an end-to-end path of instantiation control (vide KubeVela and Crossplane working
together yet not referencing any other explicitly in their implementations). All the information necessary for NebulOuS
to work could be defined in terms of collaborating custom resources, interpreted by NebulOuS controllers.

Multi-Cloud / Multi-Cluster Support:
Every node which is exposed via the internet can be registered in a Kubernetes Cluster, independently of which cloud
provider it was created on, as long as it can communicate with the API Server. This approach assumes that the nodes are
pre-configured in each cloud provider and then registered in the Kubernetes cluster, providing no intelligent automation
and furthermore restricting the cluster autoscaling capabilities, as node creation is not feasible through different cloud
providers by a single Kubernetes cluster. Cloud providers’ specific features are also not leveraged in this kind of
configuration.
A cluster configuration should be as little as possible coupled to a specific cloud provider's requirement, making the
migration to another a trivial process and thus enabling multi-cloud support and avoiding vendor lock-in, while leveraging
all the intelligence provided by Kubernetes. Catering to this need many technologies and platforms have arisen, providing
management of Kubernetes clusters through different providers via a common interface, abstracting as many
configurations as allowed to enable this kind of vendor interoperability.

Different distributions of Kubernetes:
The official Kubernetes distribution, described in the previous section is also known as “upstream Kubernetes” and
abbreviated as k8s. In addition to k8s, there exist many other Kubernetes distributions, providing different flavours with default
configuration options, extending the native components or providing custom CRDs, in favour of supported conventions, like security,
compatibility, monitoring, scaling etc. often backed by a maintainer’s individual managing platform, which leverages and manages the
aforementioned features.
CNCF provides certification of Kubernetes software conformance, ensuring that every vendor’s version of Kubernetes supports the
required APIs, as do open-source community versions. For organisations using Kubernetes, conformance enables interoperability between
all Kubernetes installations, providing flexibility between vendors.

In this context, other distributions have also been developed. One such instance is k3s, which is a certified distribution
developed by Rancher and maintained by the CNCF. K3s is specifically developed for the edge, as such it is described in
the Section 3.2.3 of this deliverable.

12 https://docs.crossplane.io/v1.10/getting-started/provision-infrastructure/
13 https://kubevela.io/docs/platform-engineers/oam/x-definition
14 https://en.wikipedia.org/wiki/Decorator_pattern

https://docs.crossplane.io/v1.10/getting-started/provision-infrastructure/
https://kubevela.io/docs/platform-engineers/oam/x-definition
https://en.wikipedia.org/wiki/Decorator_pattern

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

27

3.2.1.2 Available platforms

In this section, we provide an overview of the main platforms that have been developed as a Cloud OS/Meta-OS, analysing
their approaches to grasp the key takings for own our platform’s design and development. Particular focus is being placed
in the SIMPL platform as an EU initiative to establish cloud-to-edge federations15.

KubeSphere

a) Optimization and Intelligence

Kubesphere [7] does not offer any optimization functionality, as it mainly acts as a frontend to Kubernetes. Therefore,
although it allows the creation of a new instance of an application, it will not perform any actions to lower the cost of
implementing a processing topology.

b) Application modelling approach

Kubesphere offers the opportunity to install applications using both helm charts and application templates. Application
templates allow for a visual construction of applications and can be retrieved from the Kubesphere application store. To
create an application template, first a helm chart of the application should be uploaded to Kubesphere. Subsequently, the
application can be deployed.

c) Deployment orchestration

Kubesphere builds on solid Kubernetes technology, and is also an open-source product. It features a modern user interface,
but also allows a command line interface to kubectl. Kubesphere provides a visualization of the resource consumption
allowing DevOps to plan cloud application usage. Kubesphere features integration with other Kubernetes-related
technologies such as OpenPitrix [8] and KubeEdge [9], featuring an application store and Edge node management
respectively.
Unfortunately, as a product-oriented towards cloud usage Kubesphere still leaves some to be desired. Namely, the
installation process is not always as smooth as expected. Moreover, no optimization or scaling opportunities are exploited
within the UI. In addition, Kubesphere requires 2 cores and 4GB of RAM per node16, which may not always be available.

ONEedge

ONEedge [10] is an innovation project launched by OpenNebula in 2019 under the Horizon 2020 SME Instrument
programme. It was successfully finished on the 31st of March 2022 and basically enhanced OpenNebula’s cloud solution
[11] with new features on multi-cloud computing and with an objective to offer a vendor-neutral platform for corporate
users wishing to combine resources from public clouds and edge providers. This platform called Edgify claims to offer
industrial readiness and maturity in a rapidly growing edge computing market. Although, Edgify is not branded as a meta-
operating system for the cloud computing continuum, it is very relevant as it provides a vendor-neutral, application-
agnostic and automated software-defined platform for managing resources in the cloud computing continuum. It enables
the building of private edge computing platforms based on resources leased on demand in close proximity to the
application users and devices. Edgify builds a hosted cloud, using a fully managed OpenNebula front-end, to automatically
deploy as a service a distributed edge multi-cloud environment using resources from on-premises locations, edge and cloud

15 https://digital-strategy.ec.europa.eu/en/news/simpl-cloud-edge-federations-and-data-spaces-made-simple
16 https://kubesphere.io/docs/v3.3/quick-start/all-in-one-on-linux/

https://digital-strategy.ec.europa.eu/en/news/simpl-cloud-edge-federations-and-data-spaces-made-simple
https://kubesphere.io/docs/v3.3/quick-start/all-in-one-on-linux/

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

28

resources from AWS17, Google Cloud18, Digital Ocean19, Vultr20 and Equinix21. It offers SLAs over the optimized
configuration resources instances combined that may involve VMs, containers (as it encompasses centralized k8s clusters
management) and microVMs for serverless deployments. Among its noteworthy use cases is the support of low latency
edge applications for Telefonica’s edge computing CORD (Central Office Re-architected as a Datacenter) and its
implementation of a distributed Greengrass Edge Cloud leveraging the features of AWS IoT Greengrass22. In comparison
to NebulOuS, it is focused only on the integration of infrastructural multi-cloud and edge resources, without the support
for flexible preferences expression for the formulation of cloud continuum environments in an ad-hoc way. Moreover, it
doesn’t support the advanced and optimized management of application components and data that NebulOus envisions
offering.

Mesosphere DC/OS and Apache Mesos

Finally, there is one platform worth mentioning despite the fact it is no longer being offered. At the time, it was a very
promising solution for an OS-like approach to decentralised, cloud-native applications – the DC/OS (Distributed Cloud
Operating System) Mesosphere Platform [12] supported by D2iQ and based on the Apache Mesos orchestrator, the
“distributed systems kernel”. [13] The end of Mesosphere DC/OS in October 2021 was caused by the enormous growth
of the popularity of Mesos’s competitor – Kubernetes. The D2iQ has decided that continuing on Mesos is a no-go and has
switched to offering solely the D2iQ Enterprise Kubernetes Platform (DKP). [14] A notable benefit of using Mesos is the
two-level scheduling which at first considers a pool of all resources available to all frameworks provided in the particular
installation and then relies on the scheduling of the framework itself. Typical frameworks include Apache Hadoop, Apache
Spark and Apache Kafka. Mesos is written in C++ and relies on Apache Zookeeper to provide high availability, and Apache
Marathon to provide container orchestration. Mesos has not seen a release since November 2020 (with the planned release
cycle of one every 3 months) due to the dropout of the major contributor – D2iQ. Similarly, Marathon has not seen a
release since September 2019. DC/OS was enhancing the Mesos ecosystem with additional components, e.g. for advanced
scheduling (Metronome) and a service catalogue for readily-installable applications.rlless

SIMPL - Smart Middleware Platform

SIMPL is the implementation of a procurement for developing a Smart Middleware Platform (SMP) that will enable cloud-
to-edge federations and support interoperability between existing and new European data spaces [15].
The main challenges that the project addresses are:

• Interconnect data, applications, services and infrastructure across data spaces with secure, resilient, energy
efficient, and accessible cloud-to-edge capabilities

• Make data more accessible to the public and enable processing through shared tools and assets, which are
discovered and accessed via the SIMPL platform

• Apply a secured business model with the use of SLAs, licenses, contracts and invoicing to the available resources,
that is constantly monitored and evaluated

A data space can be considered as an ecosystem of data sharing services within a particular industry sector. Data spaces
consist of a set of distributed actors where each holds a piece of data in a decentralized fashion.
SIMPL’s architecture focuses primarily on data spaces, considering them as the main logical topology component. The
overall architecture consists of the following key points [16]:

17 https://aws.amazon.com/
18 https://cloud.google.com/
19 https://www.digitalocean.com/
20 https://www.vultr.com/
21 https://www.equinix.com/
22 https://aws.amazon.com/greengrass/

https://aws.amazon.com/
https://cloud.google.com/
https://www.digitalocean.com/
https://www.vultr.com/
https://www.equinix.com/
https://aws.amazon.com/greengrass/

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

29

• The middleware provides common services on which data spaces can be built. SMP components span across four
different actor types:

o Data Provider
o Infrastructure Provider
o Application Provider
o End User

Enabling them to securely and efficiently share and use their respective provided resources (data, application and
infrastructure)

• Data Space specific services add the ontologies, standards, or quality enforcements needed by the data space
• Interoperability between data spaces enabled through SMP

Inside a data space, besides the aforementioned actors, also exist the following centralized components that enable the
creation of the data-centered ecosystem [16]:

• Data, Infrastructure and Application catalogues which provide the cataloguing service for end users to discover
shared resources

• Vocabulary providers which provide the definition of metadata representation, vocabularies and ontologies.
• Identity authorities manage the identities of the data space participants and provide proofs that other participants

can use for authentication and authorization.

Through the federated ecosystem of data spaces, the following entities with their respective role can be distinguished:

• Data providers hold valuable data assets that they share with the SMP ecosystem
• Infrastructure providers allow users to run applications on their infrastructure (e.g., VMs, Containers, Serverless)
• Application providers share their applications and algorithms towards interested end users
• End users consume data, applications, and infrastructure
• Data space governance is the entity responsible for defining policies of each data space that all the actors should

comply with in order to participate.

Application wise SIMPL is a software agent with a decentralized model, in which users are responsible for provisioning
their own resources, as well as exposing them through the agent’s interface. The agents communicate via peer-to-peer
protocols and enable the exposure and utilization of each actor’s resources to the ecosystem.
In this way SIMPL is conceived as a middleware, which exists between the Infrastructure and Data layers, but without tight
coupling to them. [17].

To further distinguish SIMPL’s functionalities, the platform is divided in 4 different layers [16]:
• Data Service Layer: Through this layer users can provide, discover and consume available data and applications

through the accessed data spaces. Native tools will also ship pre-installed for common functions like visualization,
anonymization and analytics. SIMPL supported data orchestration and distributed execution capabilities that
allow actors to pool together data from different sources and manage partial sets of data across infrastructure
providers when executing distributed applications.
The combination of these capabilities allows end users to gather data from different providers and spread it over
distributed infrastructure where data is fed into an application.

• Infrastructure Layer: Through this layer users can provide, discover and consume available infrastructure as well
as Platform-as-a-Service services through the accessed data spaces.
SIMPL provides infrastructure orchestration for automating the provisioning of the infrastructure services to
enable the various infrastructure providers to interconnect and get exposed via a standard interface. Distributed
execution is also supported, allowing users to deploy applications and execute computations closer to the data.

• Administration Layer: The administration layer vertically spans the data and infrastructure layer.
It provides services that are required for the well-functioning of those layers, as well as the SMP as a whole, by
enabling operations like federation management, security, networking, auditing, access control and trust,
contracts, monitoring and reporting.

• Governance Layer: Finally, the governance layer will provide help and support features, regarding the overall
platform.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

30

Among the business requirements that are bound to be implemented by the SIMPL platform are the following, categorized
by field of interest [18]:

Deployment:

• Authorized users shall be able to run the models/algorithms through the SMP in their chosen IT infrastructure
• The SMP shall enable the orchestration across multiple providers
• The SMP shall enable state-of-the-art data management between cloud and edge, enabling seamless ultra-fast data

workload balancing between them.
• The SMP shall seamlessly accept applications/services made available via the marketplace

Scaling:

• The SMP shall automatically scale up & down specific services usage (e.g., storage, VM or HPC) without previous
user requests up to the limits defined by the provider.

Infrastructure:
• Infrastructure is advertised in a data space by the SMP Agent and registered across the whole data space federation.
• The middleware shall offer an abstraction layer to give access to (edge, cloud) infrastructure services (computing

& storage services)

SLAs:
• SLAs decided between actors should be monitored, evaluated and actions taken.
• Different performance tiers shall be suggested by the SMP, where each level provides a certain availability, data

throughput, latency, turnaround time and other quality aspects as needed, which the
infrastructure/application/data providers shall adhere to.

Monitoring:
• While the infrastructure is utilized by the end user, the consumption is monitored. This consumption includes

metrics such as CPU usage, memory usage or compute time.
• The infrastructure usage, Performance monitoring, QoS metric, and Energy metrics components supply the end

user with a view of its consumption.
• The middleware shall be able to monitor the SMP performance (both technical and environmental) and ensure

performance and quality of service in the execution of applications across multiple cloud and edge providers.

3.2.2 Multi-cloud platforms

As multi-cloud operation is a main objective of our project and an end goal for the NebulOuS architecture, we devote this
section to analyse the current state-of-the-art. We mainly focus on the current state-of-the-art platforms and tools that can
be used to technically realize this goal, as well as NebulOuS’ relation to previous relevant EU research projects (i.e.,
PrestoCloud).

Rancher

 Rancher [19] is an open-source Kubernetes managing platform running on top of Kubernetes offering a multi-cloud,
multi-cluster solution. It can be used to provision clusters and nodes with k3s or RKE2, on many different infrastructure
providers, as well as manage cloud-hosted Kubernetes instances, like GKE, EKS etc. Clusters running k8s can also be
registered in the Rancher platform. It was originally developed by Rancher, which was later acquired by SUSE.

A brief analysis of the RKE2 distribution:
RKE2 is one of the two Kubernetes distributions backing the Rancher platform. As a CNCF-certified distribution it
provides all the features and intelligence that the upstream Kubernetes version supports, including YAML files, charts and

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

31

templates for defining the workloads and the desired state, autoscaling options provided by native pod autoscalers, security
policies etc.

This distribution comes in a single binary pack extending Kubernetes with custom features. Some of the extensions that
are provided by RKE2 are:

• A helm-controller which auto detects helm charts in the file system and executes them.
• CoreDNS for providing DNS features to the cluster..
• DNSCache in node level
• Nginx-Ingress Controller
• Canal as the default CNI

 RKE2 focuses mainly on security. It is configured to pass CIS Kubernetes benchmark scans with minimal effort and
configuration, enables FIPS 140-2 compliance for cryptographic modules and uses trivy (a versatile security scanner) to
scan regularly for common vulnerabilities and exposures on the images used in the cluster. This is achieved by providing
the cluster with default PodSecurity and NetworkSecurity policies.

Rancher supports the deployment of each of these distributions according to the user's choice. Furthermore, the platform
provides a powerful GUI for abstracting many of Kubernetes operations and workflows like deployments, services,
ingresses, pod autoscalers, storageClasses, configMaps, persistentVolumes, installations of 3rd party apps through a
marketplace with YAML and helm charts etc.
Ultimately the GUI provides a user-friendly way to utilise most of Kubernetes’ features, while also giving the option to use
kubectl commands for managing through a CLI, or by editing the resource’s YAML files directly. Search and name-space
filtering is also available through the GUI. Additionally, to manage Kubernetes’ components, a default dashboard is
provided for monitoring the resources used by each managed cluster in terms of nodes, pods, memory and CPU usage,
events and health.

Multi-Cloud/Multi-Cluster support
The cluster management and provision are backed by Cluster API (CAPI), a Kubernetes project which provides
infrastructure drivers for most cloud providers. Rancher is integrated natively with Cluster API and provides an abstraction
of the implementation through its own CRDs.

Rancher can manage the lifecycle of a cluster as well as the nodes that comprise it. It uses CRDs for defining the cluster
itself (Cluster CRD), as well as resources for managing the nodes, namely machine and machine pools.
These operations, backed up by Cluster API internal implementation, leverage the Kubernetes controlling element,
ensuring that a desired set of Machines will always run on a registered cluster. Rancher comes with many predefined
drivers for deploying a hosted cluster to a cloud provider. The most popular ones consist of:

• Amazon EKS
• Azure AKS
• Google GKE
• Linode LKE
• Alibaba ACK

Users can also provide their own driver to extend those natively supported by Rancher, by implementing their own cluster
interface.
As mentioned above the Machine CRDs are used to provision nodes in a cloud provider. Rancher natively provides
infrastructure drivers for most cloud or on-prem instances machines (bare-metal and VMs) like:

• Amazon EC2
• Azure
• Google
• DigitalOcean
• Linode
• OpenStack
• vSphere

https://github.com/aquasecurity/trivy

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

32

Each node corresponds to a Machine object and is managed internally by Cluster API, which is in turn abstracted by
Rancher. Machine Pools can be configured for managing nodes (machines) with the same characteristics. The GUI
provides an option to scale those Machine Pools as needed, by providing or destroying nodes automatically in the chosen
infrastructure provider. Cloud provider-specific credentials can be stored in Rancher to conveniently reuse across different
cluster configurations.

Cluster Autoscaling through Rancher’s autoscaler.

As mentioned in the upstream Kubernetes section a cluster autoscaler is supported additionally to the native
PodAutoscalers. In the case of Rancher, the cluster autoscaler implementation can be deployed to automatically scale
in/out the Machine Pool resources, in which the number of available nodes is defined.
Due to the Node drivers supported, the platform is aware of how to create and destroy nodes in its managed clusters,
either be a Cloud Provider or an On-Premise Hypervisor.
The autoscaler monitors the node’s capacity and scales in/out based on the utilisation of resources like memory, CPU,
GPU and max pods.

Rancher native extensions and integrations with other Kubernetes projects:
Some specific tools are also integrated directly with Rancher, enabling management through the UI and installation from
the provided application marketplace. Following are the main concerns of what problems these tools try to solve:

Monitoring:
A monitoring stack is provided and can be deployed to any cluster, which consists of Prometheus for scraping and storing
metrics, Alert Manager for notifying on events based on those metrics and Grafana for visualising and querying the metrics.

Multi-cluster deployments with GitOps through Rancher’s Fleet:
Fleet is an open-source Kubernetes project developed by Rancher. It enables the deployment of applications to multiple
clusters from a single management point. Rancher’s multi-cluster capabilities integrate seamlessly with Fleet, combining
the multi-cluster management interface from Rancher server with the multi-cluster deployment features of Fleet.
Users can leverage continuous delivery to deploy applications to the Kubernetes clusters without any manual operation by
following GitOps practices. Meaning that the only source of truth for an application’s state is a tracked Git repository.
Fleet integrates with Git, tracks change and automatically rolls any updates that occur in the remote repository to the
managed clusters. Furthermore, managed clusters can be grouped and tagged for fine-grained selection during the
deployment of workloads.

Security:
Rancher extends the RBAC functionality of Kubernetes to enforce control policies to the platform’s CRDs. Once the user
logs in to Rancher, their access rights within the system are determined by global permissions, as well as namespaces-specific
project roles. This feature enables a federated Access Control policy, spanning through multiple clusters and different
cluster-specific namespaces.

Kubernetes enabled VM provisioning with Harvester:
 Harvester [20] is an open-source hyper-converged infrastructure (HCI) software built on Kubernetes. Harvester is installed
on bare metal servers and provides integrated virtualization and distributed storage capabilities. Although Harvester
operates using Kubernetes, this dependency is concealed in its functionality, requiring zero Kubernetes knowledge from
the user.
Harvester uses a declarative way to define and provision VMs. It is internally powered by KubeVirt, [21], a CNCF project
that provides virtual machine templating and provisioning through the Kubernetes API. It integrates seamlessly with
Rancher and once installed, it can be operated through Rancher’s interface. The combination of the two platforms can
enable on-premises cluster provisioning to VMs created and managed by Harvester, while leveraging all Rancher’s
capabilities like autoscaling the VM instances or managing through Machine Pools.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

33

PrEstoCloud

PrEstoCloud [22] is a Horizon 2020 project, which aimed as well to take advantage of combined cloud and edge resources,
using a model-driven engineering approach. However, Nebulous significantly surpasses Prestocloud in terms of promised
functionality.
Firstly, Nebulous envisages a meticulous MultiCriteria Decision Making (MCDM) approach to select resources and
advertise resources through fog service brokerage while Prestocloud targeted the selection of processing resources based
on considering cost, latency and bias through a weighted linear function. While Prestocloud only considered the definition
of resource constraints, Nebulous also adds regulatory, security and privacy constraints within its scope. The targeted
MCDM approach to consider requirements and preferences related to the discovery of services and resources, coupled
with the option to define advanced constraints, greatly enhances the programmability of applications deployed through
the new Nebulous platform. By contrast, the constraints of Prestocloud were only coarsely defined, and the placement
criteria were evaluated using a much simpler approach.

Relating to the utilities offered to the application by the platform, the encapsulation of its SLAs in smart contracts is a
feature uniquely targeted by Nebulous. To compare, PrEstoCloud offered SLA support, using SLAs expressed in JSON
format and transmitted to interested components using conventional encryption techniques (at best).
Moreover, concerning the detection of SLA violations and the automatic application placement reconfiguration, Nebulous
will employ distributed complex event processing, capable of being executed at the edge. This is a major improvement
over Prestocloud which offered the equivalent functionality through the SDM component which could only process events
in a centralized fashion. To aid the detection of SLAs (and their prediction), Nebulous will utilize AI algorithms. In
Prestocloud, the detection of SLAs considered the use only of current metric values, and the prediction of workload-
related metrics (but not prediction of SLAs).

Nebulous will also develop the ORDGE mechanism which in turn entails the development of semantic models (able to
capture higher-level organizational policies) and advanced semantic processing (able to detect contradiction or
subsumption between application provisioning policies or preferences and the compliance of lower-level application
provisioning requirements with higher-level organizational policies (Task 3.2). In Prestocloud, the definition and usage of
semantic technologies was significantly more limited. Moreover, the usage of digital twins will be explored in Nebulous as
part of Task 4.6 whereas Prestocloud did not focus on this area.
Finally, significant additions which are only featured by Nebulous include the addition of the Scheduling Abstraction
Layer (SAL) which will be extended to consider extra heterogeneous resources, transcription of an application description
from textual form to a visual representation, and fault-tolerant monitoring probes.

3.2.3 Edge/IoT Platforms

This section focuses on the Edge/IoT side of the continuum, presenting relevant platforms. In this respect, we provide an
overview of the technical state-of-the-art, presenting both the open-source tools (mostly related to the Kubernetes
ecosystem) and available commercial platforms.

When considering the edge, we mainly refer to the transition from the cloud to the deployment of resources and services
closer to the end-users. The overall goal is to bring computing resources and services closer to the edge devices, either by
deploying these resources in regional data centres or by deploying them directly at the edge. Consequently, and by design,
the edge infrastructure is extremely distributed to cover all the users that are by nature distributed over the coverage area.
This complex distribution mandates the creation of edge platforms to automate the management of these distributed
resources. edge platforms must be designed to handle the challenges of managing and orchestrating computing resources
in a highly distributed environment. These challenges include managing and allocating resources in real time, handling
network latencies and failures, and ensuring security and data privacy.

StarlingX [23] is one of these Edge platforms that provides a comprehensive set of tools and components for deploying,
managing, and scaling edge computing resources. It is designed to attach resources from the different cloud providers
and private providers using OpenStack, and Kubernetes cluster. However, the autoscaling decisions is limited to what is

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

34

provided using Kubernetes and OpenStack. As a result, StarlingX only supports application-level autoscaling by for
example assigning more pods to the replica set and can't decide to deploy a new VM based on a surge in traffic.

A similar approach was taken by K0s [24], a Kubernetes distribution designed for simplicity and ease of use. It aims to
provide a fast and lightweight solution for deploying and managing containers in both cloud and edge computing
environments. One of the main goals achieved by K0s is lightness such that it can run on very limited nodes (as low as 1
CPU core and 1GB of RAM) like those expected to be running on the edge. It uses Prometheus as its default monitoring
system to collect monitoring logs about resource utilization, application performance, and network traffic. However, the
node addition to the cluster is done manually. In addition, K0s is considered an Immature project and may still be
undergoing changes and improvements, which could result in bugs or other issues.

OpenYurt [25] is a CNCF-hosted project that provides an extension for Kubernetes to support edge computing. Similar
to K0S, OpenYurt is considered an early project (created in 2020). However, It extends the functionality of Kubernetes to
provide an edge cluster management solution that can run on various edge devices and enable seamless integration with
centralized Kubernetes clusters. It categorizes the nodes in different "nodepool" and it's capable of migrating these nodes
between these to give an impression of resource pool autoscaling, but in reality, no new nodes are added to the cluster.

Portainer [26] is lightweight and open-source container management platform. It aims at accelerating container technology
adoption by reducing operational complexity and addressing the security challenges of running containers. Portainer
defines itself as a universal platform based on the fact that it supports multi-cloud usage (including AWS, Azure, GCP,
Linode, etc.), It also supports on-premises resources including edge nodes (supports ArmV7 and Armv8). The platform
can coexist with several container management orchestrators like Docker Swarm, Nomad, and Kubernetes. As a result,
ensuring a deployment that cannot be locked into a single technology or vendor.

However, since Portainer lacks a lot of important features, it heavily depends on other cloud technologies to implement
these features, for example it depends completely on Kubernetes and Nomad to manage containers autoscaling and
consequently a user of Portainer will be bounded to use only one of this technology as the autoscaling rules are not
transferable from one technology to another. Consequently, we can argue the claim of independence from a single
technology.

In a similar fashion to that of Portainer, Mirantis Kubernetes Engine (MKE) is a container orchestration engine that
similarly aims at reducing container management complexity by creating a platform for deploying containers at scale [27].
It supports Kubernetes as well as Docker Swarm, provides a full stack of open-source technologies like calcio and nginx.
However, unlike Portainer, MKE attempts at hiding the underlying infrastructure and keeping the focus on the
application. It reserves the infrastructure management to another Mirantis software's like Lens for the monitoring of the
infrastructure and ZerOps for automatic reconfiguration and autoscaling for the applications containers. However, this
management is heavily dependent on containers and cannot control physical resources.

In NebulOuS we aim at creating a holistic solution for applications spanning all the layers of on-demand computing, we
plan on having this solution not only defining rules for autoscaling the containers of the application, but we will extend
that with autoscaling the infrastructure based on boundaries defined by the application developers and system
administrators. Our solution will provide support for all the commonly used virtualization techniques, and will provide
translators to deploy the same application definition in all the supported infrastructures and technologies.

KubeEdge

KubeEdge [9] is a Kubernetes-based open-source software aiming to facilitate the orchestration of applications using the
edge, and the management of devices at the edge.
The edge part of KubeEdge allows the execution of business logic at the edge, and offers - through EdgeMesh - simple
service discovery and traffic proxying functions. Device properties are maintained in a database, and can be set or updated
dynamically based on the (desired or current) status of the device. The cloud part of KubeEdge is mainly oriented towards
the administration of edge devices and applications on the edge. As KubeEdge is based on Kubernetes, it can benefit from
the monitoring and management tools which have been developed for this platform.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

35

Regarding the deployment of applications themselves, KubeEdge offers an MQTT broker which may be used by the
application in addition to HTTP calls. Applications need to be containerized in order to benefit from KubeEdge, which
then allows the DevOps to select the execution location (edge or cloud). Examples of KubeEdge applications can be found
in the GitHub repository of the project23.
However, it should be mentioned that the setup of KubeEdge is not trivial, and the documentation could certainly be
improved. Moreover, integration with the serverless paradigm is not pursued, missing an opportunity to be strategically
placed in the market.

K3s

K3s is a certified Kubernetes distribution developed by Rancher and now maintained by CNCF. k3s focuses on limiting
the resources needed to run Kubernetes on a single node. This distribution is a refined version of k8s, which has removed
a lot of “bloat” code, while maintaining the core functions intact, allowing the limit of resources while providing high
availability, scalability, security, and other full-blown24 k8s benefits.

Depending on the version, the single binary file can range from under 40MB to 100MB in size and run on less than
512MB of RAM. Taking into consideration the redundancy needed for HA, a kubernetes cluster can be resource intensive.
In many cases, especially when deploying at the edge, the k8s resource requirements can be prohibitive. This makes k3s a
great choice for the edge, without ruling out the use in cloud or on-prem environments.

This differentiation of resource usage comes from the fact that k3s contains fewer dependencies, cloud provider
integrations, add-ons, and other components that are not absolutely necessary for installing and running Kubernetes.
The conventions offered are a predefined CNI (Flannel25) for pod networking (L2 overlaid on a L3 network) and an
embedded SqlLite database replacing the default etcd, containerd as CRI, Traefik Proxy as ingress controller and manifests
to install non-pre-packaged core components. Of course, these components can be replaced with any other Kubernetes-
backed technology and are only provided for convention.
The main advantages of k3s are:

• Lightweight: All of the components run together as a single process, packed in a single binary.
• Open Source
• Certified Kubernetes Distribution, ensuring compatibility and interoperability with different vendors.
• Easier and faster installation and deployment.
• Supports low-resource environments
• Flexibility in database choice, through Kine, an etcdshim translating the native Kubernetes API etcd calls to

different database interfaces

Disadvantages:

• Does not ship with a distributed database. So, to ensure HA, an external distributed DB must be configured to
use with the k3s servers.

• A lot of components do not come out of the box but need to be imported. This can lead to a missing chain in
dependencies, when trying to install an external application that depends on a native k8s component.

As an official Kubernetes distribution all the features and intelligence described in the upstream Kubernetes section are
supported.

AWS IoT Greengrass
AWS IoT Greengrass [28] is an open-source Internet of Things (IoT) edge runtime for developing complex IoT applications
that run between IoT devices the edge and the cloud. The project offers a set of reusable components to build these

23 https://github.com/kubeedge/kubeedge

24 https://www.cloudzero.com/blog/kubernetes-architecture
25 https://github.com/flannel-io/flannel

https://github.com/kubeedge/kubeedge
https://www.cloudzero.com/blog/kubernetes-architecture
https://github.com/flannel-io/flannel

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

36

applications: databases (InfluxDB, Postgresql), communication protocols (Bluetooth, LoRaWAN, MQTT, Modbus TCP),
Node-Red programming environment, etc… It also offers the possibility to execute Lambda functions that make use of
device resources (sensors, actuators, serial-ports, etc…). Finally, it offers virtualization capabilities through the deployment
and management of Docker containers. All these components can be executed on Greengrass core devices with ARM or
x86 architectures running Windows and Linux-based distributions.
Greengrass core devices can work as hubs for IoT devices running the AWS IoT Devices SDK. Using secured local
communications, the IoT devices can transmit data to the core devices for their analysis, and storage. In turn, Greengrass
core devices can trigger actions to be executed by these IoT devices. Thus, working totally isolated from the cloud. On top
of that, policies for processing data locally and/or sending it to the AWS Cloud services can be defined. AWS IoT Cloud
Service is a paid cloud service that allows users to manage their IoT Greengrass core devices and the applications they are
running.

Azure IoT Edge
Similarly, Microsoft leads the development of the Azure IoT Edge [29], a device-focused open-source runtime that enables
to deploy and monitor IoT application logic using Docker containers called IoT Edge modules. Some popular software
solutions are already containerized to run on top of the runtime (SQLserver, Redis, Node-Red, etc…) and the user can
bring its own application containers. Azure IoT Edge runtime can run on Windows and Linux machines. Also, a paid
web control panel (Azure IoT Central) is provided to allow management: to prepare the workload to be executed by
devices, send it to the devices and monitor its execution.

3.2.4 Serverless
Serverless computing is a seemingly oxymoronic term that describes the use of computing resources without managing
details related to the lower levels of the stack, such as the operating system and actual servers (be them virtual or physical)
[30], [31]. The use of serverless computing is growing and is predicted to finally become the dominant deployment model.
Thus, it is vital for a project like NebulOuS to consider support for serverless computing offers.

The most common application of serverless computing is the Function-as-a-Service (FaaS) approach to computing where
the programmer (FaaS’s end user) is presented with an interface to deploy a piece of software (a function) without the
need to worry about the details of the execution environment – no resource reservation nor preplanning is needed
(although service providers might offer discounts for upfront resource reservations). This substantially simplifies the
deployment cycle for developers.

A more general serverless computing definition includes also other models of services, which nowadays include: Backend-
as-a-Service (BaaS), Platform-as-a-Service (PaaS) and Container-as-a-Service (CaaS). By the general definition, also the
Software-as-a-Service (SaaS) fits the bill but it is not common to see it mentioned as a serverless solution, possibly because
the serverless term is targeted to programmers as end users, not general software users as is the case in SaaS.

PaaS can be viewed as an early iteration of FaaS and indeed the two approaches share a common concept of an interface
to deploy a piece of code. The distinction between the two is that the FaaS model goes further on abstracting away the
underlying platform, providing multiple event triggers on when the function in FaaS would be run vs always-running PaaS
applications. This allows FaaS deployments to scale to zero and avoid all costs related to the deployed service as long as no
triggers are hit. Typical triggers include: HTTP-based requests, messages in a message queue or time-based schedule. One
downside of FaaS is that it does not follow a typical programming model, instead the function is run in a service-provider-
specific context. This model also affects the way that data is managed, enforcing cloud-native best practices: all data must
be stored externally to the application (function), in a separate, dedicated, persistent storage service.

BaaS solutions complement FaaS in providing these services that are not normally feasible with FaaS. This way the user is
still saved from managing the servers, operating systems and specialised software on them. Instead, the user is able to
request API endpoints to be available and to utilise the service provider’s storage services. Examples of BaaS offerings
include SQL and NoSQL databases, message queues, memory stores and alike.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

37

Finally, serverless CaaS is an emerging trend that allows for more flexibility and less lock-in while reaping the benefits of
FaaS. Serverless take at CaaS tries to balance out the advantages and disadvantages of non-serverless Infrastructure-as-a-
Service (IaaS) cloud offerings (which allow a lot of flexibility) and FaaS which, in comparison, has severe limitations as to
the way the software is deployed. By abstracting away the container orchestration and all the layers below it, serverless
CaaS allows the programmer to focus on delivering the runtime in addition to the application without worrying about the
underlying servers and their supporting software. It is worth noting here that CaaS has two meanings, with materials
before near the end of 2017 using the term “CaaS” only to mean non-serverless Kubernetes-as-a-Service offerings which
manage the control plane of Kubernetes but still base themselves on IaaS and server management, without the abstraction
necessary for the serverless approach. The latest serverless CaaS offerings of the three major cloud providers were made
available in 2021 and keep evolving.

By the very notion of serverless, it is not a primary deployment option considered on-premises since the majority of benefits
come from yielding control to the service provider which is the local operator in case of an on-premise deployment. Despite
that, on-premise serverless solutions are growing in popularity. One reason is that, especially considering free and open
source solutions, serverless might be one of the options for smaller service providers which rely on such software to deliver
their services. Another reason is that programmers liked the new model of computing and are looking for solutions which
would deliver a similar experience regardless of whether the target is in the cloud or on-premises. Furthermore, the
situation is augmented by the seemingly synergic interaction between serverless and containerisation trends.

The already-established Kubernetes ecosystem offers multiple solutions for FaaS (which is more like CaaS due to the
underlying container technology), the most prominent one being Knative [32]. Service providers are also offering hybrid
solutions which involve FaaS on-premises, major example being Google Anthos [33] which offers an on-premise FaaS with
Knative. Apart from Knative, other popular Kubernetes-native solutions include OpenFaaS [34], Fission [35] and Camel-
K [36]. A notable Kubernetes-compatible, yet not Kubernetes-dependent FaaS solution is Apache OpenWhisk [37]. Due
to the widespread adoption among different environments, Knative looks most promising as a future-proof solution but
all mentioned solutions have solid user bases based on github statistics. There are also some newer solutions which do not
directly name themselves serverless or FaaS, yet they share the basic characteristics and are thus counted in as serverless
solutions in the cloud-native solutions landscape by CNCF. A notable example of such solution is the combination of
KEDA (Kubernetes-based Event Driven Autoscaling) [38] and dapr (a portable, event-driven runtime for building
distributed applications across cloud and edge) [39]. The OpenFunction project [40], related to Kubesphere mentioned
earlier in this SotA, combines Knative, KEDA and dapr (among others) to deliver an opinionated FaaS stack.[41]

3.2.5 Resource Management

Resource management in computer science refers to the process of allocating, monitoring, and controlling the underlying
resources. These resources can consist of the computing power calculated as the number of cores and the size of the
memory, the storage capacity measured by the disk space, and network resources measured by the assigned bandwidth.
Typically, the management of resources is done through a combination of manual and automated processes. However,
with the current insurgence of automation, manual management is falling in popularity for more advanced automated
tools that provide a full cycle of allocating, monitoring, detecting, decision-making, and finally updating.

In cloud computing, although we can practically consider the attainability of unlimited resources, the management of the
provisioned resources remains a topic of extreme importance. This can be attributed to the pay-as-you-go model which
allows one to pay only for the used resources as function of the usage time. As a result, an optimized approach in resource
management should enable system administrators to ensure the operation of the application within an agreeable
performance while keeping the cloud provider bill as low as possible.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

38

Consequently, in cloud computing, resource management is a cost/performance trade-off that attempts to reduce the cost
of operation while maintaining the performance calculated as function of metrics decided by the application developer
and the Quality-of-Experience (QoE) of the users.

In contrast, for edge computing and likely so for on-premises infrastructures, resource management aims at solving another
optimization problem. For instance, the resources are owned and not rented which abolishes the cost from the
optimization problem. However, the resources are limited which dictactes that resources are managed effectively through
scheduling and consolidation to achieve the maximum resource utilization and, therefore, the highest possible
performance within such resource limitation.

Elements of Resource Management

As an initial conclusion, we can see that resource management is not a one-size-fits-all type of a problem, but in contrast,
an optimization problem derived from the underlying infrastructure and the application requirements. In the state of the
art of resource management, authors have chosen to target different elements of resource management, mentioning some:

(1) Infrastructure type: several infrastructures can fall under the definition of on-demand computing, in the state of
the art we can see resource management was addressed based on the type of the infrastructure like cloud
computing [42] [43], edge computing [44], fog computing [45], grid computing [46], etc…

(2) Application model: Application running on top of the on-demand computing infrastructures cover a wide
spectrum of functionality, design, and requirements [47]. Consequently, resource management mechanisms
should be adjusted based on the application model. For example, client-server applications should be managed
differently from microservices [48]. Also, in terms of requirement, latency-sensitive applications [49] should be
deployed differently to stream processing applications [50] and so on. Here we can identify a platform-centric
approach based on optimizing resource utilization, and an application-centric approach based on optimizing the
performance of the application.

(3) Virtualization techniques: All of the on-demand computing infrastructures rely on a layer of virtualization on top
of which applications are deployed. The mainstream virtualization techniques currently in use are virtual machines
and containers. The virtualization technique in use can influence the resource management. For instance, VM
resource management takes an interest in how the deployment time of VMs can be optimized [51]. On the
contrary, in a container-based setting, the deployment time is negligible and consequently it’s overlooked.

(4) Workload type: the type of expected workload influences the choice of resource management techniques. In the
literature, some researchers consider an application request as an encapsulated task that must execute without
previously provisioned resources [52]. In other cases, the request is considered a set of instructions that will be
executed in an already deployed application resource [53]. This distinction drives two very different styles for
resource management.

(5) Optimization objective: stemming from all the previous approaches, the resource management objective can cover
different topics like cost [54], resource utilization [55], energy consumption [56], deployment time [57], latency
minimization [49], network usage [58], etc.

In addition to the different elements in resource management, we can identify two distinct layers of resource management.
The first layer comprises the management of the underlying resources, meaning the actual physical resources in use while
the second layer comprises the management of the application components by assigning the proper resources to them. In
the rest of this document, we will refer to the first layer as the resource pool management while the second will be referred
to as application resource management.

Application resource management:

The management of applications ensures their QoS requirements. Application resource management includes the
treatment of the workloads and creating the routes for these workloads, the placement and autoscaling of the components,
health checks on the applications state, and handling application provider requests to change the state of the deployment.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

39

To better understand this type of resource management, we can consider a general application model in Figure 1. In this
model the application has 3 services that can be replicated/non-replicated and monolithic/distributed, the services are
deployed on several architectures spanning several layers and over different machines. By design each service has a Broker
(can also be referred to as a load balancer) that acts as the point of contact for the service and redirects users’ requests to
the correct destinations of the service.

Figure 1: Application Model

Based on this Model we can define three levels of application resource management:

• Workload Routing: The routing of the End users’ request takes place at the broker of each service and constitute
the first optimization decision to be considered. In the case of broker 1, one of the replicas should be selected to
compute the request based on some criteria like availability, lowest round trip time, and request priority.
In the state of the art, a number of researchers have targeted the optimization problem of task offloading, in other
meaning, deciding on which layer the request should be processed. This concept is popular in Mobile Cloud
Computing (MCC), where the application decides whether to execute on the user device or to be offloaded to a
cloud data center [59]. With the introduction of Mobile Edge Computing (MEC), this concept gained similar
traction, however with access to two different types of resources, the edge resources and the cloud data centers
[60]. The major difference between the several papers remains the objective of the optimization problem, Vu et
al. offload services in fog radio access networks to optimize the energy consumption and offload latency [56].
Yousefpour et al. Propose a delay-minimizing offloading policy for fog nodes to reduce service delay for the IoT
nodes [52]. Mukherjee et al. reduce the overall task completion latency by solving a quadratic programming
constraint optimization problem [61].

In the other hand, other researchers took the approach of selecting not only the layer where the request will be
processed but the exact node and service. This approach provides a finer granularity for heterogeneous
infrastructures like that of fog computing and edge computing since the nodes can be unique in terms of their
resources, their latency to end users, even their energy consumption.
Consequently, the edge and fog layers can’t be treated as homogeneous layers. In the literature, a number of
routing techniques have been suggested to optimize latency, energy consumption, and backhaul network traffic
while maintaining a balanced load [62] [63]. Kadhim et al. presented an energy-efficient multicast routing protocol

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

40

based on SDN and fog computing [64]. Puthal et al. propose a secure and sustainable load balancing technique
which aims to distribute the load to the less-loaded edge data centers [65]. Similarly, Beraldi et al. propose a
cooperative load balancing technique to distribute the load over different edge data centers to reduce the blocking
probability and the task’s overall time [66]. Kapsalis et al. propose a fog-aware publish-subscribe system which aims
to deliver messages to the best possible node according to a combination of network latency, resource utilization
and battery state [67]. Finally, Proxy-mity addresses the necessary trade-off between reducing the user-to-replica
latencies and balancing the load equally across service replicas [53].

• Scheduling and Placement: Although routing mechanisms can help in optimizing the application resources,
however, routing is limited by the location of these resources. For instance, in the case of latency-sensitive
applications, where all the resources are located far from the origin of traffic the problem exceeds the capabilities
or routing mechanisms and falls under the optimization problem of how to correctly place the resources. This
subject was heavily investigated in the literature, starting from simple mechanisms that control in which layer the
application services will be deployed, to more advanced mechanisms that more precisely predict the fittest node
to be allocated the application service. The NebulOuS platform targets applications that are expected to span
several cloud providers, edge nodes, fog nodes, al, all the way to on-premises. As a result, we limit the scope of this
optimization problem to algorithms that first consider this continuum of resources and second algorithms that
do not consider the different layers as homogeneous.
Starting from this scope, we can start categorizing the work based on the application. Data-intensive application
placement algorithms optimized the response time [68]–[71], while monolithic applications focused
predominantly on network usage [58], [72], [73]. In contrast, service-oriented applications aimed at optimizing an
array of metrics: Li et al. [74] present a replica placement algorithm to enhance data availability, Jemaa et al. [55]
present mechanisms to optimize resource utilization, to prevent services overload, and to avoid violation of Service
Level Agreement (SLA) requirements. A range of other papers attempted the proximity-awareness and latency
sensitivity problem [47], [72]–[75]. The proximity awareness problem reflects the intention of locating the
application resources as closely as possible from the sources of traffic, which by design requires one to monitor
the traffic and then include this input as a metric of the optimization problem.
Since the sources of traffic are not static by any means, the solution to the placement problem should be dynamic,
such that the resources can be reallocated to convey the new system state. In contrast, among the mentioned
papers, only [71] [74], [49], [49], [76] have considered dynamicity, while only [49], [49], [70], [71], [74] are designed
for replicated applications.

• Autoscaling:
On-demand computing applications are expected to face traffic variations as a function of geographical location
and time. The placement mechanisms help mitigate the overloading of the application by allocating resources
based on the sources of traffic, yet an application can still be overloaded in case the overall system load is greater
than the overall application resources. The placement thus hits a performance wall induced by the limitation of
resources per application. In such a scenario, the solution corresponds to increasing the resources allowed for the
application. To better understand, consider a Kubernetes application composed of 2 replicated pods, if the overall
load is greater than the capacity of these 2 pods, no matter how you place your replicas, the application will reach
an overloaded state. The solution in this case is increasing the size of the replica set, thus autoscaling the resources
allocated for the application. Autoscaling has been extensively studied over the previous decades [78] [79], and its
application in the context of cloud continuum platforms remains nascent. This can be attributed to the popularity
of offloading as an alternative to autoscaling [44]. Such that autoscaling is not handled at the edge and fog layers.
Although such an approach is valid for certain types of applications, it does not offer a feasible solution for
application components that require deployment on the edge.

Nevertheless, the literature includes a wide range of autoscaling techniques in similar platforms. Autoscalers
designed for general-purpose Kubernetes clusters aim at providing a seamless service for the application users [80],
[81]. Geo-distributed computing environments autoscalers aim at selecting the nearest available resource [82], [83].
Few papers propose auto-scaling systems designed for fog computing platforms. Zheng et al. propose to vary the
number of Kubernetes pods according to the load, but do not address the question of placement nor efficient
routing between the end users and their closest resources [84]. On the other hand, ENORM aims to reduce latency

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

41

between users and computing devices, and the network traffic to the cloud [85]. However, it chooses the resources
regardless of their location, and essentially considers every fog node as equivalent to one another. Finally, Voilà
[49] considers the autoscaling of Kubernetes pods according to proximity-awareness metrics, but remains limited
to a single Kubernetes cluster.

In NebulOuS we aim at autoscaling that covers all the layers of the cloud continuum, an application component
should be able to migrate from one cloud provider to another and from one layer based on what will provide a
better performance at an optimized cost.

3.2.6 Interoperable data collection and management
The GSM Association [86] proposes a generalized architectural framework for the delivery of Big Data services based on
the Internet of Things. This architecture can be summarized in the following components:

• The IoT service layer for handling the bidirectional communication with the IoT devices.
• A Context Data Layer responsible for handling bidirectional communication with external systems (other than

IoT devices) for extracting information.
• The Data and Protocol Mediator responsible for transforming data formats of the incoming data (IoT or other

sources) to and from a harmonized format.
• Data & Control Broker responsible for enabling access to harmonized data entities through a query and

subscribe API.
• IoT Big Data Store to provide data storage for the managed data.
• BigData processing for analyzing context information.

For the IoT service layer, several communication protocols appear to be broadly used in the IoT ecosystem [87]: OPC-UA,
MQTT, AMQP, REST and CoAP. These protocols fall in one of the two following paradigms: client-server or publish-
subscribe. In a client-server pattern the data producer must open a communication channel with each of the receivers of
the data (usually only one) and send the message. In contrast, the publish-subscribe pattern decouples the concept of
publishers (the systems that publish messages) and subscribers (the systems interested in receiving these messages) using
intermediate servers (message brokers). To articulate the communication, messages are logically grouped into topics.
Publishers write data on topics and consumers subscribed to the same topic receive these messages. Any system can be
both a publisher and a subscriber for an indeterminate number of topics. In comparison with client-server communication,
the publish-subscribe paradigm is a decoupled and asynchronous way of communication between different parts of a
system, allowing for loose coupling and reducing dependencies between components.

Using the previously mentioned communication protocols, IoT devices produce information often related to events (e.g.
a lightbulb has been lid, a push button has been pressed, etc…) and observations (e.g. the room temperature is 25ºC, the
noise volume is 30dB, etc…). For both types of data, apart from the actual payload (temperature, noise volume, button
press status, etc..), equally important is the time instant associated with that payload. This type of time-stamped data
requires for novel approaches when it comes to the storage and query mechanisms compared with traditional storage
systems. Traditional Relational Database Management Systems (RDBMS) are optimized for storing relationships between
data (a student is enrolled in a course that is taught by two teachers and the lectures happen each Monday and Friday in
room CS23). Applications managing such information have the necessity to query the stored information using different
perspectives (what courses does a teacher teach? What lectures take place in room CS23), and updating that information
while preserving its consistency. In contrast IoT applications require a different kind of query semantics (e.g.: what is the
hourly average temperature of room CS23 during last year?). To cope with this necessity, Time Series Database
Management Systems (TSDBMS) appeared. TSDBMS are optimized for ingesting large amounts of time-stamped data and
offer advanced time-related query semantics (time average, time bucketing, etc..). Many options exist for TSDBMS [88],
among these InfluxDB26, Kdb+27 and OpenTSDB28 to name a few. In general, all time-series databases listed offer the

26 https://github.com/influxdata/influxdb
27 https://github.com/timeseries/kdb
28 http://opentsdb.net/

https://github.com/influxdata/influxdb
https://github.com/timeseries/kdb
http://opentsdb.net/

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

42

mechanism for storing big amounts of time-stamped data (either single-valued or multi-valued) to later retrieve it using
advanced query semantics that include time aggregations. To support the ingestion workload, often these database services
offer the opportunity to be deployed in clustered environments.

Zenoh29 (Zero Overhead Network Protocol) aims at closing the gap between the data transmission and storage/retrieval
aspects of IoT data management. It is a pub-sub protocol that includes storage capabilities in the protocol brokers. On top
of that, Zenoh offers a lightweight query mechanism for clients to retrieve the stored data. This query mechanism is
seamlessly integrated into the pub/sub mechanism traditionally used by clients. In contrast, some implementations of
pub/sub protocols offer storage capabilities but do not support querying as an integrated system capability30. This is the
case of EMQX, an open-source MQTT broker that allows storage systems to be installed as plugins and manage the storage
of information using SQL and No-SQL databases.

Besides managing the actual data generated by the IoT devices (temperature reading, pressure, etc..) the GSM IoT Big
Data reference architecture acknowledges the importance of context information and links to the ETSI Context
Information Management (CIM) [89] a framework for modelling context information in the intelligent solution space. In
CIM the context is understood as any relevant information about physical/logical entities including their properties
(temperature, location, or any other such parameter), and their relationships with other entities (e.g: an entity belongs to
another, an entity is located inside another, etc..). To model the context information, CIM proposes the use of NGSI-LD
framework. In NGSI-LD, entities are structured like a graph of properties and relations with other entities. The
representation of this information is presented in JSON-LD [90], an extension of JSON that defines the reserved keyword
“@context” for including the reference to NGSI-LD meta-model. NGSI-LD also states how entity attributes, types and
relations should be encoded. Moreover, NGSI-LD proposes a REST API (client-server paradigm) for implementing the
exchange of context information between the producers and the context broker (the component responsible for holding
the context status) and between the context broker and subscriptions to context information. This API includes operations
for publishing new context data, querying the existing data and subscribing to changes in the context. As part of the
FIWARE31 initiative, some NGSI-LD compliant context brokers have been implemented: Scorpio32, Orion-LD33.

The data protocol mediation layer of the GSM architecture handles the transformation of the incoming data (IoT or other
sources) to and from a harmonized format. This transformation includes: the conversion of payload encoding (e.g: from
XML to JSON); mapping of data structures (e.g: move data from the “temp” field provided by the IoT sensor to the
“temperature” field used in the unified data model); units conversion (e.g: from the temperature value in Fahrenheit
provided by the IoT sensor to the value expressed in Celsius expected by the platform); etc…

These transformations can be implemented following the often referred as Data Stream Processing (DSP) paradigm. This
paradigm pursues the modelling of data transformation pipelines as direct acyclic graphs of nodes that can either be a
source (where the information comes from); an operation (that transforms the data); or a sink (where the results are
sent/stored). Typically, a DSP application topology is composed by a single source (e.g: temperature readings stream from
sensors distributed across a building), many operations with arbitrary dependencies between them (e.g: convert the initial
XML payload to JSON; convert from Fahrenheit to Celsius; trigger an alarm if the temperature from a room/wing of the
building rises; etc..) and one or many sinks for the information (databases, pub-sub mechanisms, etc…). By utilizing this
approach, application developers benefit from the re-usability of the application components. For instance, one can easily
implement a piece of code that is provided with a description of the XML to JSON fields mapping, receives XML payloads
and outputs their JSON counterpart. This software element can be used to convert data coming from many different IoT
devices using an XML communication protocol.

Although a single execution of the transformation pipelines usually consumes low computing resources (CPU time), in
applications where the number of IoT devices and/or the publishing frequency are large, the execution of the

29 https://zenoh.io/
30 https://zenoh.io/docs/overview/zenoh-in-action/#queries-in-zenoh
31 https://www.fiware.org/
32 https://github.com/ScorpioBroker/ScorpioBroker
33 https://github.com/FIWARE/context.Orion-LD

https://zenoh.io/
https://zenoh.io/docs/overview/zenoh-in-action/#queries-in-zenoh
https://www.fiware.org/
https://github.com/ScorpioBroker/ScorpioBroker
https://github.com/FIWARE/context.Orion-LD

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

43

transformation pipelines can no longer be handled by a single CPU thread, and it must be distributed. In that situation,
DSP can benefit from the separation of the computation units in different operators, as their execution can run in parallel.
This parallelism can be achieved in three forms: Task parallelism (separated operations/group of operations from the
DAG can run in parallel); pipeline parallelism (consecutive operators on the same path of the DAG process consecutive
elements from the data stream at the same time) and data parallelism (multiples instances of the same operator processing
portions of the data stream).

At deployment time developers can define the DSP topology, and the parallelism level of each operator (e.g.: how the
stream can be split between multiple instances of the same operator). Once the applications are running, the usual
stochastic volume of the data streams to be processed causes fluctuations in the workload. Moreover, failures of the
computation nodes or the networks that connect them are not exotic. In this situation, it is necessary to have a close
monitoring of the DSP to check for failures and QoS fulfilment and provide an intelligent mechanism capable of
dynamically adapting the DSP execution model in response. As summarized by [91], several approaches for tackling this
issue are being studied in the literature (Topology adaptation, deployment adaptation, processing adaptation, overload
management, fault tolerance, adaptation, and infrastructure adaptation) relying on different techniques: mathematical
optimization and game theory, control theory, graph theory, stochastic modelling (and, in particular, queueing theory),
heuristics, and ML.

Currently, several declarative frameworks for defining and executing DSP exists: Apache Nifi34 Apache Airflow35,
FogFlow36, ZenohFlow37 among others. These declarative frameworks require the administrator to express the pipelines,
as structured text files or even through a GUI, and provide the code that implements each of the declared operations.
With that information at hand, the framework is responsible to span the necessary workers that will handle each of the
steps of the flow. Usually, the orchestration frameworks can take advantage of computation clusters so that the workload
is distributed among a pool of workers, making this process totally transparent to the developer of the workflow.

3.2.7 Semantic Modelling for Interoperability

Interoperability is the ability of a system to communicate with other systems. In NebulOuS, we focus on interoperability
in the IoT and the Cloud Continuum. We present below state of the art in frameworks and semantic technologies relevant
to our focus.

Interoperability Frameworks and Platforms
Several approaches targeting interoperability in distributed systems, such as SeDim [92] , OSDA [93], MUSDAC [94],
INDISS [95], uMiddle [96], and CONNECT [97], have been proposed. These generally exploit open system integration
paradigms, notably Service-Oriented Architecture (SOA) and Enterprise Service Bus (ESB), to bridge inherently
heterogeneous interaction paradigms such as client-server, publish-subscribe, and tuple space [98]. These approaches,
however, are not targeted to the IoT or to the Cloud Continuum, and hence ignore the scale of heterogeneity encountered
in such contexts.

More recently, approaches that focus explicitly on the IoT and/or the Cloud Continuum have been Proposed. These
generally unfold along several dimensions [99]: the device level, regarding computational and communication capacity; the
syntactic level, regarding data format, schemas, and interfaces; the networking level, regarding internetworking protocols; the
platform level, regarding underlying OSs and runtimes; and the semantic level, regarding, data and information models. An
overview of such approaches is provided below.

34 https://nifi.apache.org/
35 https://airflow.apache.org/
36 https://fogflow.readthedocs.io/en/latest/index.html
37 https://github.com/eclipse-zenoh/zenoh-flow

https://nifi.apache.org/
https://airflow.apache.org/
https://fogflow.readthedocs.io/en/latest/index.html
https://github.com/eclipse-zenoh/zenoh-flow

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

44

AllJoyn [100] is a full-stack38 framework with wide multiplatform support (Android, Arduino, iOS, Linux, OS X, Windows,
OpenWRT). It achieves interoperability through a common protocol that enables service discovery and interaction.
Interaction is based on the D-Bus specification, an RPC mechanism extended by AllJoyn to operate across remote devices,
and is realised over the AllJoyn bus: a logical bus that comprises a set of AllJoyn routers. AllJoyn is written in C++, and
provides C, Java, JavaScript, C#, and Obj-C bindings for creating AllJoyn apps, i.e., apps that can interoperate with
different AllJoyn resources. Non-AllJoyn resources may be discovered and interacted with via resource-specific software
bridges.

IoTivity [101] is another full-stack framework with wide multiplatform support (Android, Arduino, Linux, Tizen, and
Yocto). Unlike AllJoyn, however, IoTivity adopts a RESTful style of interaction (based on CoAP). IoTivity is written in C
and provides C++ and Java bindings.

oneM2M [102] achieves interoperability across different machine-to-machine solutions through standardization, i.e., by
developing a global specification that integrates existing platforms, frameworks, and standards. It provides a
homogenisation layer that mediates, by virtue of semantic mediation gateways (SMGs), between IoT resources and
applications. SMGs use semantic annotations and inferential reasoning to translate between diverse data representations
across different devices or systems; this is based on a minimal base ontology that is readily linked with external ‘domain-
specific’ ontologies. SMGs are utilised by Interworking Proxy Entities (IPEs): application entities that provide interfaces
between oneM2M and non-oneM2M compliant networks or systems.

NGSI-LD (Next Generation Service Interface for the Internet of Things - Linked Data) [103] provides a data model and
communication framework for representing and exchanging, respectively, information between devices, applications, and
data sources in the IoT. Semantic interoperability is achieved through a flexible and extensible RDF-based39 ontology that
represents IoT entity types, their properties, and the relationships between them. This allows different systems to represent
and exchange information in a standardized way, which is of paramount importance for the development of IoT
applications and services. NGSI-LD offers a RESTful API for exchanging information thus simplifying its integration into
IoT applications.

In addition to the above solutions, several frameworks that focus on facilitating application development in the IoT have
been proposed. The IDeA framework [104] provides abstractions of IoT devices based on the IoT-A reference model [105],
along with a tool – the IoT AppFramework – that enables application development based on these abstractions;
heterogeneity between hardware and software components is addressed through SysML4IoT, a SysML profile that provides
stereotypes for abstractly describing a system in terms of devices and services. In a similar vein, IoTLink [106] provides a
model-driven development toolkit based on IoT-A; it assists developers in overcoming heterogeneity by providing a layered
set of abstractions for defining physical connections, sensor data pre-processing and aggregation, virtual entities (proxies,
essentially, of devices), and crucially, integration of virtual entities within applications.

The framework in [107] proposes a web application (a single-page app) for rapid, browser-based prototyping of IoT
applications. The focus is on aiding developers in bridging interactions between GUI-based control panels and the devices
that are controlled through them. The framework is based on virtual entities that act as in-browser device emulators and
interact with the application through virtual ports that emulate physical I/O ports, and the use of a proxy server that
enables interaction with these emulators through the virtual ports. Communication is managed by the WebRTC protocol
stack, and by a proxy server in case WebRTC is not supported.

Omni [108] provides an application framework for seamless device-to-device interaction. It facilitates building applications
that use heterogeneous communication channels to intelligently discover useful devices in a vicinity, and to transfer

38 https://spring.io/projects/spring-boot
39 Resource Description Framework.

https://spring.io/projects/spring-boot

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

45

content directly between these devices in an efficient and realistic (in terms of energy and time) manner. The framework
is based on the tenet that device-to-device communication entails inherently different communication tasks: periodic tasks
for sharing small amounts of data in a localised area (e.g., network-level neighbour discovery and application-level service
discovery), interspersed by sporadic application-specific tasks that tend to share larger amounts of data.

BIG IoT (Big Data for IoT) [109] is a platform for facilitating the development, deployment, and management of IoT
applications that generate and process big data. It provides a set of tools and a framework for collecting, analysing, and
visualizing data from IoT devices and sensor networks. It also aims at facilitating the integration of IoT data with other
data sources, such as social media, weather, or traffic data, to enable new and innovative use cases. The platform also
provides features such as scalability, security, and real-time data processing, which are critical for IoT applications that
handle big data.

Mortar [110] is an open-source testbed for portable building analytics, and a platform for storing, describing, updating,
discovering, and retrieving building data. It allows developers to test their building analytics algorithms and models on a
variety of data sets. It provides tools to easily collect and clean data, visualize the results of their algorithms, and compare
them with other algorithms and models. It provides a way for developers to deploy their algorithms in real-world buildings,
giving them the opportunity to test their algorithms on real-world data and improve the energy efficiency and overall
performance of the building. To reconcile the heterogeneities across different buildings, the Brick ontology is used [111].

In a similar vein, LinkLab [112] provides a set of tools, and a framework, for collecting, analysing, and visualizing building
energy data, as well as for testing and evaluating building energy management and control algorithms. LinkLab is designed
to be highly configurable and customizable, so that it can be adapted to the needs of different buildings, research projects,
and energy management strategies.

Smart-M3 is a platform for information sharing [113]. It comprises two main components: Semantic Information Brokers
(SIBs) and Knowledge Processors (KPs). SIBs are ontological triple stores that persist knowledge about resources in a smart
space i.e., in “a named search extent of information”. KPs are the “active part” of smart spaces; they bundle together application
logic and APIs (the so-called KPIs) that facilitate developers in accessing information in SIBs. KPs are both the providers
of the information stored in SIBs, and its processors; based on this information, KPs may take externally observable
actions. Applications in Smart-M3 are therefore ‘mashups’ of different KPs. KPs are loosely coupled and interact with each
other only indirectly through the information in the SIBs.

DynaSense [114] is a middleware system that allows user applications to be agnostic of the data sources or sensors in use.
It provides a unified approach for accessing data from various sources. It dynamically decides how to acquire data from
available sources, as well as how to deliver it to requesting user applications. Crucially, DynaSense allows applications to
use high-level data without any code modifications. SOUL [115] is an edge-cloud system for mobile applications in a
sensor-rich world. It is designed to handle large amounts of data generated in sensor-rich environments. SOUL provides
a set of tools and a framework for developing, deploying, and managing mobile applications, including data collection,
data analysis, and data visualization tools. Similar to DynaSense, SOUL allows for portable and reusable applications that
consume high-level data without code modifications.

In [116], the authors present a semantic interoperability approach for the automated deployment of generic IoT
applications i.e., of applications that can run over distinct, albeit functionally similar, device sets. They advocate the use
of a semantic registry for IoT devices that conceals technological, as well as semantic, heterogeneities, the latter stemming
from the use of heterogeneous domain ontologies for annotating IoT data. Ontology alignment is used to reconcile domain
ontologies. The approach is based on (a prior version of) the SSN ontology.

XWARE [117] is a customizable interoperability framework aiming at enabling communication between services running
over diverse, typically proprietary, middleware platforms within a particular domain (e.g., a home environment, a

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

46

healthcare system, etc.). XWARE advocates a modular design to facilitate customisation towards a domain, thus enabling,
in principle, its applicability across many domains. It employs plugins to communicate with legacy middleware; plugins
provide such functionalities as service advertisement, lookup, and invocation. It also employs mediators to translate
messages between different plugins.

In [118] the SemIoTic ecosystem is presented for facilitating the development of IoT applications that are agnostic to the
underlying IoT infrastructure, and can thus interoperate with diverse, albeit functionally similar, IoT devices (e.g., diverse
temperature sensors that adhere to different data formats and data exchange protocols). This paves the way for the
development of reusable IoT applications that can be readily ported across diverse IoT spaces. At the semantic layer,
SemIoTic deals with issues of interoperability through the incorporation of SEMIC: a SOSA/SSN-based meta-ontology
used for describing both static and dynamic aspects of resources in an IoT space. SemIoTic provides programmatic support
and algorithms to specify user-defined actions expressed in terms of semantically meaningful concepts from the SEMIC
metamodel, and translate between them and low-level sensor and actuator data. To achieve interoperability at the data
exchange layer, SemIoTic supports wrappers for IoT devices which consist of a common interface to enable SemIoTic to
communicate with them (northbound interaction), and device/manufacturer/model-specific code that encapsulates the
low-level (southbound) interaction. Also, SemIoTic defines a specification methodology for virtual sensors which enables
semantic interpretation of low-level sensor data and provides application-oriented access to the IoT space resources.

Ontologies

The "Semantic Sensor Networks" (SSN) ontology [119], [120] is a comprehensive W3C recommendation40 for providing
a formal representation of: sensors and their properties (sensing modalities, units and ranges of measurement); actuators;
the types of phenomena - or features of interest - being observed or affected by actuations; the procedures involved in
realising observations and actuations. SSN incorporates a lightweight, self-contained, core ontology called SOSA (Sensor,
Observation, Sample, and Actuator). Through their different, albeit complementary, scopes and degrees of axiomatization,
SSN and SOSA are together able to provide interoperability across a wide gamut of applications and use cases, ranging
from satellite imagery to social sensing and citizen science. Both SSN and SOSA are RDF-based and are therefore
extensible, hence reusable. IoT-Lite [121] is an instantiation of SSN, a lightweight semantic model that includes the least
number of concepts required for classifying IoT data. IoT-Lite is not intended to be a fully-fledged ontology but rather a
lightweight core that can be extended, if needed, with application-specific semantic models.

The Smart Applications Reference (SAREF) [122, p. 103] ontology is a reference ontology for smart appliances. It provides
a common vocabulary for describing the functionalities, features, and services of smart appliances, as well as the
communication and data exchange protocols that these devices use. SAREF is intended to enable interoperability and
support the development of smart home and building automation applications; to this end, it provides a modular
representation of the service that an appliance provides in terms of its functions and the actual commands that invoke
these functions. Notably, SAREF is narrower-in-scope than SSN and is thus based on a more domain-specific nexus of
interrelated concepts.

The IoT-A ontology [105] is part of the wider “IoT Architectural Reference Model (ARM)”. It provides a formal
representation of the key components and their relationships in an IoT architecture. The ontology is modular comprising
different facets or “models”: the domain model that includes fundamental concepts such as services and virtual entities,
the entity model representing digital twins, the resource model carrying device-specific information, the service description
model that describes the services offered by an IoT device, the event model describing the events and changes that a device
may engage in, the functional model that encodes lower-level concerns such as protocols and device management, as well
as concepts for describing data flows and intercomponent interactions. The IoT-A ontology does not provide concepts for
readily supporting context awareness.

40 https://www.w3.org/TR/vocab-ssn/

https://www.w3.org/TR/vocab-ssn/

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

47

The NGSI-LD ontology [123] is a formal representation of the concepts and relationships of the NGSI-LD data model
that aims at allowing the exchange of data across IoT devices and systems. It includes the usual prose for the representation
of IoT entities and the properties thereof, as well as a nexus of interrelated concepts for representing and sharing contextual
awareness. It fails to support actuation environments.

In [124], an ontology is proposed for enabling the development of ‘generic’ IoT applications that are agnostic of the
underlying sensing or actuating devices that they interact with. The ontology enables seamless device-to-application
communication by abstracting away from vendor-specific device details through the annotation, and classification, of the
data streams that these devices generate/accept. The ontology is based on an old version of SSN (prior to the integration
of SOSA) extended with the authors’ own ontological actuation model. In a similar vein, the SEMIC ontology [27] aspires
to introduce an interoperability layer that bridges the world of IoT applications with the realm of sensing and actuating
devices. SEMIC extends SSN through a nexus of interrelated concepts that allow for the modelling of virtual (software)
sensors and their interrelations with underlying physical sensors, as well as of virtual observations. Virtual observations
are aggregations of physical observations that collectively provide the kind of higher-level information sought by IoT
applications (e.g., deriving room occupancy information from camera and wi-fi access point data). IoTMA (Internet of
Things Model and Analytics) [32] is another SSN-based ontology that provides a common vocabulary for describing the
capabilities and properties of IoT devices. IoTMA emphasises on formalising context awareness i.e., on including concepts
for reviewing observations gathered in a particular IoT context and determining/prioritising any future actuations in that
context based on that awareness. Clearly, this prioritisation is of utmost importance for supporting low-latency applications
deployed in the Cloud Continuum.

OWL-Q [125] is an ontology for the formal representation of QoS-based attributes of web services. It treats a web service
as a set of QoS attributes, each associated with one or more metrics, where an attribute is analogous to a “feature of
interest” in SSN or SAREF. Through its extension, Q-SLA, it provides constructs for service-level objective representation
and negotiation, service-level agreement (SLA) representation including violation penalties, and performance monitoring
based on SLAs. QoS description is also attempted through the QoSOnto-CSS ontology [126] which, however, advocates
a different approach to modelling by representing different QoS criteria as distinct classes.

CoCoOn [127] is an ontology that provides a standardized vocabulary for describing concepts and their relationships in
the realm of cloud computing, specifically in the context of IaaS. It aims at providing a common understanding of cloud
computing concepts to aid the discovery and consumption of infrastructural services. It is an extension of the SSN
ontology. A similar ontology is mOSAIC [128] which aims at reconciling the heterogeneity in terms used by cloud service
providers to enable discovery and negotiation of cloud services across different cloud platforms.

3.2.8 Cloud Service Brokerage
In a cloud environment, a cloud broker is an important entity that works as an independent middleware between cloud
customers and providers to address the issues related to satisfying the customer preferences and the service provider profits
through negotiation between them [129]. Recent domain survey papers [130], [131] identified the following key challenges
and future research streams related to cloud brokerage:

- Adaptive and Fluid Deployment. Cloud brokerage is challenged by the need for methodologies to benchmark
containers so that the heterogeneous cloud and edge resources can be compared and ranked (Varghese et al.
2016). Furthermore, the fact that containers do not provide the same level of isolation as VMs (containers share
the operating system) means that the degree of performance interference is higher compared to the VMs [132],
which makes satisfying the SLA more challenging. Other challenges relate to the management of the container
lifecycle in the cross-cloud context and quantifying the cost of migration, among others.

- Intelligent Decision-Making. Currently, decision-making at the brokerage level relies heavily on multi-criteria
decision making (MCDM) methods [133]. MCDM methods can be extended to provide better support for
decision making at the brokerage level. Examples include multi-objective meta-heuristics such as multi-objective
evolutionary algorithm and multi-objective particle swarm optimization, fuzzy optimization, and multi-objective
optimization methods combined with neural networks. MCDM methods should also consider the priority of
service provision. The provision of differentiated services can better meet the needs of different users, giving

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

48

higher priority to requests from customers with high service quality requirements, and on the other hand offering
more competitive prices for requests from customers that can tolerate unstable service quality. Furthermore,
machine-learning techniques can help to quantify the extent to which providers fulfil their offerings and the extent
to which the applications are satisfied in practice. Also, machine learning models can be deployed to adapt
deployments proactively, i.e., before the adaptation becomes necessary. A relevant challenge is to accurately predict
when requirements will change and the feasibility of adapting the deployment at that time. Furthermore, feedback
on the performance of the adopted learning approaches is necessary, as learning in different ways can lead to
different results.

- Resource management: Current resource pool management for cloud brokers often relies on prediction-based
approaches. The accuracy of the predictions greatly affects the performance of these approaches. Therefore,
methods that do not rely on predictions and can provide performance guarantees and interpretability deserve
more research in the future.

- Pricing: For pricing problems, the following directions are worthy of research investigation. Firstly, the fairness
of pricing for multiple cloud service providers from a federated cloud perspective is vital. Furthermore, a study of
pricing based on the true performance of cloud services from a user perspective is needed. In addition, pricing
dynamically to maximize cloud broker profits from the perspective of cloud broker resource pool management is
also important.

- Governance and QoS: Providing cloud services with guaranteed performance based on realistic evaluations
through cloud brokers with QoS monitoring capabilities. Currently, the performance of services offered by
different cloud service providers varies even though they have similar performance promises, so how cloud brokers
evaluate and dynamically select and manage resources based on that evaluation deserves more research. Further
research is needed in methods for governing the use of cloud services, including mechanisms for enforcing service
level agreements and resolving disputes. Moreover, techniques are the brokerage level are needed for ensuring the
security and privacy of data and applications when they are hosted on third-party cloud platforms.

- Ability to solve high-dimensional problems: Most of the current research is based on experiments conducted in
simulated scenarios, and the problem dimensions considered in some studies are much smaller than those to be
considered in real scenarios. Therefore, solving the problem of resource availability in a larger dimension remains
a challenge.

- Reducing latency based on fog computing: Latency reduction is one of the key optimization goals in current
cloud broker research, but current research mainly focuses on reducing latency by selecting data centers in
different locations. The fog computing paradigm optimizes latency by reducing the transfer of data by distributing
jobs to fog servers that are closer to end users. Latency will continue to be a major topic in future cloud broker
research and could be further investigated by considering the adoption of new paradigms. Further research is
needed in methods for monitoring and optimizing the performance of cloud services, and for ensuring their
availability and reliability.

- Discovering and combining cloud services to meet complex needs: Inter-cloud environments and environmental
conditions at the implementation time of broker in the inter-cloud environments are more variable and
unpredictable than single-cloud environments. Therefore, when a broker performs orchestration tasks in addition
to selecting the service, it should appropriately combine services and increase the resistance to failure in the broker.

- Ability to deal with cloud provider failures: The multi-cloud nature of cloud brokers is that they are not
dependent on a single cloud provider, while cloud provider failures can still occur and be very costly today.
Therefore, failure management through cloud brokers is a viable method to provide a more stable service to users.
Especially in the case of combining services, in case of failure to run only one service, the process of running the
broker will fail. Therefore, management and detection of failures during the implementation of service
composition is vital.

Nebulous will primarily focus on intelligent decision-making at the brokerage level, while advancing several of the
aforementioned challenges that are relevant to the project objectives and use case needs, such as adaptive and fluid
deployment and the ability to solve high-dimensional problems. On the other hand, we will not focus on challenges such
as pricing and brokerage governance which in our view should be addressed at a stage which is closer to
production/commercialisation.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

49

Most relevant works on brokerage decision making consider quantitative metrics, with less attention put qualitative aspects
[131]. NebulOus will go beyond SOTA by introducing cloud and fog brokerage capabilities in a similar manner that OS
intermediates between computing resources and software. Specifically, it will support cloud computing continuum
providers (organisational units, telecom providers etc.) and consumers to advertise the available resources for the ad-hoc
formulation of local continuums and define their preferences, respectively, in both qualitative and qualitative ways (e.g.,
using linguistic terms). Furthermore, NebulOuS will be able to match, on demand, the above aspects based on an MCDM
approach that copes with precise and imprecise criteria to broker the ad-hoc generation of micro local cloud continuums.

3.2.9 Networking and Communication
In this subsection, we cover communication aspects in the Cloud-to-Edge-to-IoT continuum. For presentation purposes,
we have divided the state-of-the-art into two major areas: cloud networking (covering aspects related to tunnelling, overlays
and network virtualization) and IoT communication (covering wireless IoT protocols). In addition, we include aspects
relevant to networking and communication in the cloud- and edge-native world by presenting recent advancements related
to the most popular platforms used in the ecosystem: Linux and Kubernetes networking (which are vertical to the
continuum). In particular, we present tools and specifications which enable container networking inside and between
Kubernetes clusters, as well as service-to-service communications in the microservices architectural style by presenting state-
of-the-art service mesh solutions. Some related higher-level functionalities, such as IoT data management, are covered in
Section 3.2.9. In any case, all of the presented technologies are carefully taken into account by the NebulOuS project, and
the best will be selected to achieve high-performant, end-to-end communications in fog computing environments.

Cloud networking

In the cloud, virtualized resources may exist in different physical machines and sites, but need to be handled as if they
were a part of the same local network. For this reason, datacenter networks are typically established using techniques such
as network tunnelling to create secure overlay networks which interconnect the various compute resources. This way an
isolated, logical network is created that can span multiple physical locations. To achieve this, different technologies can
be used.

One solution is using VPNs, which have evolved to be multipoint-to-multipoint overlays and are supported by existing
public IaaS platforms (e.g., AWS’s VPCs41 and Azure’s VNets42). Another solution is the use of VXLAN [134] (which was
designed to extend the capabilities of legacy VLANs) and other similar technologies such as NVGRE [135] (which uses a
different encapsulation method). Geneve is the latest addition to this family, aiming for a flexible design which can be
easily extensible to accommodate various requirements. In any case, the typical approach is to encapsulate MAC frames
and transport them over an IP network to form virtual networks between the resources.

As can be easily inferred, the latest advancements in cloud networking are strictly coupled with advances in virtualization
and adhere to the general trend for the softwarization of hardware devices and their corresponding functionalities. As a
result, there is an interplay between cloud networking and the research areas of Software-Defined Networking (SDN) [136]
and Network Function Virtualization (NFV) [137].

SDN separates a network’s control plane and its data plane; early incarnations focused on programmable control planes
but the latest focus is on data-plane programmability. The latter is also a convergence point with NFV approaches, which
attempt to virtualize network functions typically performed by dedicated equipment and deploy them into general purpose
hardware. As the two approaches are usually coupled to establish modern virtualized and programmable networks, they
are jointly referred to as SDN/NFV [138] [139]. As is to be expected, many current cloud/edge networking solutions use
SDN/NFV techniques to deploy and manage networks between computational resources.

41 https://aws.amazon.com/vpc/
42 https://learn.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview

https://aws.amazon.com/vpc/
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

50

Several tools incorporate the aforementioned functionalities and can be used for the creation of secure network overlays.
Some of the available solutions used commercially include Open vSwitch (OvS)43, Open Virtual Network (OVN)44 and
VPN Gateways[140].

At this point, we will shift our focus to Linux kernel networking (which is especially important for cloud/edge networks).
Recent advancements in the field are closely tied to the IO Visor project45, an open-source Linux Foundation Collaborative
Project. The aim of IO Visor is to solve the operational impact created by the coupling of input/output functionality with
networking services, by effectively decoupling them. With the usage of its data plane, new tools can be developed using
“networking functions” that achieve interoperability between different manufacturers, offering better performance
compared to existing solutions such as iptables46.

Our main point of interest lies on two specific, closely-related technologies: eBPF and XDP [141], which are currently used
in many state-of-the-art tools47. eBPF can run sandboxed programs in the Linux kernel. It is used to extend the kernel
capabilities safely and efficiently without requiring any change to its source code. Running sandboxed programs within
the operating system, developers can utilize eBPF to add additional capabilities to the operating system at runtime. The
efficiency provided by the Just-in-Time compiler provides execution performance close to that of natively compiled in-
kernel code. This fact makes eBPF ideal for packet processing, making it a great building block to offer efficient cloud-
native networking, security and monitoring functionalities.

Figure 2: eBPF hooks48

XDP stands for eXpress Data Path and provides a framework for BPF that enables high-performance programmable packet
processing in the Linux kernel. It runs the BPF program at the earliest possible point in the software, namely at the
moment the network driver receives the packet [142]. XDP works in concert with the Linux kernel and its infrastructure,
meaning the kernel is not bypassed as in various networking frameworks that operate in user space only (e.g. dpdk49).

43 https://www.openvswitch.org/
44 https://www.ovn.org/en/
45 https://www.iovisor.org/
46 https://www.netfilter.org/projects/iptables/index.html
47 https://ebpf.io/applications/
48 https://ebpf.io/what-is-ebpf
49 https://www.dpdk.org/

https://www.openvswitch.org/
https://www.ovn.org/en/
https://www.iovisor.org/
https://www.netfilter.org/projects/iptables/index.html
https://ebpf.io/applications/
https://ebpf.io/what-is-ebpf
https://www.dpdk.org/

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

51

Figure 3: XDP overview [141]

Lately, those offered capabilities have been utilized extensively in the cloud-native landscape. With the recent widespread
adoption of OS-level virtualization (i.e., containerization) and Kubernetes as the de-facto container orchestration platform,
several tools have been created to enable communication between services on Kubernetes clusters. Such tools are
commonly referred to as “network plugins” or “CNI plugins” [143].

Kubernetes network plugins

Kubernetes networking solutions are built upon the standardized Container Network Interface (CNI)50. CNI is a Cloud
Native Computing Foundation (CNCF)51 specification and collection of libraries. Those libraries are used to write plugins
for configuring network interfaces in Linux containers. The plugin specification defines an interface for configuring the
network, provisioning IP addresses, and maintaining connectivity with multiple hosts.

CNI plugins are composed of two components: the CNI daemon and the CNI binary files. The CNI daemon, which runs
in user space, is responsible for setting up the host network devices (e.g., bridge, overlay tunnel endpoint), the tunnelling
options (e.g., VXLAN, UDP, etc.) and iptables (e.g., network policies). The CNI binary configures the network of a Pod,
i.e., sets up virtual ethernet (veth) links and Pod IP addresses. It is called by the container runtime only when setting up
the network for a newly-created Pod.

The different plugins vary in their design and way towards facilitating Pod communication, as well as in their support for
network policies, i.e., the means to enforce rules indicating which network traffic is allowed and which Pods can
communicate with each other.

To implement specific packet forwarding, routing, and networking policies, CNI Plugins typically leveraged ‘iptables’, a
userspace interface to set up, maintain and inspect the tables of IP packet filter (Netfilter) rules in the Linux kernel. Iptables
use some “hook points” in the network stack to implement packet filtering, NAT, and security-related policies.

Developers using the CNI standard can create network plugins to interoperate with a variety of container runtimes. CNI
networks can use an encapsulated network model, such as Virtual Extensible LAN (VXLAN), or an unencapsulated
(decapsulated) network model, such as Border Gateway Protocol (BGP) [144]. CNI is not explicitly tied to Kubernetes, as
the latter is just one of the runtime environments that adhere to the CNI specification.

CNI has attracted large support and many popular plugins have been created for Kubernetes in the cloud-native ecosystem.
Popular ones include Calico [145], Cilium [146] and Flannel [147], whereas an extensive list can be found on the CNI

50 https://www.cni.dev/docs/spec/
51 https://www.cncf.io/

https://www.cni.dev/docs/spec/
https://www.cncf.io/

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

52

official github page52. It has to be noted that many of these CNI plugins offer joint solutions for both container networking
and security.

Calico brands itself as a networking and network security solution for containers, virtual machines, and native host-based
workloads. It supports a wide range of platforms, including Kubernetes, OpenShift53, OpenStack54 and bare metal services.
Calico can be used both for networking and security, in contrast to some other plugins (e.g. Flannel). This is achieved by
supporting network policy configuration, using the NetworkPolicy API. Linux-native tools are used to facilitate traffic
routing and network policy enforcement, while a BGP daemon is hosted for distributing routes to other nodes. Even
though Calico originally used iptables, it has recently added support for eBPF aiming to leverage its advantages for high-
performance networking 55.

However, the first and most mature eBPF-based plugin is Cilium, an open-source project that has been designed to address
the scalability, security and visibility requirements of container workloads. It has been embraced by Google in its Google
Kubernetes Engine (GKE)56, by AWS in EKS Anywhere57, by Alibaba58 and others.

Cilium, which can be used for both container networking and security, offers OSI layer 7 (HTTP protocol) awareness and
enforcement of network policies on OSI layers 3 to 7 using an identity-based security model decoupled from network
addressing. Furthermore, it can be used in combination with other CNI plugins by leveraging a feature called CNI
chaining. Such features can be exploited to offer advanced security features, in addition to those described in the security
section.

Another relevant CNI plugin is Kube-OVN [148]. Kube-OVN was designed to integrate OVN-based network virtualization
into Kubernetes, bringing SDN-like functionality to Kubernetes. One notable feature is that it can use CNI chaining to
integrate with Cilium59, to combine the control-plane network abstraction capabilities of Kube-OVN with the high-
performance monitoring and security capabilities that come with eBPF. Furthermore, another important aspect is that it
offers native support for VMs. As such, it can be used by KubeVirt [21] to manage VM-based workloads along with
container clusters in a shared environment, under Kubernetes.

Last, with respect to multi-cluster networking, tools such as Submariner [149] have been developed. Submariner was
created to connect overlay networks of different Kubernetes clusters, by establishing encrypted tunnels between them. It
is designed to be compatible with most CNI plugins.

Service meshes

Another important and still growing in popularity aspect of modern service communication is the adoption of service
mesh solutions. The advent of service mesh software is tied to the popularity of microservice-based architectures [16] where
(relatively) small chunks of functionality are divided among different networked computer programs. These programs need
to communicate and doing so reliably is easier said than done. Similar to frameworks, such as web frameworks, which
handle certain repeatable aspects for the creators of the applications so that they can focus on core functionality, service
mesh software delivers a framework for reliable communication among services.

52 https://github.com/containernetworking/cni/
53 https://www.redhat.com/en/technologies/cloud-computing/openshift
54 https://www.openstack.org/
55 https://www.tigera.io/blog/introducing-the-calico-ebpf-dataplane/
56 https://cloud.google.com/blog/products/containers-kubernetes/bringing-ebpf-and-cilium-to-google-kubernetes-engine
57 https://isovalent.com/blog/post/2021-09-aws-eks-anywhere-chooses-cilium/
58 https://www.alibabacloud.com/blog/how-does-alibaba-cloud-build-high-performance-cloud-native-pod-networks-in-production-
environments_596590
59 https://kubeovn.github.io/docs/v1.10.x/en/advance/with-cilium/

https://github.com/containernetworking/cni/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.openstack.org/
https://www.tigera.io/blog/introducing-the-calico-ebpf-dataplane/
https://cloud.google.com/blog/products/containers-kubernetes/bringing-ebpf-and-cilium-to-google-kubernetes-engine
https://isovalent.com/blog/post/2021-09-aws-eks-anywhere-chooses-cilium/
https://www.alibabacloud.com/blog/how-does-alibaba-cloud-build-high-performance-cloud-native-pod-networks-in-production-environments_596590
https://www.alibabacloud.com/blog/how-does-alibaba-cloud-build-high-performance-cloud-native-pod-networks-in-production-environments_596590
https://kubeovn.github.io/docs/v1.10.x/en/advance/with-cilium/

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

53

However, the difference is that the service mesh is transparent to the application developer and decoupled from services’
implementation, unlike a framework. Service mesh solutions relieve developers from hard-coding the communication
reliability logic into their programs and present application operators with a single pane of glass for inspecting the inter-
service communication activities. The reliability feature of service meshes includes backoffs and retries as well as security
features for robust secure connections between two-way-authenticated services, employing techniques such as mutual TLS
(mTLS).

Service meshes terminology maps similar concepts from general communication parlance: there is both the service mesh
control plane (with management features included) and service mesh data plane. The control plane entities are responsible
for configuring the data plane entities so that the desired communication patterns are possible. The popularity of
Kubernetes in the microservices’ world means that the majority of service mesh implementations are at least compatible
with Kubernetes if not simply Kubernetes native. Furthermore, the popularity of microservice architectures and thus
service meshes resulted in multiple not strictly compatible approaches to service meshes.

To alleviate this situation, a Service Mesh Interface (SMI) [150] standard has been proposed for Kubernetes and donated
to the CNCF by Microsoft. All major open-source service mesh providers, such as Istio [18] and Linkerd [151], have joined
the effort to build a consistent operator-oriented interface for defining and managing service meshes, regardless of the
internal implementation (like what proxy server is used and whether XDP/eBPF is utilised). Recently (in 2022), the SMI
has joined forces with a yet more general Kubernetes Gateway API [152], [153] project which handles now service meshes
in their GAMMA (Gateway API for Mesh Management and Administration) initiative [154].

On the implementation side, the service meshes’ data plane is usually wired as managed proxies which intercept services’
traffic both on ingress and egress (from the service’s perspective; the data movement considered is usually east-west rather
than north-south, but under the GAMMA initiative north-south will also be supported). Thus, such proxies see all traffic
and can manipulate it in various ways.

IoT Communication
Wireless communication is the preferred method of communication in the IoT for it provides the flexibility and mobility
typically required by IoT applications. Figure 4 presents an overview of diffused wireless technologies used in the IoT
classified by signal range; a brief overview of these technologies is in order.

Figure 4: Wireless technologies used in the IoT

NFC (Near Field Communication) [155] and RFID (Radio-Frequency Identification) [156] provide short-range
connectivity - in the order of centimetres in the case of NFC, and of a few metres in the case of RFID. NFC supports
higher data rates than RFID, provides encryption of data transmissions, and requires synchronous interaction. RFID on

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

54

the other hand makes no security provisions (relies on external physical security measures to protect transmitted data),
and supports both synchronous and asynchronous interaction. NFC is more power-consuming than RFID.

Turning to Wireless Personal Area Networks (WPANs), Bluetooth [157] is an open standard used for exchanging data
over short distances. It is designed for high-datarate communication that can replace wire connections between nearby
devices; in its most widely used mode, transmission power is limited to 2.5 milliwatts, yielding a range of up to 10 metres.
BLE (Bluetooth Low Energy)[157] is a low-power version of Bluetooth designed for low-data rate communications in the
IoT. Both Bluetooth and BLE provide encryption and authentication to protect data transmissions. ZigBee [158], Z-Wave
[159], Thread [160], and 6LoWPAN [161], [162] are based on IEEE.802.15.4. ZigBee is an open standard that provides
low-cost, low-power, low-data rate communication in a mesh network of up to 65000 connected devices. Its data rate is
typically lower than that of BLE, and its range is generally shorter; it is, however, more power-efficient. Z-Wave is a
proprietary technology that offers a higher data rate than ZigBee, but a shorter range (typically limited to 30-50 metres),
and a relatively higher power consumption. Both ZigBee and Z-Wave provide encryption and authentication to protect
data transmissions. The recently announced Thread, is a mesh networking protocol that provides secure communications
between IoT devices. It is a low-power, IPv6-based technology that provides reliability through self-healing in case of device
failures. 6LoWPAN (IPv6 over Low power Wireless Personal Area Networks) is an open standard for transporting IPv6
packets over low-power, lossy networks. It can be used both for device-to-device interaction, and as a gateway for providing
Internet connectivity. 6LoWPAN supports a relatively low data rate (up to 20 Kbps) and can hold up large networks with
potentially billions of nodes.

Moving to Wireless Local Area Networks, Wi-Fi Ha Low [163], [164] provides a low-power, long-range wireless
communication solution for IoT networks. It is based on the IEEE 802.11ah standard and operates in the sub-gigahertz
frequency band, allowing for longer range and better penetration through obstacles. To reduce power consumption, Wi-
Fi Ha Low features low-power sleep modes and corresponding wake-up mechanisms. ETSI HiperLAN [165] is a European
technology standard for wireless local area networks (WLANs). It provides high-speed data transfer rates for supporting
multimedia applications (notably video and audio streaming). HiperLAN operates in the 5 GHz frequency band and
provides reliable connectivity. Table 5 summarises the main characteristics of the protocols outlined above.

Table 5: Main characteristics of wireless IoT protocols

Protocol

Range Data rate Frequency

Minimum Maximum Minimum Maximum Minimum Maximum

NFC 2cm 106 Kbps 424 Kbps 13.56 MHz

RFID

Depends on frequency but typically
in the order of centimetres

Depends on frequency but
typically in the order of few

Kbps
125 Mhz 5.8 Ghz

Bluetooth
Depends on implementation

1 Mbps 3 Mbps 2.4 GHz

BLE 125 Kbps 2 Mbps 2.4 GHz

ZigBee

IEEE 802.15.4-based radios, which
have a typical range of around 30-

100 meters in a home environment

100 Kbps 250 Kbps 868 MHz 2.4 GHz

Z-Wave 40 Kbps 100 Kbps Under 1 GHz

Thread

Depends on
HW

250 Kbps 2.4 GHz

6LoWPAN 10m 100m 20 Kbps 250 Kbps 2.4 GHz

Wi-Fi Ha Low 1Km 0.3Mb/s 347 Mb/s Under 1Ghz

ETSI HiperLAN 100m 23.59 Mb/s 5 GHz

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

55

3.2.10 Cloud and Fog Monitoring
Monitoring is crucial for the efficient performance of cloud and fog computing systems. It can be divided into hosting
resources or platform and application monitoring. Resource monitoring involves aggregating data from physical or virtual
environments to maintain proper resource availability and detect any abnormal situations. Detecting such situations
through monitoring should be the input to fast adaptation decision making and execution by (multi-)cloud and fog
management platforms [166]. Software that tracks and publishes this kind of data is also known as monitoring probes and
it constitutes a fundamental block of any monitoring system. Using such probes, network and computation aspects are
usually published (e.g., Collectd 60, Icinga 61, Nagios 62, Netdata63, etc.). This is implemented through operating system calls
made by a local monitoring agent that collects the data in a predefined recurrent period in order to make them available
for processing. Application monitoring measures the health and performance of all application components, providing
valuable information to improve the efficiency and timing of computing jobs. The goal is to extract application patterns
and ensure service level objectives (SLOs) are met. Therefore, a monitoring probe refers to either a daemon operating on
the monitored host or an agent scraping data from monitoring APIs exposed by the resources being monitored (e.g., Java
Management Extensions (JMX)) [167]. Depending on: i) how distributed the application components are; ii) whether
single or multiple cloud providers are used; and iii) if fog resources or other edge devices are involved, the collection and
propagation of monitoring data become perplexing [168], [169]. Cross-layer monitoring is necessary for multicloud and
fog computing, but it can be challenging due to dispersed application components and the use of multiple hosting
locations that may enable heterogeneous hosting resources (i.e., private/public/hybrid clouds, fog devices). Monitoring
probes should be automatically set up and connected to provide an overview of the current context of applications and
their dispersed hosting infrastructure.

In addition to metrics collection and their respective challenges, another fundamental aspect of any monitoring
functionality is the ability to process incoming monitoring data streams. This processing comprises filtering and
aggregation of monitoring data as well as events management and processing with respect to SLOs and service level
agreements (SLAs) threshold violation. The challenge is to provide timely, accurate, and trustworthy detection of such
violations or recognition of any other anomalies to allow a cloud computing continuum management platform to maintain
the desired quality of service (QoS). So, different monitoring topologies have been discussed in the literature [168]–[170]
encompassing centralised, hierarchical or even distributed approaches. Such topologies involve both the propagation of
data coming from dispersed monitoring probes and the processing of the various monitoring streams. Specifically,
according to Stefanidis et al. [168] and Masip et al. [171] a centralized monitoring topology involves only one monitoring
server that receives the data flow from all dispersed agents; a hierarchical [170] (or decentralised [171]) topology (e.g., the
Event Management System [168], [169]) suggests a set of nodes with their own “local” monitoring server (also known as
aggregator) able to act on the data (filtering, persisting, etc.) received from nearby resources, while it can collaborate with
other servers in a pre-defined way; and last a distributed topology has been defined [170] by involving the interaction of
all monitoring components that share their view of monitoring resources and together maintain a common, synced view
of the whole application environment, without using any centralised entity.

In [172] we analysed well-known commercial and open-source monitoring tools to discuss their fit, mainly as monitoring
probes, for an advanced monitoring system able to cope with applications deployed across the Cloud Computing
Continuum. In another recent study, Costa et al. [170], focused on fog monitoring solutions that could, even partially,
cope with the characteristics and challenges of monitoring in the cloud computing continuum. According to the same
review, monitoring tools such as Support and Confidence-based Monitoring (SCB) [173], Prometheus64, Switch [174] and
Rule base [175] can cope with several of the challenges of fog monitoring since they are lightweight, multi-platform and
accept on-the-fly configurations. Nevertheless, we ascertained [170], [172] that the majority of the available monitoring

60 https://collectd.org/
61 https://icinga.com/
62 https://www.nagios.org/
63 https://www.netdata.cloud/
64 https://prometheus.io/

https://euc-word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=en%2DUS&rs=en%2DUS&wopisrc=https%3A%2F%2Feurecatcloud.sharepoint.com%2Fsites%2FNEBULOUS%2F_vti_bin%2Fwopi.ashx%2Ffiles%2F466b9ae016cd4697a171a86733c590fe&wdenableroaming=1&wdfr=1&mscc=1&hid=10218CA0-4071-6000-023B-7D492EF25163&wdorigin=ItemsView&wdhostclicktime=1673693245371&jsapi=1&jsapiver=v1&newsession=1&corrid=93548419-9045-4d3e-9206-a2a0b52b2eb1&usid=93548419-9045-4d3e-9206-a2a0b52b2eb1&sftc=1&cac=1&mtf=1&sfp=1&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlush&rct=Normal&ctp=LeastProtected#_ftn2
https://collectd.org/
https://icinga.com/
https://www.nagios.org/
https://www.netdata.cloud/
https://prometheus.io/

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

56

tools follow a centralised approach (e.g., Amazon CloudWatch65, Azure Cloud Monitoring66, Datadog67, OpenStack
Telemetry68, PyMon [176], TEEMon [177], etc.), which is not always adequate for the cloud computing continuum. They
usually involve monitoring agents that collect performance-related metric values, in an active manner (intrusive to the
monitoring target [178]). Only a few of them (Icinga, SequenceIQ [172], FMonE, SCB, FogMon [170], Event Management
System (EMS) [168], [169]) support some sort of distribution regarding the processing topology (i.e., Hierarchical) and
therefore may provide a basic support to dynamically distributed monitoring topologies like the ones NebulOus aims to
facilitate. Such an approach allows for lower latency and more efficient use of resources, as data is processed closer to the
monitored source. This is quite valuable for any low latency application environment where real-time data processing is
critical. We consider the support for dynamic and distributed monitoring topology management as imperative for the
dispersed and vigorous cloud computing continuum environments.

Moreover, according to Costa et al. [170] the use of the push-based communication model (e.g., Opsview69, Icinga,
Datadog, Collectd, PyMon, Osmotic monitoring [179], etc.) for monitoring may lead to problematic situations, if
scalability aspects are not solved, resulting in huge amount of data being injected into the monitoring server. In such cases,
communication channels and processing capacity for monitoring purposes can become overloaded and potentially cause
inefficacy, data loss or even complete unavailability of the whole monitoring system [177]. It is evident that scalability and
fault-tolerance aspects should be considered. Otherwise if not clearly addressed (Pymon, Osmotic monitoring and Switch)
the risk of failure is significantly increased. In addition, plenty of these tools focus mainly on the aggregation of monitoring
data to mainly visualise them and let the DevOps decide on mitigation actions, based on the current status of the
application [172]. Only a few of them support advanced processing capabilities and root cause analysis (i.e., Datadog,
Dynatrace, New Relic), which if extended appropriately they can materialise the goals of white-box monitoring [170]. Last,
the majority focus on hosting resources and network monitoring which implies the diversity required to cope with different
application monitoring types [172]. Since, deploying and maintaining applications over multiple cloud computing
continuums, with their inherent distributed nature, one may think that the proper processing topology would always be a
distributed scheme. According to Ward et al. [180], distributed topologies have inherent scalability improvements over
centralized ones, but they introduce a set of different challenges such as monitoring system bootstrap, node lookup process
and monitoring data replication and synchronization [170]. We add to these findings all the security aspects that should
be considered when propagating monitoring data across cloud, fog, and edge resources, spanning the strict boundaries of
vendors and end-users organisations.

The last point to this analysis acknowledges the fact that as the distribution of cloud application components is increased
and the heterogeneity of the hosting resources is expanded, the processing requirements of diversified (in volume, velocity
and type) monitoring streams are also amplified. This leads to the requirement for sophisticated tools that follow the
complex event processing (CEP) paradigm [168], [169], [176] for digesting and processing multitudes of event streams. Of
course, there are already existing centralised CEP approaches for monitoring purposes, but they usually crave for huge
bandwidth and computational capabilities, while they lack robustness and scalability, generating a single point of failure
[168], [169]. Therefore, distributed CEP architectures [168], [181] [182] are more appropriate in dynamic environments
like in ad-hoc cloud continuums. Nevertheless, such efforts are currently bound to the use of simple infrastructures, a fact
that limits, the capability to detect reconfiguration opportunities in multi-clouds and edge resources.

65 https://aws.amazon.com/cloudwatch/
66 https://docs.microsoft.com/en-us/azure/azure-monitor/overview
67 https://www.datadoghq.com/
68 https://github.com/openstack/ceilometer-specs
69 https://www.opsview.com/

https://aws.amazon.com/cloudwatch/
https://docs.microsoft.com/en-us/azure/azure-monitor/overview
https://www.datadoghq.com/
https://github.com/openstack/ceilometer-specs
https://www.opsview.com/

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

57

3.2.11 Anomaly Detection
From the data collected by the set of monitoring probes deployed, one of the most relevant and valuable processes is
anomaly detection. Anomaly detection [183] is a broad problem, which has been investigated for many years and is
applicable in a wide range of domains, with its peculiarities and limitations. Beyond data analysis and artificial intelligence,
anomaly detection can be applied in the cybersecurity domain, predictive maintenance, failure prevention, automation,
or e-health [184]. Anomaly detection can be defined as the process of identifying data patterns that significantly deviate
from expected behaviour, where, in most cases, these anomalies are unusual or difficult to model or predict. The
identification of anomalies is vital to be reactive, mitigating and responding to a wide range of issues that can have costly
consequences if not addressed in time, such as detecting theft of credit cards, preventing system failures, or anticipating
the occurrence of cancer.

In a continuum computing context, the anomaly detection process relies on the data collected by the deployed monitoring
probes system, where the type of input data has to be considered, as it requires certain techniques, with associated
challenges. Topics such as dimensionality, number of attributes, or relationships between different instances of the data
(sequential, spatial, graphical, etc.). The anomaly detection process is further complicated when the data includes other
types of data such as evolving data, streaming data, correlated data, heterogeneous data, contaminated data, and big data.

Anomaly detection has usually been approached from a statistical point of view, but the explosion of machine learning
opens up new opportunities, especially thanks to the large volume of data that can be gathered for model training processes,
which are very attractive in domains where new data patterns are arising that make it difficult to use static models [185],
[186]. Statistical techniques assume that data points are generated and distributed according to a statistical model, where
any deviation from this distribution is considered an anomaly, with the advantage that the results can be explained and
interpreted. These types of techniques can be classified as parametric (Gaussian model, Regression model, Gaussian
mixture modelling, Hidden Markov Models, Hypothesis testing...), or non-parametric (k-NN based, Parzen density
estimation, string matching, and clustering) [187], [188]. A very common case is when the data have a sequential
relationship, generating a time series. Algorithms such as Time Series Analysis (TSA), Auto Regressive Moving Average
(ARMA), Integrated Moving Average (ARIMA), Kalman Filtering, etc. are commonly applied in order to analyse the time
series and extract statistical information to detect an anomaly [189]. However, we obtain better results when solutions with
synergies between statistical models (ARIMA) and deep learning models, allowing for unsupervised anomaly detection
[190]. Another conventional approach applied in anomaly detection is the reduction of the dimensionality of the data
space, assuming that this reduction can separate normal and anomalous cases in a very clear way. This reduction process
can be based on Principal Component Analysis (PCA) [191], or on graphs [192], where the graphs are selected to include
structural information about the measured data (proximity). This dimensionality reduction represents a great advantage
for high dimensional data processing, even more so when other types of anomaly detection techniques are subsequently
applied. The above techniques require a good situational awareness in order to derive a well-quantifiable measure of the
anomaly. On the other hand, when the real scenarios increase their time-variability, these techniques do not perform
satisfactorily in front of the time-variability of the data models. This means that it is necessary to introduce data-driven
techniques that allow for more flexible adjustments and that can respond to the high dynamism and complexity of the
data space gathered by the monitoring system.

Data-driven techniques are usually based on learning models, since there is no mathematical model, but there is a large
volume of data that allows the most appropriate learning process to be carried out. These types of techniques can be
classified into three categories of learning: supervised, unsupervised and reinforcement learning, with a considerable
number of success stories. In the case of anomaly detection, supervised learning faces very special challenges compared to
its application in other cases. A well-known method for anomaly detection is cost-sensitive learning, such as Metacost [193],
Proximity-Based Classifiers [194], Support Vector Machines (SVMs) [195], Decision Trees [196] and Rule-Based Classifiers
[197]. The difficulty and cost of the training data labelling process limits the volume of labelled data available so that the
introduction of semi-supervised learning is necessary, where a limited set of labelled data and a large volume of unlabelled

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

58

data is available [198]. In such approaches, machine learning is applied to a classifier model for the 'normal' data, so that
anomalies are incorporated and evolve dynamically. Autoencoders [199] can be used for the learning stage, training the
model with the normal data, learning to reconstruct the input with a very small reconstruction error score, and it is at the
time of detection that anomalies with a higher reconstruction error are introduced, defining a threshold to identify the
anomalous data. On the other hand, unsupervised learning algorithms assume that the anomalies are significantly different
from the normal cases [200], with the clustering method being the most widespread and applied, where the anomalies do
not belong to any cluster or to a very small cluster [201]. Clustering algorithms can be based on similarity measures or
probabilistic modelling, estimating the probability of each data instance [202]. Another interesting approach in anomaly
detection is reinforcement learning, being the most similar method to the way humans learn, focusing on assigning positive
or negative reinforcement depending on the result obtained, while adapting to the objective of maximising the defined
goal, anomaly detection. This type of learning has significant potential in different domains; focusing on anomaly
detection, it has been applied in a distributed manner in a hierarchical monitoring probe system architecture [203], as well
as in anomaly detection for time series [204]. Finally, there are deep learning methods that enable us to identify patterns
that are useful for making predictions about new inputs. In the area of anomaly detection, several types of deep learning
networks have been proposed, such as Convolutional Neural Networks (CNN) [205], [206], Autoencoders [207], [208],
Generative Adversarial Networks (GAN) [209], [210], Restricted Boltzmann Machine [199], [211] and the Recurrent Neural
Network (RNN) [212], [213].

All learning techniques introduce a number of features to the anomaly detection process, but they also involve significant
complexity, where learning must be performed on sufficiently resourced components, either at the edge, fog, or cloud, and
where there is a growing demand for accurate anomaly detection in streaming and real-time systems. The evolution of both
hardware and software resources, as well as the emerging new architectures, make it possible to handle streaming data and
to respond to the real-time requirements of applications. These architectural proposals will allow data processing in two
different modes: off-line processing and on-line processing. Off-line processing permits the use of complex techniques
without limitations of time and computational resources. On the other hand, on-line processing must be performed with
limited resources and provide results in a defined time frame, where data must be processed as it is received [184]. The use
of one or the other processing approach depends on the requirements of the system. The online approach will be applied
when it is required to process streaming data on the fly, in real or near real time. On the other hand, the offline approach
will allow more complex tasks to be carried out, when a large volume of data is available and when an immediate response
is not required. In the NebulOus context, the real challenge will be to efficiently extract useful information from the large
volume of data gathered by the monitoring probes deployed in the infrastructure, limiting considerably the transmission,
storage and processing of the necessary data in a continuum computing model, and to apply the most appropriate
processing approach (offline or online) to respond to the requirements defined, both in terms of response time and
available resources.

3.2.12 Security and Privacy

Edge computing technology helps real-time applications by reducing latency and response time, extending cloud
computing capabilities to the edge of the network. With this technology, data is instantly analysed and processed at the
edge of the network where it is collected. In this way, data is processed in real time at physically close edges to support data
flow acceleration [214]. Currently, many of the applications in IoT environments require real-time response, but IoT
computing and storage deployment in the cloud may not be IoT-friendly due to network latency. The solution to reducing
latency is to move those resources closer to the IoT sensors that are providing the data or waiting for a response in real
time [215]. The appearance of IoT systems and solutions provides more open ecosystems with highly-interconnected
heterogeneous devices. This fact has generated many challenges in the field of IoT security [216].

In this context, the security and privacy in the context of NebulOuS assume three main functions. The first one is to
ensure the security and privacy of communications. This is established by the creation of secure overlay networks which

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

59

encrypt traffic end-to-end. The second one is to establish data protection and privacy, which is achieved by providing
logical access control to generated data. The third one is to detect and mitigate threats or potential intruders, which is
enabled by the timely detection of such events and appropriate cybersecurity actions.

The state-of-the-art with respect to securing communications can be found in Section 3.2.9. In this section, we outline
approaches to tackle the other two aspects by providing the background and recent advancements on a) Access Control
mechanisms and b) Intrusion Detection, focusing on Artificial Immune Systems.

We note that closely related to the latter is anomaly detection, but is methodologically treated as a separate field as it is
also related to general monitoring aspects which lie outside the scope of cybersecurity. Therefore, the related state-of-the-
art has been presented in the previous section.

Access Control

Access Control Mechanisms realize various logical access control models. Those models provide the framework and a set
of boundary conditions upon which the objects, subjects, operations, and rules may be combined to generate and enforce
an access control decision.

There are several models and mechanisms, each one having its own advantages and limitations. Details on their application
to the cloud and IoT edge of the continuum can be found in several papers [217] [218]. In this section, we first provide
an overview of the most popular ones, note their advantages and disadvantages, assess their suitability for NebulOuS and
present the current technical options (languages, specifications and tools) to implement them.

With respect to the different Access Control models, the main ones are the following:

• Discretionary Access Control (DAC). In DAC, the owner of the object specifies which subjects can access the
object. Most operating systems such as Windows, Linux, Macintosh and most flavours of Unix are based on DAC
models.

• Mandatory Access Control (MAC). In MAC it is not the users, but the system that specifies which subjects can
access specific data objects. This model is based on security labels. Subjects are given a security clearance (secret,
top-secret, confidential, etc.), while data objects are given a security classification (secret, top-secret, confidential,
etc.).

• Identity Based Access Control (IBAC) uses mechanisms such as access control lists (ACLs) to capture the
identities of those allowed to access an object. In the IBAC model, the authorization decisions are made statically
prior to any specific access request and result in the subject being added to the ACL.

• Role-based access control (RBAC) employs pre-defined roles that carry a specific set of privileges associated with
them and to which subjects are assigned.

• Attribute-based access control (ABAC) uses attributes, and policies that express boolean rule sets that can evaluate
many different attributes before allowing access. ABAC, therefore, avoids the need for capabilities
(operation/object pairs) to be directly assigned to subject requesters or to their roles or groups before the request
is made. IBAC and RBAC can be seen as special cases of ABAC, with IBAC using the attribute of “identity” and
RBAC using the attribute of “role”.

The adaptability and expressiveness of ABAC make it ideal for protecting data, thus it is currently the approach that is
considered by NebulOuS for implementing its Access Control mechanisms.
In more detail, ABAC allows dynamicity in policy creation, as well as separation of concerns among policy definition and
enforcement. Such policies shall be able to update dynamically based on specific constraints that are not a-priori related
to requestors. This is in contrast to both a MAC scheme, in which the policy definition point is unique and the resources

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

60

have static properties based on which allowance/disallowance is provided, or DAC schemes where the properties are
totally static.
Furthermore, in IBAC and Access Control Lists the exhaustive list of authorization decisions should be defined prior to
any request. Therefore, even though they support extensible attributes for subjects & objects, the dynamicity offered comes
with a severe drawback.
On the other hand, RBAC and ABAC seem more capable to satisfy the needs of NebulOuS. Since RBAC can be seen as
a special case of ABAC (in which one subject attribute is addressed as Role), we will hereafter focus on ABAC.
ABAC removes the need for capabilities (operation/object pairs) to be directly assigned to subject requesters or to their
roles or groups before the request is made [219]. Instead, when a subject requests access, an ABAC-compliant engine makes
an access control decision based on a) the assigned attributes of the requester, b) the assigned attributes of the object, c)
the environment conditions, and d) a set of policies that are specified in terms of those attributes and conditions.

Figure 5: Attribute-Based Access Control (ABAC)

The key standards that implement ABAC are two: the OASIS standard of extensible Access Control Markup Language
(XACML) and the Next Generation Access Control (a.k.a. NGAC) standard [220]. Although the former two are the most
notable, worthy of mention is also the Abbreviated Language For Authorization (ALFA) [221]. ALFA is a pseudocode
language that respects the XACML model and contains the same structural elements as XACML i.e. PolicySet, Policy, and
Rule. Its difference is the use of JSON (instead of XML) to define access-control policies, while it can map directly into
XACML.

XACML is an OASIS [222] standard that describes both a policy language and an access control decision request/response
language. Both languages use XSD [223] notations; hence policy definition and request/response elements are serialized
as XML elements.

On one hand, the policy language details the general access control requirements and provides extension points for new
functions, data types, combining logic, etc. On the other hand, the request/response language allows the formation of

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

61

queries that ask whether a given action should be allowed. The response shall include an answer on the request allowance
using one of the following four values:
• Permit
• Deny
• Indeterminate (an error occurred or some required value was missing, so a decision cannot be made)
• Not Applicable (the request can't be answered by this service).

The specification defines five main components that handle access decisions: Policy Enforcement Point (PEP), Policy
Administration Point (PAP), Policy Decision Point (PDP), Policy Information Point (PIP), and a Context Handler. With
respect to their functionalities, the role of each component is the following:

• The Policy Administration Point (PAP) is the repository for the policies and provides the policies to the Policy
Decision Point (PDP);

• The Policy Enforcement Point (PEP) is the interface of the whole environment to the outside world. It receives
the access requests and evaluates them with the help of the other actors and permits or denies access to the
resource;

• Policy Decision Point (PDP) is the main decision point for the access requests. It collects all the necessary
information from other actors and calculates a decision;

• Policy Information Point (PIP) is the point where the necessary attributes for the policy evaluation are retrieved
from several external or internal actors. The attributes can be retrieved from the resource to be accessed,
environment (e.g. time), subjects, and so forth.

Artificial Immune Systems

In this context, the detection of anomalies caused by cyberattacks becomes an increasingly laborious task to identify known
anomalies, new zero-day anomalies, or signs of system instability after these anomalies. These new security challenges
require new approaches and tools and smarter solutions, with bio-inspired ones having the best position.

Artificial intelligence and in particular learning algorithms appear to be the most appropriate for some cybersecurity
purposes. Using learning algorithms, the rapid and accurate detection of malicious behaviour is more feasible than ever.
A special branch of this type, includes algorithms inspired by nature and biotechnology. Such algorithms followed from
the model's nature, biology, social systems and life sciences. Some examples [224] include genetic algorithms, swarm
intelligence, artificial immune systems, evolutionary algorithms and artificial neural networks. These algorithms have a
great advantage over traditional learning algorithms, they focus on optimization: nature acts as a method to generate
something as perfect as possible, or to choose the most suitable samples from a population. In practice, this family of
algorithms applies these principles in the form of optimization and search for the best solution to the assigned problem.
In anomaly detection, the main objective is to identify malicious behaviour, so these algorithms use the most appropriate
mechanisms to detect malicious anomalies [225]. Another beneficial use of bio-inspired algorithms is the optimization of
possible features used in attack detection, for example selecting an optimal set of features for effective malware detection,
but also reducing complexity and computational load. Also, bio-inspired algorithms are very flexible, as they can accept a
mix of variables in terms of type and duration.

Bio-inspired computing is gaining prominence over time as these algorithms are intelligent, as well as learning and adapting
like biological organisms [226]. The lines of biological research about algorithms are being directed towards the
combination of several of these algorithms to apply them in different specific functions within the same complex context,
in order to obtain better results, since depending on the application that is required one algorithm or another will adapt
better, or what is the same, obtaining an intelligent behaviour with better results depending on the context.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

62

One of the most used and promising approaches in these topics is the use of Artificial Neural Networks, which can solve
many problems including clustering, regression, classification, and prediction problems. In particular, they have been
widely used in malware through pattern recognition and intrusion detection [227]. On the other hand, the evolutionary
algorithms are used to solve single-objective, multi-objective, combinatorial and/or non-deterministic problems,
optimizing characteristics or parameters to classify attacks [228]. Also, other approach are swarm intelligence algorithms,
the self-learning capacity and the adaptability that they present towards external variations in real time turn out to be key
factors of these algorithms to understand the attractiveness and interest in different fields of application [229].
Additionally, another approach are artificial immune systems (AIS), providing valuable features: security, resilience,
distribution and memory [230]. To that end, its insight capacity for the identification and characterization of anomalies
in a context of dynamic systems and rapidly evolving threats is a critical factor.

The main function of a biological immune system is to protect the body from foreign molecules known as antigens. It has
a strong pattern recognition ability that can be used to distinguish between foreign cells entering the body (non-self or
antigen) and the body's (self) cells. Immune systems have many characteristics such as uniqueness, autonomy, stranger
recognition, distributed sensing, and noise tolerance. Most of the living organisms have an immune system and the IoT,
despite being a computational system, introduces some novel features that make it resemble a living organism [231]. First,
IoT networks consist of a multitude of IoT devices (cells) distributed over a wide geographic area, which can be static or
mobile. Second, IoT devices can sense the environment with their built-in sensors and interacting with it through different
types of actuators. This changes the context around the device, which in turn introduces new changes at all levels of the
IoT implementation. Third, typical IoT deployments lack sufficient computing and processing power to defend against
and adapt to all kinds of anomalies. Finally, just as an organ is vital to the proper functioning of the human body,
malfunctioning IoT implementations can pose a serious threat to the functioning of an entire system. Maintaining IoT
security is a serious challenge, mainly due to the complexity in integrating security mechanisms and the existence of
vulnerable and misconfigured IoT systems.

Inspired by specific immunological theories that explain the function and behaviour of the immune system [232], the
following four techniques/algorithms arose:

• Clonal Selection: Inspired by the clonal selection theory of acquired immunity that explains how B and T
lymphocytes improve their response to antigens over time, called affinity maturation. These algorithms focus on
the Darwinian attributes of the theory in which selection is driven by the affinity of antigen-antibody interactions,
reproduction is driven by cell division, and variation is driven by somatic hypermutation. Clonal selection
algorithms are most applied to the optimization and pattern recognition domains, some of which resemble parallel
climbing and the genetic algorithm without the recombination operator [233].

• Negative Selection: inspired by the positive and negative selection processes that occur during T cell maturation
in the thymus called T cell tolerance. Negative selection refers to the identification and elimination (apoptosis) of
autoreactive cells, that is that is, T cells that can select and attack own tissues. This class of algorithms is typically
used for classification and pattern recognition problem domains where the problem space is modelled on the
complement of available knowledge. For example, in the case of an anomaly detection domain, the algorithm
prepares a set of exemplary pattern detectors trained on normal (not anomalous) patterns that model and detect
invisible or anomalous patterns [234].

• Immune Network: inspired by the "idiotypic" network theory proposed by Niels Kaj Jerne that describes the
regulation of the immune system by "anti-idiotypic" antibodies (antibodies that select for other antibodies). This
class of algorithms focuses on the network graph structures involved where antibodies (or antibody-
producing cells) represent the nodes and the training algorithm involves growing or pruning edges between nodes
based on affinity (similarity). in the representation space of problems). Immune network algorithms have been

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

63

used in domains of clustering, data visualization, control, and optimization, and share properties with artificial
neural networks [235].

• Dendritic Cells: Inspired by the immune system developed with a multi-scale approach. This algorithm is based
on an abstract dendritic cell (DC) model. The Dendritic Cell Algorithm (DCA) is abstracted and implemented
through a process of examining and modelling various aspects of DC function, from the molecular networks
present within the cell to the behaviour exhibited by a population of cells as a whole. Within DCA, the
information is granulated into different layers, which is achieved through multi-scale processing. It has turned
out to be one of the best approaches for solving intrusion detection problems, representing DCs as detectors of
different control sites in the body, as well as mediators to induce a variety of immune responses [236].

Based on the human immune system, assimilating in this way to the characteristics that they present; highly evolutionary,
functioning in a parallel and distributive manner, robust and being able to easily adapt to any environment, the concept
of AIS is built, in which they want to extend the capacities provided by the immune system and which turn out to be very
useful in contexts such as in detecting anomalies [237]. The main aspects of the immune system that make this concept
interesting and try to contextualize it in computational paradigms are recognition, feature extraction, diversity, learning,
memory, distributed detection, self-regulation, meta dynamics and immune network [238]. In this type of dynamic
environment, defence mechanisms of the same type must be implemented, that is, at runtime. In this way, the approach
is focused on monitoring and analysing the characteristics of the system to identify attacks and errors at an early stage,
having the ability to analyse the cybernetic and physical behaviours of the system, comparing the observed behaviour with
the predictions or adequate behaviour. It can be safely stated that nature is the most appropriate entity to solve difficult
and complex problems, since it can find the most appropriate solution.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

64

4. The NebulOuS architecture

4.1 Methodology

The NebulOuS architecture was defined in the context of Task 2.3. Its design incorporates the input provided by Tasks
T2.1 “Scientific and technological State-of-the-art analysis” and T2.2 “High-level requirements analysis”, the results of which are
reported in Sections 2 and 3 of this Deliverable.

To define our system’s architecture, we have followed a design approach which depicts our system using 3 different levels
of abstraction: The conceptual design, the logical design and the physical design. Each one of those designs depicts our
platform in an increasing level of detail.

The conceptual design is a high-level view which aims to depict the main concepts and functionalities being offered and
contains no implementation details. It is mostly non-technical and can communicate the general concept to non-experts.
The logical design includes the logical components which comprise our system and is closely tied to the software artifacts
that are going to be implemented. It describes the basic flow of information between the components, but does not yet
bind them to any specific implementation technologies or tools. The physical design is a low-level depiction of the actual
implementation of our system, including all technical details. We note that this Deliverable only reports the conceptual
and logical NebulOuS architecture. The physical architecture will be reported in a later stage of the project, as it is tied to
the results of technical tasks which have not yet started.

For the design process, we followed a top-down approach: First, we designed the conceptual architecture of our system,
grouping the individual functionalities that are going to be supported by the NebulOuS Meta-OS into coarse-grained
blocks. Subsequently, we began to de-compose those building blocks into more fine-grained components, adding further
details until the final logical architecture was specified. Furthermore, our approach was an iterative one. Based on the
updated input received by the requirements and SotA analysis which was conducted in parallel, we integrated the
corresponding findings into our architecture and released new, refined, versions regularly.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

65

4.2 Architecture

4.2.1 Conceptual architecture

Figure 6: The NebulOuS conceptual architecture - overview of supported functionality

Figure 6 depicts the NebulOuS conceptual architecture. In this figure we provide a high-level overview of the NebulOuS
Meta-OS and present the functionalities that will be provided by each part of the Meta-OS. The figure is composed by two
main parts: a) the NebulOuS Meta-OS and b) the different types of underlying resources that can be managed by
NebulOuS.

With respect to the underlying infrastructure, NebulOuS will be able to deploy applications across the entire Cloud-to-
Edge Continuum, supporting a wide variety of resources from the Data Center to the User Edge70. This includes the entire
spectrum of available options, from container-based deployments to VM-based ones, even “raw” bare metal deployments.
Furthermore, NebulOuS will not only accommodate “serverful” approaches, but also the serverless paradigm, allowing
users to optimize the execution of their functions using our Meta-OS.

The NebulOuS Meta-OS itself is comprised of the following components: the kernel, UI, networking, security and utilities.
The security mechanisms are used to ensure secure access to the resources, also including privacy aspects when desired by

70 https://github.com/State-of-the-Edge/glossary/blob/master/edge-glossary.md#user-edge

https://github.com/State-of-the-Edge/glossary/blob/master/edge-glossary.md#user-edge

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

66

the NebulOuS users and expressed in the form of relevant policies. The UI enables user interaction with the Meta-OS and
will include a Graphical User Interface. The networking mechanisms interconnect the different resources and ensure that
communication can be successfully and efficiently established between the devices (e.g. by creating secure tunnels and
overlay networks). The NebulOuS kernel forms the core of the architecture and can be conceived as a logically-centralized
control plane, which continuously monitors the resources and dictates the service orchestration process on the entire
continuum. Finally, two system utilities will be offered by the NebulOuS Meta-OS to its users: a) the ability to establish
blockchain-based Service Level Agreements and b) the ability to leverage the Cloud & Fog service brokerage mechanism
for the establishment of ad-hoc clouds which involve the infrastructure of different organizational units or telecom
providers, according to the user preferences.

4.2.2 Logical architecture

Figure 7: The NebulOuS logical architecture

Figure 7 depicts the NebulOuS logical architecture. This figure provides an overview of the different components which
comprise our platform, as well as the main flows between them. We will hereafter give a general overview of its design,
reserving specific details on the role and functionality of the individual components for Section 4.3.

Before delving into the actual architecture, we will first present the different actors that interact with NebulOuS. To this
end, we consider two main types of NebulOuS users:

• A regular “end user”, which assumes the role of a cloud continuum consumer and uses NebulOuS to deploy a
workload in the cloud-to-edge continuum (typically a software developer or DevOps). Those users provide
NebulOuS with a service description, along with all related requirements and constraints (e.g. the hardware
architecture that the service can be deployed on). They also declare their preferences regarding service brokerage
in the form of requests that are going to be handled by the NebulOuS Meta-OS.

• An “admin” user, related to an entity that has deployed NebulOuS on its premises and advertises its available
resources to be brokered. Instances of such entities in the context of NebulOuS can be telecom providers which
onboard compute resources from their edge locations, organizational units which make their private resources

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

67

available for intra or inter-organisational collaborative infrastructure sharing scenarios, etc. Those users provide
NebulOuS with various policies (e.g. security, access control) to be enforced by the Meta-OS.

Both of the aforementioned actors use NebulOuS to intermediate between computing resources and software, the same
way that a typical Operating System is being used. The NebulOuS users interact with the platform via the NebulOuS User
Interface (UI). This UI will incorporate graphical interaction (i.e., a GUI) and will provide each user with all the necessary
information on the state of the deployed services and available resources. To this end, we will consider various tools for
the observability, telemetry and monitoring aspects and provide visualizations of the relevant data to the users using a
dashboard-like approach.

To manage security and privacy aspects, a Security and Privacy Manager lies between the UI and Control Plane. This
component receives user-defined security and privacy policies by the UI and undertakes all necessary actions to ensure that
the policies will be evaluated, deployed and enforced. Those policies can provide fine-grained access control to protect
user access to sensitive data, as well as network security by restricting communication between application containers.

In the center of the NebulOuS Meta-OS lies its Control Plane. At this point, it is worth to note that NebulOuS employs
a layered approach to orchestration, assuming it is performed on two different levels: a local and on a global one. Local
orchestration (or L1) is performed by a service orchestrator which manages the deployment and execution of a distributed
application within a single cluster, which will typically span a single resource provider (e.g. cloud provider). In the case of
containerized workloads, Kubernetes may play the role of the local service orchestrator.

However, NebulOuS as a Meta-OS aims to unify resource management spanning different resource providers under a
single control plane, aiming to globally optimize application placement on a multi-cloud, multi-cluster setting from the
cloud to the edge. Such a setting may consist of several local orchestrators being deployed in the different cloud providers
and/or clusters. As a result, a global layer of orchestration is also needed (L2).

Layer-2 orchestration functionality is exactly what is provided by the NebulOuS logically-centralized Control Plane, which
acts as the Meta-OS kernel by intermediating between the various infrastructure and application resources located in
different clusters and optimizing their placement on a global level. As such, it is envisioned that although the two different
levels will have a certain degree of autonomy in their operation, the global NebulOuS Control Plane will be able to override
local orchestrator decisions, if needed. This approach allows L2 orchestration to achieve globally-optimal setups when
available, while L1 can still operate locally even if communication to the second layer is unavailable. Such an approach
aims to realize the Fog Computing paradigm by combining the performance benefits of centralized approaches (usually
employed in the cloud) with the resiliency offered by distributed/decentralized ones (frequently employed at the
edge)[239].

As a central component, the NebulOuS Control Plane is responsible for the service deployment, orchestration,
optimization and real-time reconfiguration across the entire cloud-to-edge continuum. Based on the distributed
applications’ design time requirements, it deploys the service graph on the available cloud/edge resources and
continuously monitors the latter (triggering reconfigurations at runtime, if needed) to ensure that the services operate
optimally. Application placement is optimized in a dynamic manner (when relevant), so that all applications meet their
performance targets and the infrastructure is not over-subscribed. It evaluates the severity of situations forwarded to it by
the AI-driven anomaly detection mechanism, or the EMS and triggers reconfiguration action(s) suggesting either
application-level or platform level adaptations. Furthermore, it also allows for real-time scheduling of functions and
workflow tasks, using traditional and AI-based scheduling approaches. To achieve this functionality, it is composed of
various modules: the Optimizer, the Deployment Manager, the Overlay Network Manager and the Execution Adapter.
The function of each individual component is elaborated in Section 4.3.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

68

There are also several other components which comprise the NebulOuS Meta-OS and intermediate between the
NebulOuS Agents and Control Plane. Those modules implement different functionalities such as Data Collection and
Management, Event Management, Anomaly Detection, blockchain-based SLAs etc. The most important one is the
brokerage functionality, which is served by two components: the Cloud/Fog Service Broker and the Brokerage Quality
Assurance mechanism. By receiving advertisements for the infrastructure and services that can be made available, as well
as the preferences of end users with respect to their services and the available resources being brokered, it enables the
formation of ad hoc clouds between different organizations, or different units of the same organization.

Last, communication on the NebulOuS Meta-OS is mainly concerned with two aspects: connectivity establishment
between the infrastructure resources and data management in the entire continuum. To this end, we include two main
components which realize this functionality: the Overlay Network Manager and the Data Collection and Management
component. The former establishes tunnels between the different physical and virtual devices, to create secure overlay
networks. The latter assumes the role of a communications middleware, capturing raw IoT data streams and managing
data flow details, while also handling the exchange of control plane information between the distributed agents and the
logically-centralized orchestration components of our Meta-OS. The data plane will be established using current state-of—
the-art virtual networking approaches, focusing on programmable and software-defined networks.

4.2.3 Interactions and flows

In this Section, we focus on providing some more specific details on the way the different NebulOuS components are
connected and interact with each other. To do so, we first provide a UML diagram which includes the logical architecture
along with the main interfaces that are exposed by the components, with respect to their internal interaction.
Subsequently, we provide some sequence diagrams which demonstrate information flows between the components on
three main scenarios: a) service deployment by a user, b) service re-configuration by the NebulOuS platform and c) cloud
service brokerage (including SLA generation and compliance monitoring). Last, we present our approach on inter-
component communication within the NebulOuS Meta-OS, focusing on the mechanisms that are currently considered
for this purpose.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

69

Figure 8: Component interactions in the NebulOuS architecture

The NebulOuS end users interact with the Meta-OS through the UI. Via the UI, users can provide the service graph,
describe their preferences and constraints regarding the application placement, define security and privacy policies using
the respective interfaces that will be provided. Furthermore, the end users will be able to view observability information
regarding the status of their services and the available resources.

The UI forwards the design-time graph received by a user to the Control Plane, specifically received by the Optimizer
component. User preferences are also forwarded to the Optimizer, as well as to the Cloud/Fog Service Broker. Apart from
the aforementioned design-time information, the Optimizer will also include an interface to receive runtime information
about the system status. Based on those inputs, the Optimizer will perform the optimization process and output an
Optimized Service Graph, which will be provided by the component.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

70

The Optimized Service Graph is required as an input by the Deployment Manager. The latter also exposes an interface to
retrieve security and privacy policies. Based on those, the Deployment Manager generates a deployment plan that is used
by the Execution Adapter and Overlay Network Manager components.

The Execution Adapter and Overlay Network Manager interact directly with different parts of the underlying
infrastructure, the former managing the resource pool and the later managing the secure overlay network.

Moving on to the infrastructure being managed by NebulOuS, this will typically consist of compute clusters which are
comprised by master and worker nodes. A NebulOuS agent will be deployed in those resources for policy enforcement
and monitoring data collection purposes. Once collected by the NebulOuS agent, the monitoring data will be streamed
to the Data Collection and Management component.

The Data Collection and Management component can then separate those streams, based on their purpose. Two main
branches are currently considered: One includes resource advertisements, which will be sent by the NebulOuS agent to
indicate resource availability information. This information will be received by the Cloud/Fog Service Broker and used to
establish the brokerage functionality. The second one includes the ‘pure’ monitoring information, which is directed
towards a) the end users, for observability purposes and b) the control plane, to enable real-time application
reconfigurations.

In the observability case, the monitoring information is received by the UI and provided to the users by a dedicated
interface. In the real-time reconfiguration case, the monitoring information is received by the Event Management System
(EMS). The EMS, in turn, exposes that information to the AI-driven Anomaly Detection component, as well as to the
control plane directly. The Anomaly Detection uses that information to detect possible anomaly events which, upon
detection, are also forwarded to the control plane. Both are eventually received by the Optimizer module which will, in
turn, decide whether there is a need for re-configurations and further optimizations.

Apart from the previous loop, there is also a second internal loop related to Cloud/Fog Service Brokerage. As already
stated, this loop starts with the Cloud/Fog Service Broker receiving the user preferences and resource advertisements.
Based on that input, the Cloud/Fog Service Broker makes the appropriate decisions and then exposes that information
to the Brokerage Quality Assurance component. The latter performs the necessary checks and exposes the compliance
results. The quality-ensured brokerage information is then received by the SLA Generator, which uses that information
to generate SLA templates. Those templates are ultimately received by the Smart Contract Encapsulator component, which
generates the finalized blockchain-based SLAs.

Those SLAs are exposed and used by the AI-based Anomaly Detection, along with the available monitoring information,
to assess SLA compliance. In case SLA violations are detected, an anomaly event is generated and passed over to the
control plane for any further actions.

Sequence diagrams:

To better illustrate the basic information flows between the NebulOuS components, we hereafter provide three
sequence diagrams. The scenarios depicted are:

• Service deployment by an end user
• Service re-configuration by the NebulOuS platform, based on the available monitoring information.
• Cloud service brokerage, including the process of generating blockchain-based SLAs and monitoring SLA

compliance.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

71

Figure 9: Service deployment sequence diagram

Figure 10: Real-time reconfiguration sequence diagram

Figure 11: Cloud service brokerage and SLAs sequence diagram

General approach to component interaction

There are multiple ways in which the communication among NebulOuS components can happen. The various services
need to exchange data and commands. Typically, the rough classification of communication patterns is between
synchronous and asynchronous. Synchronous are often chosen due to their simplicity and seemingly easier state
management. However, they suffer from flexibility and reliability issues. Asynchronous communication patterns can be
made more flexible and robust if they are properly designed and supported by the applications. However, they require that

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

72

the state is managed in a more sophisticated way: either outsourced or handled inside of the application. There are also
ways to improve the shortcomings of synchronous communications by employing solutions like service meshes (described
in SotA) which offload some of the associated issues, like queuing and smart backoff. In NebulOuS, we are currently
investigating the approach to be followed for each component, yet we aim to arrive at a clean approach, proposing a single
flavour of communications. Among the two, asynchronous communication is the option that is currently considered,
owing to its generally larger potential to support scalable message passing between heterogeneous components.

Even with asynchronous communication, the interface design process does not end there. The actual implementation of
asynchronous communication might differ widely. One common option is to use a Pub/Sub mechanism for publishers
and subscribers. This might be preferable especially for the monitoring data that is collected in real time. In Pub/Sub,
again, there is a choice between brokered and non-brokered message queues. The brokered/non-brokered choice affects
the reliability and scalability of the final solution and thus the decision must not be taken lightly. Similarly, the next step
would be to choose the protocol, typical examples being AMQP and MQTT, and the actual implementation of clients
(and brokers if applicable). Finally, it’s worth noting that K8s API-based approach is also a form of Pub/Sub when
considered from the watched resources perspective (as opposed to the control loop).

4.3 Components

4.3.1 User Interface (UI)
The User Interface component will be the main point of entry for end users and system administrators to interact with
the NebulOuS platform. It will provide a user-friendly interface that allows for intuitive interaction with the system,
reducing the learning curve and making it easier to understand and use the capabilities provided by the Meta-OS. It is
related to Task 3.5: NebulOuS Meta-OS Graphical User Interface.

a. Role & Functionality

As the process of deploying and managing applications can be complex, a GUI will help simplify the experience for
end-users, by providing tools that will enable the definition of their workloads and respective requirements, the
management of the deployed services, as well as visualization of metrics and alerts that will be deducted through the
monitoring process. We can categorize the functionalities that will be available through the UI in the following
manner:

• Configuration
The GUI will provide a range of customization and configuration options, allowing users to tailor the service to their
specific needs and requirements, thus generating SLAs which will be tracked and validated (via QoS monitoring).

• Monitoring
It will allow end users to have a clear and concise overview of their deployments, making it possible to manage and
monitor the health and performance of their applications, the usage of consumed resources, like
cpu/ram/bandwidth, as well as be alerted of any deviations of the defined SLAs, or any related event particularly to
their requirements.

• Visualization
The GUI will display a visual representation of the deployment architecture, providing a clear understanding of the
components and relationships involved. The monitored resources capacity/utilization will also be visualized through
graphs accessible by respective dashboards.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

73

• Security
Administrators of the platform will be able to define their security policies throught the DSL, for their provided
infrastructure that is registered and advertised for consumption by the end-users.

During the development of the user interface we aim to create a controller layer that will expose most of the logic as
an API, allowing 3rd party systems to integrate and programmatically utilize the NebulOuS and extend the
functionality of their systems in their own manner.

b. Requirements Mapping

Table 6: User Interface - relation to system requirements

ID Description Req.
Level

Means to address requirements

F_03 The system shall provide a graphic user interface for the
administration of the deployed components

M A GUI will be implemented that will
provide administrative functionalities to the
deployed components

F_06 The NebulOuS platform provides infrastructure
monitoring capabilities.

M Data visualization of the monitored
infrastructure will be provided through the
Graphical User Interface via graphs in
Dashboards.

F_07

The NebulOuS platform provides application
components lifecycle management for all components of
the application regardless of where the component is
deployed (cloud, edge, IoT device). It is able to start, stop
components and react to monitoring alerts (if a
component requires restarting for example).

M Users will be able to manage the deployed
components through the User Interface.

F_08

The NebulOuS platform provides a deployment
mechanism that makes it easy to deploy and manage data
processing pipelines across various resource types
(cloud/edge/fog).

M Users will be able to define their workloads
and pipelines via configuration files and
descriptive models provided through the
UI.

4.3.2 Security and Privacy Manager

The Security and Privacy Manager is the NebulOuS component that manages the various security and privacy policies
defined by admin users. It is related to Task 4.5 Security and Privacy-by-design in data streams propagation.

a. Role & Functionality

Preserving security and privacy in cloud and fog environments is challenging due to the broad attack surface that stems
from the nature of applications deployed in such environments. Those applications typically include multiple independent
microservices that use virtualization techniques to run over multi-tenant resources. Current state-of-the-art solutions for
preserving security and privacy in the cloud require considerable developer effort to implement authentication and
authorization mechanisms, as well as appropriate data encryption schemes. This is a fault-prone process that requires
support by the infrastructure provider. As such, their use in applications whose components might reside in different
clouds or edge locations is not an option.

To cover this need, NebulOuS will implement the Security and Privacy Manager, a policy engine for ad-hoc multi-cloud
and fog environments. This component lies between the UI and Control Plane; it receives user-defined security and privacy
policies by the UI and undertakes all necessary actions to ensure that the policies will be evaluated, deployed and enforced.
Security and privacy by-design will be realized by offering a) a context-aware attribute-based access control (ABAC)

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

74

enforcement mechanism to restrict access to deployed application components; b) a service for articulating access control
policies at the code-level of the deployed application through appropriate security annotations.

To achieve the aforementioned security and confidentiality of the services and the provisioned resources, we are going to
introduce an annotation mechanism that will facilitate developers in defining access policies for application components
that are deployed on cloud, fog and edge resources; these policies will naturally reflect the security requirements that
developers are interested in imposing on their applications. Using such an approach, the access rights of the platform and
application will be bound to a number of dynamic policies.

The Security and Privacy Manager will examine the annotations and will enforce privacy/security policies at certain PEP
(Privacy Enforcement Points) of an application or workflow task executed at Fog. Modelling and execution of XACML
compliant policies will be supported to protect access to data, as well as eBPF-based network security policies which will
be used to restrict pod communication in Kubernetes environments.

The security and privacy mechanisms will be based on and extend our previous work on the PaaSword [240] and PUZZLE
[241] H2020 projects. State of the art tools will be leveraged for the implementation, such as WSO2 Balana [242], Keycloak
[243] and the Drools rule engine [244], along with recent developments in the cloud-native ecosystem (e.g. Open Policy
Agent [245] and Cilium Policies [246]).

b. Requirements Mapping

Table 7: Security and Privacy Manager - relation to system requirements

ID Description Req.
Level

Means to address requirements

F_02 The NebulOuS platform offers a lightweight
resilient event pub/sub mechanism with
persistence, access control and consumer-group
capacities to orchestrate communication between
the different modules of the solution.
The system shall provide events publish and
subscribe based communication “bus” for
interaction of components

M/R The Security and Privacy Manager will realize the
aforementioned access control capabilities, which
will be used by the pub/sub system .

NF_03 The platform provides secure access to the
resources (clouds, edge resources etc.) (i.e provides
user Identification/Authentication,
User/application manager roles etc.)

M The Security and Privacy Manager will offer
Identity and Access Management (IAM)
capabilities. We will use ABAC/RBAC to provide
fine-grained access control based on user attributes
(e.g. roles)

NF_05 Data transferred between edge nodes and between
edge nodes and clouds should be secured

M Although this requirement will be mainly covered
by the Overlay Network Manager component, the
network security policies deployed by the Security
and Privacy manager will be used supplementarily
to secure traffic flows between virtualized resources
(using whitelists/blacklists).

NF_11 The NebulOuS platform ensures data privacy
when transferring data from one node to another.

R Data protection and privacy will be realized by
providing logical access control to generated
data. The Security and Privacy Manager will be the
main NebulOuS component that realizes those
access control mechanisms.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

75

4.3.3 Optimizer
The Optimizer component is a part of the NebulOuS control plane. It relates to Tasks 3.3 Applications Placement
Optimization, Task 3.4 Real-time scheduling of functions & workflow tasks, and Task 5.4 Self-adaptive and proactive reconfiguration
enhancement.

a. Role & Functionality

A typical NebulOuS application consists fundamentally of a set of containers pre-grouped into microservices where each
microservice implements a given transformation of input data to output data. The role of the components collectively
referred to as the Optimizer is threefold:

1. To decide on the placement of the microservices ranging from the core Cloud data centres to the edge devices.
2. To decide on the multiplicity of microservices and duplicate microservices that are bottlenecks in the application.
3. To provide the application with more resources with the right capabilities in the right location to execute the

application’s microservices.

Functionality
A rational decision will maximise the decisions makers utility [247], and it is therefore mandatory that the optimizer has a
way to assess the utility seen from each application owner of a particular application configuration prior to enacting this
configuration. The best way to represent the application owner’s utility is arguably through a representative utility function
[248]. This will allow the optimizer to find the combined set of resources and application configuration that maximises
the application’s utility.

A workflow application has temporal constraints among its microservices. This makes the optimisation problem more
difficult as the temporal constraints impose an ordering of the microservices, and consequently temporal bounds on the
resources needed. Workflow applications are typically scheduled with a Critical Path (CP) heuristic [249], and the partial
critical path (PCP) approach can be used to meet and distribute a given execution deadline over the microservices [250].
Serverless functions can be treated differently since they do not suffer from initial initialisation lags, and so they can be
deployed almost as of need. If the same application workflow is repeatedly deployed, reinforcement learning can be used
to further shorten the scheduling time, making the serverless function deployment almost instantaneous.

Detecting the need for reconfiguration
The Event Management System (see Section 4.3.12) continuously monitors the state of an application and the resources
used to execute the application. The metric values used in the utility function or in the optimisation problem constraints
are collectively referred to as the application’s execution context. This context changes whenever a monitoring event occurs
that changes directly or indirectly one of the metric values of the context. The monitoring events recorded can be discrete
events or sampled continuous function values. An example of the former is a new user starting to use the application, and
an example of the latter can be a reading of the CPU load every second, i.e., the CPU load is sampled with a frequency of
one Hertz.

There are two types of constraints:

1. Resource constraints based on agreements with the resource providers. These are often captured as Service Level
Agreements (SLAs), and whenever a Service Level Indicator (SLI) metric is updated, it will trigger a severity
estimation to evaluate if an SLA violation is probable.

2. Topological constraints related to the application’s deployed topology independent of the resources agreed with
the providers hosting the different components, but possibly linked to monitored metric values. Consider for
example a microservice capable of serving a certain number of users. The number of users is a monitored metric
value. If the upper bound of users per microservice is violated by more users arriving, new instances of the
microservice must be deployed. Another example is the constraints that there should be twice as many
microservices of type ‘A’ than of type ‘B’, and so whenever a new microservice of type ‘B’ is added because of other
constraints, two instances of microservice ‘A’ must be added. Other topological constraints can be data related,
so that if the monitored input volume from a certain data source exceeds a given threshold a new microservice
processing the data must be added.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

76

A violated constraint indicates that the current deployment is no longer feasible and appropriate adaptation actions must
be decided as a reconfiguration is needed.

It should be noted that anomaly detection relates to the individual metric values, and should be done prior to assessing
the constraints and the feasibility of the current deployment. Abnormal events should be ignored for the purpose of
optimisation, unless there are explicit constraints directly relating to the detection of abnormal events.

Reactive and Proactive Optimization
The assessment of the constraints described above has no concept of time. The constraints are simply evaluated whenever
a metric value changes if that metric value is used in at least one of the constraints. This allows the optimization to be
done in two ways:
1 Reactive to the change in a metric value at the time the change happening. This is a safe mode because it the observed

values are as good as the accuracy of the sensors monitoring the values. However, as it may take time to find a new
configuration optimal for the current application execution context, and thereafter some time to adapt and
reconfigure the running application, the response there will be a lag before the new state of the application is active.
During this reconfiguration lag, other events may happen forcing new, immediate reconfigurations responding to
these.

2 Proactive optimisation is basically a reactive optimisation to a forecasted future state of the application execution
environment. In other words, all of the metric values involved in the constraints and the utility function will be
forecasted to a future time point to allow ample time for the optimisation and the reconfiguration so that the adapted
application is already running by the time it is needed. There are two issues related to proactive optimisation: The
first relates to the forecasting itself. One cannot expect that the predicted metric values will perfectly match the future
metric value, and this may cause wrong optimisation actions to be taken resulting in an enacted application
configuration not matching the future need. An example of this is a situation where a few events all indicates an
increase in the number of users of an application. Then it is easy to predict that this increase will continue, and give
more resources to the application and replicate the application services. However, it was a brief temporary increase
in the number of users as some of the active users will soon end using the application. Then, potentially costly
reconfiguration actions have been taken unnecessary. The second issue is related as the forecasting may trigger
instabilities if the predictions are very much off target, there may not be an allowed feasible configuration for the
predicted future situation. The reconfiguration will then be the best possible, but not the one that would satisfy the
predicted needs.

Stateless or stateful optimization
Stateless optimizers will start from the current application configuration when it is detected that the current configuration
is no longer feasible by violating one or more constraints of the problem. It will then search the feasible solution space for
the configuration that maximises the application’s utility function, and pass this on to the application adapter to
reconfigure the running application accordingly. It must be acknowledged that the optimization problem can be non-
linear, and most likely the problems are discrete owning to enumerated domains of the decision variables. For instance,
one cannot deploy 3.1415 cores. The problem is that discrete decision variables lead to combinatorial optimization
problems with exponential complexity. To illustrate, if one should find the maximum of a function of two discrete
variables, one can only be sure to have the maximal value by trying all the combinations of the values possible for the two
variables and pic the solution with the largest function value. The result is that the time to find a solution rapidly increases
with the number of variables of the configuration and the size of the values possible for these variables.
From this discussion it is clear that there may not be sufficient time to run the optimizer until it has found the optimal
value. Giving the optimizer a time budget may not work as one has no guarantee that the solution held by the optimizer
at the time of termination is the best one seen until that time unless the algorithm of the optimizer is so called ‘any time’
algorithm that can be terminated at any time returning the best seen solution. The best known family of ‘any time’
algorithms is the evolutionary algorithms.

Stateful optimizers can be seen as extreme versions of ‘any time’ optimizers. These optimizers will run continuously taking
into consideration new metric values as they arrive. However, this implies that they must deploy some kind of
reinforcement learning since the application execution context changes continuously, the optimizer must be able to change
opinion about the what the best configuration is for the current feasible region. Since the current search space may exclude

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

77

the currently best seen configuration, it will be necessary to keep essentially the full history of best solutions, and back-
track to return the best feasible solution when a new configuration is needed. Hence, the almost O(1) optimization time
comes at the cost of increased memory consumption, and for larger problems this may be prohibitive.

Multi-objective optimization
The fundamental utility of many Cloud users is to minimise cost. However, the minimal cost is obviously resulting from
not deploying the application at all. Hence, there must also be a utility related to the performance of the application and
the overall utility is a trade off between cost and performance. There can of course also be other utility dimensions related
to other criteria such as minimal data communication, or dimensions related to security. One may think that one can
maximize individually the utility dimensions, but one will quickly come to points where one cannot increase the value of
one dimension without decreasing the value in other dimensions. Returning to the example of performance and cost, it
is possible to make a big application deployment with maximal performance, but then one fails to minimise the cost. The
set of points where one cannot make all dimensions more optimal is called the Pareto front. It is an open challenge for
the application owner to balance the different utility dimensions into a single utility value, and it can be proven that the
is no way to do this ensuring to find all the points on the Pareto front if one only seeks to maximize the scalarized utility
[251]. Furthermore, the balance between the utility dimensions can also be contextual. An example of this is an application
with an execution deadline. The application owner may be willing to accept more cost to get better performance the closer
the clock ticks to the deadline. The best would therefore be to use an optimizer algorithm that is able to find the Pareto
front, or closely approximate it, and then make a decision on the scalarized overall utility when it is needed.

Multi-tenant optimization
The Cloud providers promise unlimited elasticity, and so it will always be possible to deploy multiple applications to the
Cloud ensuring that all applications get the resources they need to maximise the application’s utility. This is no longer the
case for distributed resources from the Cloud to the edge devices. These have limited resources, and when these resources
are requested by several applications, they start competing over the available resources. It is not sure that an allocation of
the resources exists that maximises the utility of all deployed applications. To see this, consider two components from two
different applications. Both of these components request 4 cores for optimal execution, but the edge server has only 6
cores, and only one of the applications can maximise its utility by deploying to this edge server. The question is who to
decide which application’s component to deploy to the server. NebulOuS will adopt the concept of “virtual cost” of the
resources, and use combinatorial Walresian auctions to set a price ensuring that the resources will be allocated to the
applications willing to pay this price as the utility of these applications will be least sensitive to the price of resources.

Components and integration
The optimizer is not a single component but a set of interacting components. The detailed architecture of the set of
components inside the optimizer and their interaction will be detailed as part of the work in Work Package 3. However,
the main external interfaces are shown in the architecture diagram above:

• When an application is deployed to NebulOuS the optimizer receives the design time graph, which is basically the
topological application model describing the application components, their resource requirements, their
variability, and possibly the data flow and the workflow of the application.

• The optimizer also receives the user’s preferences in terms of the deployment utility and the constraints of the
optimisation problem.

• Based on these inputs, the optimizer finds an optimized service graph specifying exactly which microservice to deploy
to which available resource. These decisions are then enacted by the deployment manager.

• During application run time, the monitoring data is collected by the event monitoring system. The event
monitoring system will forward the monitoring values describing the current execution context, or the predicted
execution context if proactive adaptation is used. Based on the provided execution context, the optimizer will
compute the optimized service graph for the current situation and forward this to the deployment manager, which
will make the difference between the new optimized service graph and the currently running service graph, and
create a deployment plan which in this case will act as an adaptation plan.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

78

b. Requirements Mapping

Table 8: Optimizer - relation to system requirements

ID Description
Req.
Level

Means to address requirements

F_01

The NebulOuS platform provides
orchestration mechanisms and data streaming
capabilities that allow implementing flexible
data processing workflows and ensures
workloads are distributed on the appropriated
computing continuum (just edge, just cloud,
edge + cloud)

M

The application graph and the user preferences will be
used by the Optimizer to compute an optimised
service graph from which the deployment manger
creates a deployment plan enacted by the Execution
Adapter. The resources used will be the ones satisfying
the optimization constraints and maximizing the
application utility.

F_04

In addition to the Processing Capacity the
system shall take into consideration the
following factors when deciding on the
deployment location of software components /
containers: Bandwidth, Storage Capacity,
Power Availability, Physical Location of edge
device

M

The Optimizer will take into account the mentioned
factors provided that appropriate monitoring sensors
are installed, as well as relevant resources declared to
be available for the processing of a particular software
component/container

F_07

The NebulOuS platform provides application
components lifecyle management for all
components of the application regardless of
where component is deployed (cloud, edge,
IoT device). Is able to start, stop components
and react to monitoring alerts (if component
requires restarting for example).

M

The Optimizer will issue appropriate directives to start
and stop processing components, when this is
appropriate based on the monitoring input and
analysis of the situation. Workflow adaptations may
also be proposed as appropriate. Moreover, in the case
of fog resources, failover (e.g replacement of an
underperforming or unavailable edge node) will be
attempted.

F_08

The NebulOuS platform provides a
deployment mechanism that makes it easy to
deploy and manage data processing pipelines
across various resource types (cloud/edge/fog).

M

Provided with concrete requirements and the
application graphs and deployment constraints for the
deployment of the processing pipeline, the NebulOuS
platform will allow the easy deployment of data
processing pipelines, while also providing utilities for
their management.

F_11
NebulOuS should offer a mechanism to
deploy and invoke serverless computation
functions.

R

Serverless functions are just another type of
application components in the optimized service graph
produced by the optimizer component, and functions
only require special handling when they are enacted
on a resource, i.e., during deployment.

F_12

Monitor and predict downtime of registered
resources to maximize time/cost ratio.
NebulOuS should be able to accommodate
applications that prioritize resources with
lower down time, in comparison with the
opposite.

R

Downtime will be considered if the relevant metrics
are included in the optimisation problem, as it as
relates to the application execution context. In this
case, the application preferences and its utility
functions will be taken into account during the
optimization process.

F_13

Handle paused or dropped tasks O

Paused or dropped tasks in a workflow invalidates the
current workflow the deployment and the revised
workflow must be completely re-deployed. Hence, if
there are monitored metrics to detect this situation,
the event management system and anomaly detection
components will indicate to the optimizer that the
current service graph is invalid, and a new optimised
service graph will be produced.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

79

F_14
The system shall be able to be started and
operated during run-time with minimal prior
training

M

The Optimizer component will rely on the input of
the DevOps concerning the appropriate operational
range of the application and will onwards be able to
appropriately manage autonomously the application.

NF_02

The NebulOuS platform will be able to
operate even if available bandwidth between
edge infrastructure and the cloud is limited or
connection is temporarily lost.

R

The Optimizer component shall not rely on a
persistent network connection between processing
instances at the edge and the cloud. This is a
requirement for the data collection and monitoring
system. The quality of any connection must be
measured in real time.

NF_04
NebulOuS platform should be able to deploy
applications in a Raspberry Pi 3 Model B+ or
similar ARM architecture.

R
The Optimizer component does not prescribe any
particular hardware models and can decide on
deployment to any declared resource.

NF_06

The system provides elasticity capabilities along
with the cloud continuum so HW resources
are provisioned or freed depending on the
workload

M

The Optimizer will decide on appropriate scaling in
and scaling actions in response to the current and the
predicted workload provided that the appropriate
sensors are in place for the monitoring system.

NF_07
The system shall be able to cope with a sudden
loss of connection to individual computational
units

M

The Optimizer component is only using the metric
values provided by the monitoring system, and this
system must decide on how to estimate or interpolate
missing values.

NF_08
The system shall be able to adapt the
maximum load of the edge devices to the
available power supply.

R
The Optimizer component shall take into account the
available power supply of edge devices to schedule
processing tasks on them

NF_09
The NebulOuS platform provides near-real-
time processing of big data

M/R
The Optimizer component will adopt an appropriate
workflow to ensure that no manual intervention will
be required to reconfigure big-data processing

NF_10

The NebulOuS platform will allow effective
scaling of the cloud resources (in the
edge/cloud computing).

R

The Optimizer component decide on the optimized
application configuration for the current context, and
the differences between the current and optimized
application deployment plans will be computed by the
deployment manager to request effective scaling
actions as appropriate to be done by the execution
adapter.

4.3.4 Deployment Manager

The NebulOuS platform optimizes the deployment of the application based on an array of available infrastructures that
ranges from bare-metal, public and private cloud virtual machines, container orchestration engines, edge and fog nodes,
and distributed serverless platforms. This aggregation of different infrastructures requires NebulOuS to cope with the
particular way to communicate decisions to each one of them. This design complexity can be eased by a separation of
concerns where the decision-making component selects the target infrastructure and the action and then pass it to a
deployment controller that translates the decision according to the targeted infrastructure.

This deployment controller is realized in NebulOuS by the Deployment Manager component, which constitutes a single
point of contact for the underlying infrastructure by receiving unified instructions to execute an action. It receives an
optimized service graph from the Optimizer and initiates the application deployment process by creating a deployment
plan. The Execution Adapter (which is responsible for managing the resource pool) is contacted first, responding with
details regarding the resources to be used (e.g. node IP addresses). Subsequently, the Deployment Manager sends the
deployment plan to the Overlay Network Manager, which creates the secure overlay network between the resources. The
implementation of this component is related to Task 4.1: Deployment & Orchestration in heterogeneous environments.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

80

a. Role & Functionality

The NebulOuS Deployment Manager implementation will be based on Proactive’s SAL (Scheduling Abstraction
Layer). SAL was created in the context of Morphemic EU project and enables a decision maker component to easily
adapt with a resource pool manager (i.e., the Execution Adapter in NebulOuS).

SAL runs as service and it exposes a REST API that accepts requests from authorized decision maker components.
These requests can be:

• Adding/deleting/updating an infrastructure.
• Adding/deleting/updating nodes.
• Scaling up or down the application resources.
• Reconfiguring the application using a completely new deployment strategy
• Connecting bare-metal and edge nodes using ssh connections.
• Initializing the nodes with startup scripts
• Creating a database of available node candidates that an application can use, including the candidate's

hardware, image and location.

In the scope of NebulOuS, SAL will be extended to include support of 3 main features:

• Support of serverless platforms: The details are yet to be established but serverless is in nature infrastructure-
less as users don’t manage the infrastructure needed – the infrastructure should have been pre-provisioned
for them already and utilised indirectly using the appropriate interfaces, specific for the serverless platform.
Surely, new capabilities will need to be added to be able to register and utilise the serverless deployment
interfaces.

• Support of overlay networks: By design, the overlay network manager depends on inputs from the
deployment, this input being the IP addresses of the connected and deployed nodes (in addition to the list
of exposed ports).

• Support of container orchestration engines: A new set of endpoints will be created to allow the creation and
reconfiguration of container clusters (e.g. Kubernetes-based ones).

b. Requirements Mapping

Table 9: Deployment Manager - relation to system requirements

ID Description
Req.
Level

Means to address requirements

F_01

The NebulOuS platform provides orchestration
mechanisms and data streaming capabilities
that allow implementing flexible data
processing workflows and ensures workloads are
distributed on the appropriated computing
continuum (just edge, just cloud, edge + cloud).

M

First, by providing a complete list of the available
node candidates, and second By providing the
capability of deploying heterogeneous resources
and finally, by exposing the nodes in a secure
way.

F_04

In addition to the Processing Capacity the
system shall take into consideration the
following factors when deciding on the
deployment location of software components /
containers: Bandwidth, Storage Capacity, Power
Availability, Physical Location of edge device

R

By providing a list of node candidates that
includes information about their hardware,
image (Operating system and version), and
location. And by providing the ability to attach
volumes to cloud VMs.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

81

F_07

The NebulOuS platform provides application
components lifecyle
management for all components of the
application regardles of
where component is deployed (cloud, edge, IoT
device). Is able to
start components and stop components and
react to monitoriing
alerts (if component requires resterarting for
example).

M
By providing the capability to provision the
nodes and execute actions on top of them.

F_08

The NebulOuS platform provides a deployment
mechanism that makes it easy to deploy and
manage data processing pipelines across various
resource types (cloud/edge/fog).

M

The Deployment Manager main objective is
satisfying this this requirement by acting as a
single point of contact and receiving abstract
instructions that will be translated based on the
target infrastructure

F_11
NebulOuS should offer a mechanism to deploy
and invoke serverless computation functions.

R
By providing the necessary tools, nodes, and
information for the serverless platform.

NF_03

The platform provides secure access to the
resources (clouds, edge resources etc.) (i.e
provides user Identification/Authentication,
User/application manager roles etc.)

R
By provisioning the cloud nodes with the correct
security group and by exposing new ports upon a
request.

NF_06

The system provides elasticity capabilities along
with the cloud continuum so HW resources are
provisioned or freed depending on
the workload.

M
By providing endpoints to scale or reconfigure
the deployment

NF_10
The NebulOuS platform will allow effective
scaling of the cloud resources (in the
edge/cloud computing).

R
By providing endpoints that allows the optimizer
to execute decisions on the scale of the
infrastructure.

4.3.5 Execution Adapter

The Execution Adapter is the component that adapts an initial deployment plan to the available infrastructure resources.
In NebulOuS, it receives the deployment plan from the Deployment Manager and, based on the available resource pool,
undertakes all actions needed to execute the service on those resources. It is related to Tasks T4.1: Deployment &
Orchestration in heterogeneous environments and T4.2: Serverless support.

a. Role & Functionality

The Execution Adapter effectively acts as a resource pool manager, which communicates with the underlying infrastructure
to provision the available resources. It is responsible for various related actions, such as connecting to an existing cluster,
creating a new one upon demand, scaling up/down the virtual machines used by a container orchestration engine on a
cloud provider’s infrastructure, etc.

The implementation of this component will be based on Activeoon’s Proactive Resource Manager (RM), which will be
extended with additional functionality to support the project needs. Proactive RM is the part of ProActive Workflows &
Scheduling suite71 that is responsible for the automatic management of cloud resources, by establishing a single point of
contact between the orchestration and a wide set of infrastructures. One of its features which is important for NebulOuS

71 ProActive Workflows & Scheduling is a Java-based cross-platform workflow scheduler and resource manager that can run
workflow tasks in multiple languages and multiple environments. https://www.activeeon.com/products/workflows-scheduling/

https://www.activeeon.com/products/workflows-scheduling/

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

82

is its ability to support edge nodes, by providing node agents compatible with different system architectures including
ARM, as well as hardware-accelerated nodes that can be connected through the provided node sources.

Figure 12: Resource management in NebulOuS

To manage the computational resources (compute hosts), the Execution Adapter will use the concept of node sources.
Each node source controls a certain provider such that all the nodes that belongs to the same node source share the same
deployment mechanism and policy. In other words, each node source is designed to handle the communication with its
associated infrastructure.

The process of adding a node to the Execution Adapter involves the creation of a node agent72. The deployment of the
node agent depends on the target machine’s operating system, its architecture, and the underlying infrastructure. However,
the process of communication to the connected nodes is then unified through the node agents. As shown in Figure 12,
using the node sources and node agents the Execution Adapter creates an abstraction layer on top of heterogeneous
resources allowing the Optimizer to control the nodes using unified instructions regardless of their operating system,
architecture, or provider.

b. Requirements Mapping

Table 10: Execution Adapter - relation to system requirements

ID Description Req. Level Means to address requirements

F_01 The NebulOuS platform provides orchestration mechanisms
and data streaming capabilities that allow implementing
flexible data processing workflows and ensures workloads are
distributed on the appropriated computing continuum (just
edge, just cloud, edge + cloud).

M By providing the capability of
deploying heterogeneous resources
on different public and pivate cloud,
edge nodes, and bare metal

F_07 The NebulOuS platform provides application components
lifecyle management for all components of the application
regardless of where the component is deployed (cloud, edge,
IoT device). It is able to start components and stop
components and react to monitoring alerts (if component
requires restarting for example).

M By providing the capability to
provision the nodes and execute
actions on top of them.

72 The current implementation of Proactive RM deploys its own agents. During the project, we will investigate the feasibility of
supporting this functionality using a single NebulOuS agent that incorporates all required functionality.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

83

F_11 NebulOuS should offer a mechanism to deploy and invoke
serverless computation functions.

R By providing the capability to deploy
a serverless platform and call the
serverless platform’s interfaces to
deploy and invoke functions.

NF_03 The platform provides secure access to the resources (clouds,
edge resources etc.) (i.e provides user
Identification/Authentication, User/application manager
roles etc.)

R By allowing the control of the cloud
security groups.

NF_04 NebulOuS platform should be able to deploy applications in
a Raspberry Pi 3 Model B+ or similar ARM architecture.

R By supporting ARMv7 and ARMV8
and by providing a very light node
agent that can run on very limited
resources (down to only 1 core and
1GB of RAM like an RPI 3B+)

NF_06 The system provides elasticity capabilities along with the
cloud continuum so HW resources are provisioned or freed
depending on the workload.

M By providing Node sources that
allows for dynamic update of the
deployed resources.

NF_10 The NebulOuS platform will allow effective scaling of the
cloud resources (in the edge/cloud computing).

R By providing the capability of
managing running resources.

4.3.6 Overlay Network Manager
The Overlay Network Manager component is a part of the NebulOuS control plane. It is related to Task 4.4: Automatic
deployment of secure network overlay and implements the corresponding functionality.

a. Role & Functionality

The role of this component is to create a secure overlay network which interconnects compute resources with one another
to support the multi-cloud and cloud-to-edge vision of NebulOuS. It receives a deployment plan from the Deployment
Manager and, based on that, automatically creates the corresponding network connections between the endpoints.

The Overlay Network Manager implements three main functionalities: First, it establishes connections between the
different resources (physical or virtual), enabling component-to-component and service-to-service communication. Second,
it ensures that the traffic will be encrypted and the information being exchanged in the channels is secure. Third, it
manages the various network connections and all related connectivity aspects.

Our solution will create the overlay network by leveraging the most recent advancements in the SDN/NFV field (Open
vSwitch (OvS), VPN gateways) and the IO Visor Project (e.g., XPD/eBPF), taking into account the programming
capabilities of modern switches. The relevant state-of-the-art is provided in Section 3.2.9.

b. Requirements Mapping

Table 11: Overlay Network Manager - relation to system requirements

Req.
ID

Title
Req.
Level

Means to address the requirement

F_07

The NebulOuS platform provides application
components lifecyle management for all components of
the application regardles of where component is deployed
(cloud, edge, IoT device). Is able to start components and
stop components and react to monitoriing alerts (if
component requires restarting for example).

M

The Overlay Network Manager provides
and manages connectivity to devices
across the entire cloud continuum,
interconnecting compute resources with
one another, irrespective of their
physical location. This way, it enables
the efficient management of application

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

84

components deployed in various
infrastructure types.

F_09
The NebulOuS platform provides near-real-time
communication between application components.

M

The Overlay Network Manager will
address this requirement by deploying
high-performance networks which
utilize the latest advancements in
network virtualization and
programmability (e.g. eBPF/XDP).

F_14
The system shall be able to be started and operated during
run-time with minimal prior training.

M
The secure network overlay will be
deployed automatically, reducing the
need for manual system configuration.

NF_02
The NebulOuS platform will be able to operate even if
available bandwidth between edge infrastructure and the
cloud is limited or connection is temporarily lost.

R

The deployed overlay network will
support ad hoc and mesh networking
techniques, which can provide resiliency
and ensure operational continuity in the
case of connectivity disruptions.

NF_03

The platform provides secure access to the resources
(clouds, edge resources etc.) (i.e provides user
Identification/Authentication, User/application
manager roles etc.)

M

Traffic sent across the network will be
always be encrypted end-to-end.
Furthermore, we will incorporate
security enforcement mechanisms and
utilize access control techniques (e.g.
RBAC, ABAC).

NF_05
Data transferred between edge nodes and between edge
nodes and clouds should be secured.

M
The traffic sent across the network will
be always encrypted end-to-end.

NF_07
The system shall be able to cope with a sudden loss of
connection to individual computational units.

M

The deployed overlay network will
support ad hoc and mesh networking
techniques, which can provide resiliency
and ensure operational continuity in the
case of connectivity disruptions.

4.3.7 Data Collection & Management
The Data Collection and Management component is related to data management, both in the context of managing the
monitoring data collected from the IoT/Edge/Cloud compute resources, as well as with respect to the data exchanged
internally between the NebulOuS components. It relates to Task 5.3: Interoperable IoT/Fog data collection and management
and Task 5.5: Asynchronous Message-based API definition & implementation.

Four distinct sub-components will comprise this module: A pub/sub mechanism, a time-series IoT data store, an IoT data
flow pipelines orchestration mechanism and an inter-component communications middleware. Even though the
individual sub-components are abstracted in the logical architecture, they are presented here in more detail and will form
a part of the technical architecture.

Sub-component 1: Pub/sub mechanism

In the core of the Data Collection and Management module lies a pub/sub mechanism. Its goal is to allow the
communication between modules of the NebulOuS platform as well as modules of the applications running on top of
NebulOuS. It will also serve as an entry point for IoT data required by any of these applications.

It is related to tasks T5.3: Interoperable IoT/Fog data collection and management and T5.5: Asynchronous Message-based API
definition & implementation. It will be utilized by the Event Management System.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

85

a. Role & Functionality

The role of this component is to create a secure, efficient communications channels within NebulOuS distributed
architecture that will utilize a publish-subscribe paradigm to allow:

• NebulOuS components to publish and subscribe to event streams.
• IoT devices or application components to publish event streams.
• Application components to subscribe to these information streams.

To facilitate the integration of devices/systems that can’t connect directly to the publish-subscribe broker, a proxy to
handle the communication with the platform will also be included.

The management of the PUB/SUB mechanism will automatically be handled by a component responsible for reading
the reified ARP model offered for each brokered application/IoT device and create the necessary pub/sub topics.

Some candidate technologies to cover this necessity have already been identified during the SoTA review (EMQX,
Zenoh) and others will be investigated.

b. Requirements Mapping

Table 12: Pub/sub mechanism - relation to system requirements

ID Description Req.
Level

Means to address requirements

F_01 The NebulOuS platform provides orchestration mechanisms
and data streaming capabilities that allow implementing
flexible data processing workflows and ensures workloads are
distributed on the appropriated computing continuum (just
edge, just cloud, edge + cloud)

M The PUB/SUB mechanism will be the
communication backbone between
workers dedicated to the execution of the
data processing flows.

F_02 The NebulOuS platform offers a lightweight resilient event
pub/sub mechanism with persistence, access control and
consumer-group capacities to orchestrate communication
between the different modules of the solution.
The system shall provide events publish and subscribe based
communication “bus” for interaction of components

M/R The PUB/SUB mechanism will allow the
communiaction of events between
different components of the applications
running on top of NebulOuS.

F_09 The NebulOuS platform provides near-real-time
communication between application components.

O A PUB/SUB technology that minimizes
communication overhead will be
selected.

F_10 NebulOuS offers a mechanism to partition streaming analysis
jobs between a variable number of workers (similar to Spark
partitioning)

R The PUB/SUB mechanism will be the
communication backbone between
workers dedicated to the execution of the
data processing flows.

NF_01 Fast decisions from the Nebulous, regarding the resources to
allocate and fast execution of these decisions (fast
communication, internal processing to take decisions etc).

R/M A PUB/SUB technology that minimizes
communication overhead will be
selected.

NF_05 Data transfered between edge nodes and between edge nodes
and clouds should be secured

M The PUB/SUB mechanism will offer
encrypted communications (mTLS).

NF_09 The NebulOuS platform provides near-real-time processing of
big data

M/R The PUB/SUB mechanism shall suport
the transmission of big-data event
streams.

NF_11

The NebulOuS platform ensures data privacy when
transferring data from one node to another.

R The PUB/SUB mechanism will offer
encrypted communications (mTLS).

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

86

Sub-component 2: IoT time series data store

IoT devices connected to the NebulOuS platform will generate streams of events and measurements that need to be stored
for later retrieval. To cover this necessity, a distributed time series database will be deployed as part of the NebulOuS
platform

a. Role & Functionality

This database will be able to persist the time-series related data generated by the IoT devices. Using a well-defined query
mechanism, other application components running on the NebulOuS platform will be able to retrieve this data. Databases
identified on the SoTA: InfluxDB , Kdb+ and OpenTSDB, among others will be investigated to cover this necessity.

b. Requirements Mapping

Table 13: IoT time series data store - relation to system requirements

ID Description Req.
Level

Means to address requirements

F_02 The NebulOuS platform offers a lightweight resilient event
pub/sub mechanism with persistence, access control and
consumer-group capacities to orchestrate communication between
the different modules of the solution.
The system shall provide events publish and subscribe based
communication “bus” for interaction of components

M/R The IoT time series data store will
persist events writen to the pub/sub
mechanism.

NF_09 The NebulOuS platform provides near-real-time processing of big
data

M/R The datastore will be able to ingest
big ammounts of data on a fast pace.

Sub-component 3: IoT Data processing pipelines orchestration tool

Interoperability aspects of the data collection and management can require the execution of transformation pipelines that
include payload encoding conversion, maping of data structures and conversion of values among others.

a. Role & Functionality

To ease the development, deployment and management of these transformation pipelines, the NebulOuS platform will
include a framework that allows users to declaratively express these data transformation pipelines by identifying their main
components (data sources, transformation operations and data consumers) and interlace them to conform data
transformation flows. Once defined, the orchestration of these data transformation pipelines will be handled by
NebulOuS, allocating computational resources whenever needed to divide the workload. Finally, the user will be able to
monitor the execution of these pipelines and detect any error occurring on them.

Apache Nifi, Apache Airflow, FogFlow, ZenohFlow, among other frameworks for data transformation pipeline creation
identified during the SoTA analysis will be evaluated for this purpose.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

87

b. Requirements Mapping

Table 14: IoT data processing pipelines orchestration tool - relation to system requirements

ID Description Req.
Level

Means to address requirements

F_01 The NebulOuS platform provides orchestration mechanisms
and data streaming capabilities that allow implementing
flexible data processing workflows and ensures workloads are
distributed on the appropriated computing continuum (just
edge, just cloud, edge + cloud)

M Users will be able to declaratively
express data transformation pipelines
that will be able to run on the whole
NebulOuS computing infrastructure
(restricted to SLAs).

F_08

The NebulOuS platform provides a deployment mechanism
that makes it easy to deploy and manage data processing
pipelines across various resource types (cloud/edge/fog).

M Declarative processing pipelines will
ease the deployment of data
transformation flows.

NF_09 The NebulOuS platform provides near-real-time processing of
big data

M/R Once deployed, the data
transformation pipelines will be able to
utilize NebulOuS computing power to
distribute the workload.

NF_11

The NebulOuS platform ensures data privacy when transferring
data from one node to another.

R Communication between nodes of the
data transformation pipelines will be
encrypted.

Sub-component 4: Inter-component Communications Middleware

The communication middleware is a message-oriented software that will enable the connection between the various
components defined in the NebulOuS architecture. It will act as an intermediary layer between the sender and receiver of
messages, allowing for decoupled and interoperable data transmission between the different actors of the system, resulting
in the creation of a homogenous communication gateway.

a. Role & Functionality

In a system with multiple components, such as NebulOuS, the message-oriented middleware will provide message routing,
by transferring messages from one component to another, based on message content or destinations. It provides a publish-
subscribe pattern for asynchronous message delivery, allowing components to subscribe to specific topics or utilize service
bus queues for receiving only the messages that are relevant to them. In case a synchronous communication approach is
needed by pre-existing components, the middleware can support the use of Enterprise Integration Patterns (EIPs) to
achieve this.

In general, the middleware will provide interoperability between the different actors by supporting various messaging
protocols (e.g. AMQP, MQTT, etc.), depending on the capabilities of each transacted component. Provided that some
components may not support a messaging protocol or are already exposing functionality in a non-messaging manner, we
will also investigate the transformation between non-message-based protocols like HTTP or XML-RPC, which can allow
for a more unified and seamless integration.

The communication will be robust and resilient, as the middleware will provide message delivery guarantees to the
interested parties, by utilizing mechanisms like redelivery, ordering, and transaction management.
 Security is also a crucial portion of the communication, as unauthorized access may lead to privacy issues or even malicious
acts by disrupting the proper functioning of the system. The middleware will provide authentication/authorization
capabilities, as well as message encryption where it is considered necessary.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

88

The inter-component middleware will also be utilized to gain insight into the internal behavior of the system and its
distributed components, as most of them will communicate through it. We can achieve observability by monitoring,
logging and tracing the messages as they flow through the system. Specifically, the component will provide:

• Monitoring: through exposed metrics including the number of messages in the queues, the rate of message
consumption, and the message processing times. These metrics can be used to monitor middleware’s own
performance, as well as the performance of each transacted component.

• Logging: logged messages by the middleware can provide valuable insights into the behavior of the system and get
detailed information about errors, warnings and other events that occur during the message processing.

• Tracing: enhanced tracking for messages of particular importance or groups of messages, can be used if deemed
necessary, to follow critical information as it is moves through the system

The previous functionalities can be integrated with visualization tools to provide a more comprehensive view of the system's
behavior and help identify performance issues or errors. Ultimately, using a message-oriented middleware will allow for
the creation of a scalable, flexible, and loosely coupled system.

b. Requirements Mapping

Table 15: Intercomponent Communications Middleware - relation to system requirements

ID Description Req.
Level

Means to address requirements

F_02 The NebulOuS platform offers a lightweight resilient event
pub/sub mechanism with persistence, access control and
consumer-group capacities to orchestrate communication
between the different modules of the solution.
The system shall provide events publish and subscribe based
communication “bus” for interaction of components

M/R A message-oriented middleware will
be deployed with
authentication/authorization and
encrypting mechanisms to enable the
communication between NebulOuS
components

NF_11 The NebulOuS platform ensures data privacy when
transferring data from one node to another.

R The communication between
NebulOuS components will be
encrypted,

4.3.8 Cloud/Fog Service Broker
The Cloud & Fog Service Brokerage will be an important aspect of the NebulOuS meta-operating system for coping with
the massive number of resources that can be considered in cloud computing continuum deployments. This research and
development work is related to Task 3.1: MCDM-based Cloud & Fog Service Brokerage.

a. Role & Functionality

The aim of this mechanism is to reduce the variability space when considering cloud computing continuum resources for
hosting application component instances. NebulOuS Cloud & Fog Service Brokerage (CFSB) will introduce brokerage
capabilities, beyond the state-of-the-art analysed in Section 3.2.8, in a similar manner that OS intermediates between
computing resources and software. Specifically, it will support cloud computing continuum providers and owners
(organisational units, telecom providers etc.) to advertise the available hosting resources. These advertisements will
combine quantitative and qualitative characteristics of their offerings (i.e., cloud, fog, edge resources that are willing to
share across organisation units) that will be used for the ad-hoc formulation of local continuums according to the
prerequisites of the applications. Furthermore, a graphical user interface (GUI) will be offered to application owners or
DevOps to declare their preferences, in a more loose and realistic way that retains human preferences’ inherent vagueness
(e.g., using linguistic terms). Based on this information NebulOuS will be able to match, on demand, the preferences and
resources advertisements, based on a multi-criteria decision-making (MCDM) approach that copes with precise (related to
quantitative resources characteristics) and imprecise (related to qualitative aspects) criteria to enable the ad-hoc generation
of micro local cloud continuums.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

89

Therefore, NebulOus CFSB will research and develop the following functionalities:
• Announcement of infrastructural resources and services that can be made available in intra or inter-organisational

collaborative infrastructure sharing scenarios;
• Declaration of application-related preferences in a way that permits the expression of quantitative and qualitative

aspects
• Consideration of multiple precise and imprecise criteria for ranking cloud and fog services to recommend which

subsets of them should formulate the required local computing continuums, involving cloud, fog and edge
resources.

b. Requirements Mapping

Table 16: Cloud/Fog Service Broker - relation to system requirements

Req.
ID

Title Req.
Level

How the requirement is addressed

F_03

The system shall provide a graphic user interface for
the administration of the deployed components

M

The CFSB will use a GUI to allow end-users to
declare their preferences, on the way that ad hoc
cloud continuums should be considered, in a way
that retains their inherent vagueness (e.g., using
linguistic terms).

F_04 In addition to the Processing Capacity the system
shall take into consideration the following factors
when deciding on the deployment location of
software components / containers: Bandwidth,
Storage Capacity, Power Availability, Physical
Location of edge device

M CFSB will allow organisational units or telecom
providers to advertise the infrastructure and
services that can be made available in intra or inter-
organisational collaborative infrastructure sharing
scenarios. Such factors can be considered as
constraints when considering ad hoc cloud
computing continuums.

NF_06 The system provides elasticity capabilities along with
the cloud continuum so HW resources are
provisioned or freed depending on the workload

M CFSB will offer recommendation capabilities
through a multi-criteria decision-making solution
for offering fog service ranking according to the
preferences and the advertised HW resources
characteristics.

NF_10

The NebulOuS platform will allow effective scaling
of the cloud resources (in the edge/cloud
computing).

R NebulOuS Cloud & Fog Service Brokerage
(CFSB) will provide a preferences matchmaking
mechanism that will allow the creation of ad hoc
cloud computing continuums. This will provide
the hosting variability space, comprising resources
that can be considered upon scaling decisions.

4.3.9 SLA Generator
NebulOuS’s brokerage capability naturally rests upon its capacity to contract SLAs between resource providers and
requesters; to this end, the SLA Generator is provided. The component is related to Task 2.6: SLAs in Cloud Computing
Continuum Brokerage

a. Role & Functionality

The SLA Generator is responsible for the automatic creation of SLA templates. It is based on the NebulOuS ontology, a
meta-ontology featuring two primary facets:

• The resources facet, which offers adequate support for describing entities in the cloud continuum (devices,
observations, actuations, people, etc.) and the properties thereof.

• The QoS facet, which offers adequate support for describing application provisioning requirements and
preferences.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

90

The resources facet is based on SEMIC [252]: an ontology that extends the diffused and comprehensive SSN/SOSA model
[120]. This facet is instantiated by resource providers to describe the cloud continuum resources brokered by NebulOuS.
The QoS facet extends Q-SLA [125]: an ontology based on OWL-Q offering adequate support for modelling QoS-related
properties, and for facilitating automatic SLA negotiation. This facet is instantiated by application developers to describe
application provisioning requirements. Based on these two facets, the SLA Generator automatically determines, through
ontological reasoning, the feasibility of QoS requirements.

The main functionalities of the SLA Generator are:

• Ontological modelling of cloud continuum resources and their properties of interest.
• Ontological modelling of QoS requirements and preferences regarding application provisioning.
• Semantic reasoning to determine the ability of cloud continuum resources to satisfy QoS requirements.
• Generation of SLA templates specifying QoS requirements and violation penalties.

b. Requirements Mapping

Table 17: SLA Generator - relation to system requirements

Req.
ID

Title Req.
Level

How the requirement is addressed

F_04 In addition to the Processing Capacity the system shall take into
consideration the following factors when deciding on the
deployment location of software components / containers:
Bandwidth, Storage Capacity, Power Availability, Physical
Location of edge device

M

These factors are extracted from the
knowledge artefacts (concepts) that are
included in the resources facet of the
meta-ontology underpinning the SLA
Generator.

F_05 NebulOuS should constantly monitor the QoS required by the
different application components (as specified by their SLA)
and apply necessary actions to remediate QoS violations.

M QoS requirements are ontologically
expressed in the QoS facet of the meta-
ontology underpinning the SLA
Generator

4.3.10 Brokerage Quality Assurance
An important characteristic of NebulOuS is its ability to ensure the quality of the brokerage services that it offers. To this
end, the Brokerage Quality Assurance (BQA) mechanism is provided. The component is related to the work performed
in the context of Task 3.2: Quality Assurance in Fog Brokerage.

a. Role & Functionality

The BQA mechanism assures brokerage quality by ensuring abidance of application provisioning requirements and
preferences with organisational policies: higher-level requirements that reflect an organisation’s business and/or security
standpoint with respect to application provisioning. For example, consider an application called “application X” that
samples intermediate-frequency signals emitted by a radar. An organisational policy may articulate that application X
belongs to a class of applications that must always be provisioned over compute nodes that feature a clock rate of at least
100MHz (e.g., to avoid aliasing effects); the policy may also maintain that these nodes should not be under the control of
certain organisations (which are considered untrusted). Such an organisational policy clearly places constraints on the
manner in which application X may be provisioned. The BQA mechanism is responsible to ensure, through adequate
ontological reasoning, that such higher-level constraints are indeed respected by application X’s lower-level provisioning
requirements expressed by instantiating the QoS facet of the NebulOuS meta-ontology (see Section 3.2.7).

The main functionalities of the BQA mechanism are:

• Specification of ontological model for describing organisation policies.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

91

• Specification of organisation policies; the BQA mechanism shall enable stakeholders73 to instantiate the
ontological model by articulating:

o The knowledge artefacts that must, may, or must not be embodied in lower-level application provisioning
requirements and preferences;

o The allowable values, or value ranges, that these knowledge artefacts may assume.
• Semantic reasoning to automatically determine whether lower-level application provisioning requirements abide

by higher-level organisational policies.
• Governance of organisational policies; automatic detection of inter-policy relations such as policy contradiction

and subsumption.

The BQA mechanism shall be based upon the higher-level ontology conceptualised in the PaaSword project and reported
in [253].

b. Requirements Mapping

Table 18: Brokerage Quality Assurance - relation to system requirements

Req.
ID

Title Req.
Level

How the requirement is addressed

F_04 In addition to the Processing Capacity the system shall take
into consideration the following factors when deciding on
the deployment location of software components /
containers: Bandwidth, Storage Capacity, Power
Availability, Physical Location of edge device

M

The BQA mechanism articulates constraints
on how exactly these factors should be taken
into account when deciding deployment
location, thus ensuring quality in fog
brokerage.

F_05 NebulOuS should constantly monitor the QoS required by
the different application components (as specified by their
SLA) and apply necessary actions to remediate QoS
violations.

M The BQA mechanism ensures that such
monitoring takes place in accordance with
pertinent organisational policies, hence
ensuring quality in fog brokerage.

4.3.11 Smart Contract Encapsulator
The Smart Contract Encapsulator (SCE) component is a component of the NebulOuS platform which encapsulates SLAs
in smart contract which features expressivity of semantic models with immutability aspects that blockchain can support.
It is related to Task 4.3: From SLAs to Smart Contracts.

a. Role & Functionality

The SCE component is proposed to handle SLAs in NebulOuS in an efficient, secure and scalable way. To this end, SCE’s
main functionality is to automatically transform SLAs into smart contract functions. It is termed as Blockchain-enabled SLA.
SCE provides a mechanism for infusing into smart contracts both the SLA rules and the monitoring algorithms used to
determine whether these rules are satisfied by application execution. SCE is also in charge of enabling smart contracts to
invoke other services and third parties for performing arbitrage when SLAs are violated. SCE also encompasses a
sensing/monitoring loop that regularly feeds the information into the smart contracts. This component has a key role in
interacting between smart contracts running on blockchain, sensing loop, and off-chain external services for maintaining
SLAs.

We list below the main functionalities of SCE:

• enabling the automatic transformation of SLAs into smart contract functions;

73 By “stakeholders” here we refer to people that typically occupy higher organisation positions and are responsible for determining
and pursuing an organisation’s business interests and policies, as well as its overall stance towards security, e.g. CTOs. security officers,
Data Protection Officers (DPOs), etc.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

92

• infusing the SLA rules and the monitoring algorithms into smart contracts which are used to determine whether
these rules are satisfied by application execution.

• designing new interfaces and mechanisms for obtaining feedback from the monitoring algorithms and interacting
with off-chain services and other third-party services.

There exist a number of blockchain development technologies that can host and run smart contracts using various
programming languages. We list below the prominent ones:

1. Ethereum as a decentralized BC platform runs smart contracts and provides a cryptocurrency called Ether (ETH)
as a reward for executing smart contracts. Ethereum is written in Solidity which is a high-level programming
language specifically designed for smart contracts.

2. Hyperledger Fabric is a permissioned blockchain platform that supports smart contract development. Hyperledger
Fabric contracts are written in Chaincode which is a programming language based on Go.

3. EOS is a blockchain platform that provides a smart contract platform (written in C++) which enables developers
to develop scalable, high-performance decentralized applications.

4. TRON is a BC platform that supports smart contracts. TRON contracts are written in Solidity similar to
Ethereum.

5. Cardano is a BC platform that supports smart contracts and provides a cryptocurrency called ADA. Smart
contracts in Cardano are written in Plutus which is a functional programming language.

6. NEO is a BC platform that offers a cryptocurrency called NEO, and supports smart contract development, where
contracts on NEO can be developed in multiple programming languages, including C#, Python, and Java.

With respect to the implementation technologies and tools, we intend to extend one of the existing frameworks
(Hyperledger or Ethereum) with new interfaces and mechanisms for obtaining feedback from the monitoring algorithms
and interacting with off-chain services. Hyperledger is a very popular BC platform used widely both by industry and
academia. Moreover, unlike public blockchains like Ethereum, Hyperledger is a permissioned blockchain, meaning that
only authorized participants can access and validate transactions. On the other hand, Ethereum is also one of the most
widely used blockchain platforms. Solidity as the programming language for developing smart contracts in Ethereum is
easy to learn and provides a number of tools and libraries to make smart contract development more efficient.

b. Requirements Mapping

Table 19: Smart Contract Encapsulator - relation to system requirements

Req. ID Title Req.
Level

How the requirement is addressed

F_01 The NebulOuS platform provides orchestration
mechanisms and data streaming capabilities that allow
implementing flexible data processing workflows and
ensures workloads are distributed on the appropriated
computing continuum (just edge, just cloud, edge +
cloud)

M SCE facilitates the allocation of
resources across different platforms
based on the pre-defined SLAs.

F_04 In addition to the Processing Capacity the system shall
take into consideration the following factors when
deciding on the deployment location of software
components / containers: Bandwidth, Storage Capacity,
Power Availability, Physical Location of edge device

M All these parameters can be included in
SLAs related to the deployment
platforms providers. SCE can facilitate
the execution and monitoring of SLAs.

F_08 The NebulOuS platform provides a deployment
mechanism that makes it easy to deploy and manage data
processing pipelines across various resource types
(cloud/edge/fog).

M SCE facilitates the allocation of
resources across different platforms
based on the pre-defined SLAs

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

93

NF_06 The system provides elasticity capabilities along with the
cloud continuum so HW resources are provisioned or
freed depending on the workload

M SLAs and the corresponding smart
contracts will enable further allocation
of resources or freeing the unused
resources

NF_09 The NebulOuS platform provides near-real-time
processing of big data

M/R SCE allows creation and running of
smart contracts which enables
triggering of big data processing SLAs
(violation if far-real-time processing of
big data)

4.3.12 Event Management System
The Event Management System (EMS) is part of NebulOuS platform, spanning several places in the infrastructure. It is
related to Task 5.1: Efficient, Secure and Fault-tolerant Monitoring of Fog-enabled applications.

a. Role & Functionality

The role of EMS is to deploy and maintain the monitoring functionality of NebulOuS on infrastructure nodes, which will
observe the necessary Quality of Service (QoS) metrics both of the platform and of the deployed applications. Based on
application description models, EMS will deploy and configure a number of monitoring agents that collect, filter, process
and propagate the monitoring metrics values. The collected and computed monitoring metrics are then published in
platform's pub/sub message broker hence any interested subscriber can use them.
Monitoring metrics can either be collected from infrastructure nodes and application components, or can be computed
using certain processing rules. The monitoring metrics of interest, the processing rules that generate computed metrics, as
well as information about processing locality and privacy level will be extracted/deduced from application descriptions or
(global) system configuration.

The main functionalities of EMS are:

• Extract/Deduce monitoring requirements from application description models, as well as from system
configuration

• Deploy monitoring agents and configure them into a network of collaborating nodes that process and propagate,
in a context-aware manner, monitoring metrics coming from candidate or already hosting nodes located in the
cloud computing continuum.

• Detect SLO violations (specified in Application description models)
• Persist and publish metrics and SLO violation events to platform's pub/sub message broker
• Continuously monitor the health status of monitoring agents and them to autonomously recover when failures

are detected.

EMS will be based on and extend the corresponding monitoring system of Melodic and Morphemic projects [168].

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

94

c. Requirements Mapping

Table 20: Event Management System - relation to system requirements

Req.
ID

Title
Req.
Level

How the requirement is addressed

F_01 The NebulOuS platform provides orchestration
mechanisms and data streaming capabilities that
allow implementing flexible data processing
workflows and ensures workloads are distributed
on the appropriated computing continuum (just
edge, just cloud, edge + cloud)

M

EMS will collect and process monitoring data 'at'
or 'near' their source (Edge/Fog), and fall back to
Cloud, according to application requirements. It
will also orchestrate the network of monitoring
agents for distributing the monitoring data
processing to the appropriate nodes.

F_04 In addition to the Processing Capacity the
system shall take into consideration the
following factors when deciding on the
deployment location of software components /
containers: Bandwidth, Storage Capacity, Power
Availability, Physical Location of edge device

M

EMS will deploy and adapt the monitoring system
operation based on the context, which can
include available storage, power level, location,
and device type.

F_05 NebulOuS should constantly monitor the QoS
required by the different application
components (as specified by their SLA) and
apply necessary actions to remediate QoS
violations.

M

The EMS monitoring agents will collect and
compute certain QoS metrics out of the box (like
health or performance indicators). The EMS will
detect application- and platform-specific SLO
violations and trigger reconfiguration by sending
SLO violation events in the platform’s pub/sub
message broker.

F_06 The NebulOuS platform provides infrastructure
monitoring capabilities.

M

EMS will autonomously deploy, configure,
maintain and recover monitoring agents, based on
the platform and applications' descriptions and
requirements.

F_12 Monitor and predict downtime of registered
resources to maximize time/cost ratio.
NebulOuS should be able to accommodate
applications that prioritize resources with lower
down time, in comparison with the opposite.

R

EMS will collect and publish the related down
time metrics.

NF_02 The NebulOuS platform will be able to operate
even if available bandwidth between edge
infrastructure and the cloud is limited or
connection is temporarily lost.

R

EMS monitoring agents will use low bandwidth
and feature fast transmission times, but this also
depends on the applications’ monitoring
requirements. Moreover, monitoring agents will
be able to recover from intermittent network
connectivity.

NF_03 The platform provides secure access to the
resources (clouds, edge resources etc.) (i.e
provides user Identification/Authentication,
User/application manager roles etc.)

M

EMS monitoring agents will include
Id/Authentication information in monitoring
data they collect and transmit.

NF_05 Data transfered between edge nodes and
between edge nodes and clouds should be
secured

M
EMS monitoring agents will use encrypted
communications and storage for monitoring data
when needed.

NF_07 The system shall be able to cope with a sudden
loss of connection to individual computational
units

M
EMS monitoring agents will be able to continue
working and recover from (short) network
disruptions.

NF_08 The system shall be able to adapt the maximum
load of the edge devices to the available power
supply.

R
EMS will adapt monitoring data processing based
on the context, including edge device load and
power supply.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

95

NF_10 The NebulOuS platform will allow effective scaling
of the cloud resources (in the edge/cloud
computing).

R

EMS will be able to monitor (by deploying the
required agents) even nodes that do not host
application components yet but they are
considered as hosting candidates, as being part of
ad-hoc cloud computing continuums.

NF_11 The NebulOuS platform ensures data privacy
when transferring data from one node to
another. R

EMS will transmit, in a context-aware manner,
monitoring data to ensure the required data
privacy required by the application, data source or
the data type (e.g., propagate monitoring data only
in encrypted form or completely avoid persisting
them outside organisation boundaries.

4.3.13 AI-driven Anomaly Detection
The AI-driven Anomaly Detection engine will ensure Quality of Service (QoS), by detecting scenarios that perform
differently from what they are expected to. It is related to Task 5.2: Flexible AI-driven anomaly detection at the edge.

a. Role & Functionality

The role of the AI-driven anomaly detection engine is to ensure QoS, being able to identify deviation from “normal”
behaviour (i.e., low probability events, anomaly) of IoT devices. Such anomalies can be generated by lack of mobile network
coverage, software or network misconfigurations, anomalous user behaviour, intruders, etc. It will consider the real time
processed monitoring data coming from the NebulOuS event management system (EMS), so this will be accommodated
as close to the edge as possible, and possibly leverage federated learning approaches to: i) improve response time, ii) reduce
network traffic, and iii) increase fault-tolerance among the network thanks to better autonomous decision in collaboration
with the evolution of the EMS, the application data management, and the self-adaptive reconfiguration capabilities. To
that end, it will be considered different AI algorithms (from simple machine learning techniques to advanced deep learning
technologies, and immunological-inspired systems), and use supervised and/or unsupervised approaches depending on
the available data and ground truth information.

b. Requirements Mapping

Table 21: Anomaly Detection - relation to system requirements

Req.
ID

Title Req.
Level

How the requirement is addressed

F_01 The NebulOuS platform provides orchestration
mechanisms and data streaming capabilities that allow
implementing flexible data processing workflows and
ensures workloads are distributed on the appropriated
computing continuum (just edge, just cloud, edge +
cloud).

M

The AI-based anomaly detection engine
will process surveillance data "at" or "near"
the Edge, distributing the workload more
efficiently and effectively deployed, with
the goal of detecting deviations from
normal device behaviour.

F_02 The NebulOuS platform offers a lightweight resilient
event pub/sub mechanism with persistence, access
control and consumer-group capacities to orchestrate
communication between the different modules of the
solution. The system shall provide events publish and
subscribe based communication “bus” for interaction of
components.

R

The AI-powered anomaly detection
engine will be able to manage/monitor
data/alerts through the pub/sub event
mechanism, handling alerts and taking
appropriate actions to maintain the
resilience of the platform.

F_05 NebulOuS should constantly monitor the QoS required
by the different application components (as specified by
their SLA) and apply necessary actions to remediate QoS
violations.

M

The AI-driven anomaly detection engine
will detect different kind of anomalies
and trigger the right events in the
platform’s pub/sub message broker to
solve/advertise.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

96

F_07 The NebulOuS platform provides application
components lifecycle management for all components of
the application regardless of where component is
deployed (cloud, edge, IoT device). Can start
components and stop components and react to
monitoring alerts (if component requires restarting for
example).

M

The AI-driven anomaly detection engine
will be able to stop components and react
to monitoring alerts to ensure/solve the
security of the platform (CIA triad,
confidentiality, integrity and availability).

F_09 The NebulOuS platform provides near-real-time
communication between application components. O

The AI-driven anomaly detection engine
will consider the real time processed
monitoring data.

F_13

Handle paused or dropped tasks.
O

The AI-driven anomaly detection engine
will be able to handle activities that are or
could be detected like anomalies.

NF_01 Fast decisions from the Nebulous, regarding the resources
to allocate and fast execution of these decisions (fast
communication, internal processing to take decisions etc).

M

The AI-based anomaly detection engine
will consider the surveillance data
processed in a distributed manner to
achieve a real-time response.

NF_02 The NebulOuS platform will be able to operate even if
available bandwidth between edge infrastructure and the
cloud is limited or connection is temporarily lost. R

The AI-based anomaly detection engine
will be able to guarantee its functionality
even in such circumstances, because
certain actions are performed on devices
deployed on devices and edge.

NF_04 NebulOuS platform should be able to deploy
applications in a Raspberry Pi 3 Model B+ or similar
ARM architecture.

R
The AI-driven anomaly detection engine
will be lightweight to be able to deploy in
IoT devices at the edge.

NF_05 Data transferred between edge nodes and between edge
nodes and clouds should be secured.

M

The AI-based anomaly detection engine
includes the necessary countermeasures
to ensure the integrity and security of the
reported and processed data.

NF_07 The system shall be able to cope with a sudden loss of
connection to individual computational units.

M

The AI-based anomaly detection engine
will be able to guarantee its functionality
even in such circumstances, because
certain actions are performed on devices
deployed on devices and edge.

4.3.14 NebulOuS agent
The NebulOuS agent is a software agent that is used to realize our distributed control plane. It is deployed in the compute
resources being managed by the Meta-OS and is related to several project tasks.

a. Role & Functionality

The agent is part of the NebulOuS control plane and is deployed side-by-side with the service components. It connects the
NebulOuS logically centralized control plane with the distributed applications and enables information exchange between
the orchestrator and the services being orchestrated, including control signals.

In particular, an agent implements three main functionalities: First, it collects monitoring data from the services and
compute resources, acting as a data source for the Data Collection and Management component. In this respect, it acts as
a monitoring probe and provides observability information. Second, it can act as a processing agent which supports event
processing at the edge. This can alleviate network stress by reducing the need to stream all monitoring data to a centralized
monitoring mechanism. Third, the agent enables policy enforcement in a distributed environment, acting as an action
point and enabling fine-grained access control based on user-provided security and privacy policies.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

97

The agent will be developed using Java; different implementations may be realized for different infrastructure types (e.g.
for cloud and edge devices). In any case, all agents will implement the same component functionality. Microservice
development frameworks will be considered where appropriate, e.g. Quarkus74 and Spring75, to realize the agents in a
cloud-native way. Information on the current state-of-the-art cloud/fog monitoring approaches can be found in Section
3.2.9 “Cloud and Fog Monitoring”, while security aspects are covered in Section 3.2.2.

b. Requirements Mapping

Table 22: NebulOuS agent - relation to system requirements

Req. ID Title Req.
Level

How the requirement is addressed

F_01 The NebulOuS platform provides orchestration
mechanisms and data streaming capabilities that
allow implementing flexible data processing
workflows and ensures workloads are distributed on
the appropriated computing continuum (just edge,
just cloud, edge + cloud)

M

The agent enables the orchestration of
distributed applications, acting as a
monitoring data stream and enabling
distributed event processing.

F_05 NebulOuS should constantly monitor the QoS
required by the different application components (as
specified by their SLA) and apply necessary actions
to remediate QoS violations.

M

The agent will be capable of monitoring the
application’s QoS and streaming all relevant
data to the Data Management module.

F_06 The NebulOuS platform provides infrastructure
monitoring capabilities.

M

The agent will be able to provide not only
application monitoring data, but also metrics
tied to the underlying infrastructure (e.g.
CPU usage, memory usage etc.)

F_12 Monitor and predict downtime of registered
resources to maximize time/cost ratio. NebulOuS
should be able to accommodate applications that
prioritize resources with lower down time, in
comparison with the opposite.

R

The agent will be capable of monitoring the
downtime of resources and propagating the
relevant information to the Data
Management module.

NF_03 The platform provides secure access to the resources
(clouds, edge resources etc.) (i.e provides user
Identification/Authentication, User/application
manager roles etc.)

M

The agent will include policy enforcement
capabilities, enabling fine-grained access
control.

74 https://quarkus.io/

https://quarkus.io/

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

98

5. Conclusions
In this document, we have detailed the high-level requirements for the NebulOuS platform, the scientific and
technological state-of-the-art work relevant research areas, as well as the conceptual and technical architecture of our
system. Its functional components have been detailed, along with an overview of the interactions between them.

The requirements definition process started with the extraction of use case requirements, focusing on the project pilots:
a) Windmill and City Maintenance, b) Efficient, Connected and Sustainable management of infrastructure, freights and
resources, c) Precision Agriculture, d) Crisis Management. Based on those, the overall system requirements were
formulated.

Subsequently, we identified the research areas that are relevant to the project and reviewed the current state and recent
advancements in each field: meta-operating systems for the cloud continuum, multi-cloud platforms, edge/IoT platforms,
serverless computing, resource management, interoperable data collection and management, semantic modelling for
interoperability, cloud/fog service brokerage, networking and communication, cloud/fog monitoring, anomaly detection,
security and privacy.

Last, we presented the NebulOuS conceptual and architecture in the form of component and sequence diagrams. This
architecture will be used as a starting point for the technical implementation and integration work that will take place in
the following months. The physical architecture that will report on the details of the technical implementation will be
provided in two iterations, the initial one in deliverable D6.1 (M18) and the final one in D6.2 (M36).

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

99

References

 [1] ‘Kubernetes’. [Online]. Available: https://kubernetes.io/
[2] ‘Crossplane’. [Online]. Available: https://www.crossplane.io/
[3] ‘KubeVela’. [Online]. Available: https://kubevela.io/
[4] ‘OAM | Open Application Model Specification’. https://oam.dev/ (accessed Oct. 19, 2022).
[5] A. P. Achilleos et al., ‘The cloud application modelling and execution language’, Journal of Cloud computing,

vol. 8, pp. 1–25, 2019.
[6] A. Tsagkaropoulos, Y. Verginadis, M. Compastié, D. Apostolou, and G. Mentzas, ‘Extending TOSCA for

Edge and Fog Deployment Support’, Electronics, vol. 10, no. 6, 2021, doi: 10.3390/electronics10060737.
[7] ‘Kubesphere’. [Online]. Available: https://kubesphere.io/
[8] ‘OpenPitrix’. [Online]. Available: https://github.com/openpitrix/openpitrix
[9] ‘KubeEdge’. [Online]. Available: https://kubeedge.io/en/
[10] ‘ONEedge - EU Next Generation Edge Cloud Platform’, Mar. 21, 2022. https://oneedge.io/ (accessed Feb.

13, 2023).
[11] ‘OpenNebula’. [Online]. Available: https://opennebula.io/
[12] ‘The Definitive Platform for Modern Apps’, DC/OS. https://dcos.io/ (accessed Feb. 10, 2023).
[13] ‘Apache Mesos’, Apache Mesos. https://mesos.apache.org/ (accessed Feb. 10, 2023).
[14] ‘D2iQ DCOS Platform | Distributed Cloud Operating System’. https://d2iq.com/products/dcos (accessed

Feb. 10, 2023).
[15] ‘SIMPL: Cloud-to-edge federations and data spaces made simple’. [Online]. Available: https://digital-

strategy.ec.europa.eu/en/news/simpl-cloud-edge-federations-and-data-spaces-made-simple
[16] ‘SIMPLE Architecture Vision document’. European Commission, Mar. 30, 2022. [Online]. Available:

https://ec.europa.eu/newsroom/dae/redirection/document/86241
[17] ‘SIMPL - Clarifications’. European Commission. [Online]. Available:

https://ec.europa.eu/newsroom/dae/redirection/document/91768
[18] ‘SIMPL Final Business Requirements’. European Commission. [Online]. Available:

https://ec.europa.eu/newsroom/dae/redirection/document/86235
[19] ‘SUSE Rancher’. [Online]. Available: https://www.rancher.com/
[20] ‘Harvester’. [Online]. Available: https://harvesterhci.io/
[21] ‘KubeVirt’. [Online]. Available: https://kubevirt.io/
[22] Y. Verginadis, I. Alshabani, G. Mentzas, and N. Stojanovic, ‘PrEstoCloud: Proactive Cloud Resources

Management at the Edge for Efficient Real-Time Big Data Processing.’, presented at the CLOSER, 2017,
pp. 583–589.

[23] ‘StarlingX Documentation’. https://docs.starlingx.io/ (accessed Feb. 08, 2023).
[24] ‘K0s Documentation’. https://docs.k0sproject.io/v1.26.0+k0s.0/ (accessed Feb. 08, 2023).
[25] ‘OpenYurt documentation’, Feb. 01, 2023. https://openyurt.io/docs/ (accessed Feb. 08, 2023).
[26] ‘Portainer Documentation’. https://docs.portainer.io/ (accessed Feb. 08, 2023).
[27] MirantisIT, ‘Download Mirantis Kubernetes Engine Documentation’, Mirantis. https://www.mirantis.com

(accessed Feb. 08, 2023).
[28] ‘AWS IoT Greengrass’. [Online]. Available: https://aws.amazon.com/greengrass/
[29] ‘Azure IoT Edge’. [Online]. Available: https://learn.microsoft.com/en-us/azure/iot-edge/about-iot-

edge?view=iotedge-1.4
[30] E. Jonas et al., ‘Cloud Programming Simplified: A Berkeley View on Serverless Computing’. arXiv, Feb. 09,

2019. doi: 10.48550/arXiv.1902.03383.
[31] ‘CNCF WG-Serverless Whitepaper v1.0’. CNCF Serverless WG, Feb. 14, 2018.
[32] ‘Knative Serving’. Knative, Feb. 06, 2023. Accessed: Feb. 06, 2023. [Online]. Available:

https://github.com/knative/serving

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

100

[33] ‘Anthos technical overview’, Google Cloud. https://cloud.google.com/anthos/docs/concepts/overview
(accessed Feb. 06, 2023).

[34] ‘openfaas/faas’. OpenFaaS, Feb. 06, 2023. Accessed: Feb. 06, 2023. [Online]. Available:
https://github.com/openfaas/faas

[35] ‘Fission: Serverless Functions for Kubernetes’. Fission, Feb. 06, 2023. Accessed: Feb. 06, 2023. [Online].
Available: https://github.com/fission/fission

[36] ‘🐫 + ☁️ = Apache Camel K’. The Apache Software Foundation, Feb. 03, 2023. Accessed: Feb. 06, 2023.
[Online]. Available: https://github.com/apache/camel-k

[37] ‘OpenWhisk’. The Apache Software Foundation, Feb. 06, 2023. Accessed: Feb. 06, 2023. [Online].
Available: https://github.com/apache/openwhisk

[38] ‘kedacore/keda’. KEDA, Feb. 06, 2023. Accessed: Feb. 06, 2023. [Online]. Available:
https://github.com/kedacore/keda

[39] ‘dapr/dapr’. Dapr, Feb. 06, 2023. Accessed: Feb. 06, 2023. [Online]. Available:
https://github.com/dapr/dapr

[40] ‘OpenFunction: Build a Modern Cloud-Native Serverless Computing Platform’.
https://kubesphere.io/blogs/faas-openfunction/ (accessed Oct. 11, 2022).

[41] ‘How Dapr helps to build a cloud-agnostic FaaS platform’, May 14, 2022.
https://blog.dapr.io/posts/2022/05/14/how-dapr-helps-to-build-a-cloud-agnostic-faas-platform/ (accessed
Oct. 11, 2022).

[42] A. J. Younge, G. von Laszewski, L. Wang, S. Lopez-Alarcon, and W. Carithers, ‘Efficient resource
management for Cloud computing environments’, in International Conference on Green Computing, Aug. 2010,
pp. 357–364. doi: 10.1109/GREENCOMP.2010.5598294.

[43] S. Mustafa, B. Nazir, A. Hayat, A. ur R. Khan, and S. A. Madani, ‘Resource management in cloud
computing: Taxonomy, prospects, and challenges’, Computers & Electrical Engineering, vol. 47, pp. 186–203,
Oct. 2015, doi: 10.1016/j.compeleceng.2015.07.021.

[44] K. Toczé and S. Nadjm-Tehrani, ‘A Taxonomy for Management and Optimization of Multiple Resources in
Edge Computing’, Wireless Communications and Mobile Computing, vol. 2018, p. e7476201, Jun. 2018, doi:
10.1155/2018/7476201.

[45] A. Yousefpour et al., ‘All one needs to know about fog computing and related edge computing paradigms:
A complete survey’, Journal of Systems Architecture, vol. 98, pp. 289–330, Sep. 2019, doi:
10.1016/j.sysarc.2019.02.009.

[46] M. B. Qureshi et al., ‘Survey on Grid Resource Allocation Mechanisms’, J Grid Computing, vol. 12, no. 2, pp.
399–441, Jun. 2014, doi: 10.1007/s10723-014-9292-9.

[47] A. Ahmed et al., ‘Fog Computing Applications: Taxonomy and Requirements’. arXiv, Jul. 26, 2019. doi:
10.48550/arXiv.1907.11621.

[48] C.-C. Liu, C.-C. Huang, C.-W. Tseng, Y.-T. Yang, and L.-D. Chou, ‘Service Resource Management in Edge
Computing Based on Microservices’, in 2019 IEEE International Conference on Smart Internet of Things
(SmartIoT), Aug. 2019, pp. 388–392. doi: 10.1109/SmartIoT.2019.00068.

[49] A. J. Fahs, G. Pierre, and E. Elmroth, ‘Voilà: Tail-Latency-Aware Fog Application Replicas Autoscaler’, in
2020 28th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS), Nov. 2020, pp. 1–8. doi: 10.1109/MASCOTS50786.2020.9285953.

[50] H. Arkian, G. Pierre, J. Tordsson, and E. Elmroth, ‘Model-based Stream Processing Auto-scaling in Geo-
Distributed Environments’, in 2021 International Conference on Computer Communications and Networks
(ICCCN), Jul. 2021, pp. 1–10. doi: 10.1109/ICCCN52240.2021.9522236.

[51] B. Xu, Z. Peng, F. Xiao, A. M. Gates, and J.-P. Yu, ‘Dynamic deployment of virtual machines in cloud
computing using multi-objective optimization’, Soft Comput, vol. 19, no. 8, pp. 2265–2273, Aug. 2015, doi:
10.1007/s00500-014-1406-6.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

101

[52] A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue, ‘On Reducing IoT Service Delay via Fog Offloading’,
IEEE Internet of Things Journal, vol. 5, no. 2, pp. 998–1010, Apr. 2018, doi: 10.1109/JIOT.2017.2788802.

[53] A. J. Fahs and G. Pierre, ‘Proximity-Aware Traffic Routing in Distributed Fog Computing Platforms’, in
2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), May 2019,
pp. 478–487. doi: 10.1109/CCGRID.2019.00062.

[54] P. Osypanka and P. Nawrocki, ‘Resource Usage Cost Optimization in Cloud Computing Using Machine
Learning’, IEEE Transactions on Cloud Computing, vol. 10, no. 3, pp. 2079–2089, Jul. 2022, doi:
10.1109/TCC.2020.3015769.

[55] F. Ben Jemaa, G. Pujolle, and M. Pariente, ‘QoS-Aware VNF Placement Optimization in Edge-Central
Carrier Cloud Architecture’, in 2016 IEEE Global Communications Conference (GLOBECOM), Dec. 2016,
pp. 1–7. doi: 10.1109/GLOCOM.2016.7842188.

[56] D.-N. Vu et al., ‘Joint energy and latency optimization for upstream IoT offloading services in fog radio
access networks’, Transactions on Emerging Telecommunications Technologies, vol. 30, no. 4, p. e3497, 2019, doi:
10.1002/ett.3497.

[57] ‘A survey on techniques for improving the energy efficiency of large-scale distributed systems | ACM
Computing Surveys’. https://dl.acm.org/doi/abs/10.1145/2532637 (accessed Feb. 03, 2023).

[58] Y.-J. Yu, T.-C. Chiu, A.-C. Pang, M.-F. Chen, and J. Liu, ‘Virtual machine placement for backhaul traffic
minimization in fog radio access networks’, in 2017 IEEE International Conference on Communications (ICC),
May 2017, pp. 1–7. doi: 10.1109/ICC.2017.7996500.

[59] S. K. Abd, S. A. R. Al-Haddad, F. Hashim, A. B. H. J. Abdullah, and S. Yussof, ‘Energy-Aware Fault Tolerant
Task offloading of Mobile Cloud Computing’, in 2017 5th IEEE International Conference on Mobile Cloud
Computing, Services, and Engineering (MobileCloud), Apr. 2017, pp. 161–164. doi:
10.1109/MobileCloud.2017.26.

[60] L. Huang, X. Feng, L. Zhang, L. Qian, and Y. Wu, ‘Multi-Server Multi-User Multi-Task Computation
Offloading for Mobile Edge Computing Networks’, Sensors, vol. 19, no. 6, Art. no. 6, Jan. 2019, doi:
10.3390/s19061446.

[61] M. Mukherjee et al., ‘Latency-Driven Parallel Task Data Offloading in Fog Computing Networks for
Industrial Applications’, IEEE Transactions on Industrial Informatics, vol. 16, no. 9, pp. 6050–6058, Sep. 2020,
doi: 10.1109/TII.2019.2957129.

[62] F. Y. Okay and S. Ozdemir, ‘Routing in Fog-Enabled IoT Platforms: A Survey and an SDN-Based Solution’,
IEEE Internet of Things Journal, vol. 5, no. 6, pp. 4871–4889, Dec. 2018, doi: 10.1109/JIOT.2018.2882781.

[63] H. Pydi and G. N. Iyer, ‘Analytical Review and Study on Load Balancing in Edge Computing Platform’, in
2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC), Mar. 2020, pp.
180–187. doi: 10.1109/ICCMC48092.2020.ICCMC-00036.

[64] A. J. Kadhim and S. A. H. Seno, ‘Energy-efficient multicast routing protocol based on SDN and fog
computing for vehicular networks’, Ad Hoc Networks, vol. 84, pp. 68–81, Mar. 2019, doi:
10.1016/j.adhoc.2018.09.018.

[65] D. Puthal, M. S. Obaidat, P. Nanda, M. Prasad, S. P. Mohanty, and A. Y. Zomaya, ‘Secure and Sustainable
Load Balancing of Edge Data Centers in Fog Computing’, IEEE Communications Magazine, vol. 56, no. 5,
pp. 60–65, May 2018, doi: 10.1109/MCOM.2018.1700795.

[66] R. Beraldi, A. Mtibaa, and H. Alnuweiri, ‘Cooperative load balancing scheme for edge computing resources’,
in 2017 Second International Conference on Fog and Mobile Edge Computing (FMEC), May 2017, pp. 94–100.
doi: 10.1109/FMEC.2017.7946414.

[67] A. Kapsalis, P. Kasnesis, I. S. Venieris, D. I. Kaklamani, and C. Z. Patrikakis, ‘A Cooperative Fog Approach
for Effective Workload Balancing’, IEEE Cloud Computing, vol. 4, no. 2, pp. 36–45, Mar. 2017, doi:
10.1109/MCC.2017.25.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

102

[68] J. Liu, B. Bai, J. Zhang, and K. B. Letaief, ‘Cache Placement in Fog-RANs: From Centralized to Distributed
Algorithms’, IEEE Transactions on Wireless Communications, vol. 16, no. 11, pp. 7039–7051, Nov. 2017, doi:
10.1109/TWC.2017.2737015.

[69] M. I. Naas, P. R. Parvedy, J. Boukhobza, and L. Lemarchand, ‘iFogStor: An IoT Data Placement Strategy for
Fog Infrastructure’, in 2017 IEEE 1st International Conference on Fog and Edge Computing (ICFEC), May 2017,
pp. 97–104. doi: 10.1109/ICFEC.2017.15.

[70] A. Aral and T. Ovatman, ‘A Decentralized Replica Placement Algorithm for Edge Computing’, IEEE
Transactions on Network and Service Management, vol. 15, no. 2, pp. 516–529, Jun. 2018, doi:
10.1109/TNSM.2017.2788945.

[71] Y. Shao, C. Li, and H. Tang, ‘A data replica placement strategy for IoT workflows in collaborative edge and
cloud environments’, Computer Networks, vol. 148, pp. 46–59, Jan. 2019, doi:
10.1016/j.comnet.2018.10.017.

[72] K. Li and J. Nabrzyski, ‘Traffic-Aware Virtual Machine Placement in Cloudlet Mesh with Adaptive
Bandwidth’, in 2017 IEEE International Conference on Cloud Computing Technology and Science (CloudCom),
Dec. 2017, pp. 49–56. doi: 10.1109/CloudCom.2017.47.

[73] L. Zhao, J. Liu, Y. Shi, W. Sun, and H. Guo, ‘Optimal Placement of Virtual Machines in Mobile Edge
Computing’, in GLOBECOM 2017 - 2017 IEEE Global Communications Conference, Dec. 2017, pp. 1–6. doi:
10.1109/GLOCOM.2017.8254084.

[74] C. Li, Y. Wang, H. Tang, Y. Zhang, Y. Xin, and Y. Luo, ‘Flexible replica placement for enhancing the
availability in edge computing environment’, Computer Communications, vol. 146, pp. 1–14, Oct. 2019, doi:
10.1016/j.comcom.2019.07.013.

[75] O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar, ‘Towards QoS-Aware Fog Service Placement’, in 2017
IEEE 1st International Conference on Fog and Edge Computing (ICFEC), May 2017, pp. 89–96. doi:
10.1109/ICFEC.2017.12.

[76] H. Tang, C. Li, J. Bai, J. Tang, and Y. Luo, ‘Dynamic resource allocation strategy for latency-critical and
computation-intensive applications in cloud–edge environment’, Computer Communications, vol. 134, pp.
70–82, Jan. 2019, doi: 10.1016/j.comcom.2018.11.011.

[77] K. Ray, A. Banerjee, and N. C. Narendra, ‘Proactive Microservice Placement and Migration for Mobile Edge
Computing’, in 2020 IEEE/ACM Symposium on Edge Computing (SEC), Nov. 2020, pp. 28–41. doi:
10.1109/SEC50012.2020.00010.

[78] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, ‘A Review of Auto-scaling Techniques for Elastic
Applications in Cloud Environments’, J Grid Computing, vol. 12, no. 4, pp. 559–592, Dec. 2014, doi:
10.1007/s10723-014-9314-7.

[79] E. F. Coutinho, F. R. de Carvalho Sousa, P. A. L. Rego, D. G. Gomes, and J. N. de Souza, ‘Elasticity in
cloud computing: a survey’, Ann. Telecommun., vol. 70, no. 7, pp. 289–309, Aug. 2015, doi: 10.1007/s12243-
014-0450-7.

[80] G. Rattihalli, M. Govindaraju, H. Lu, and D. Tiwari, ‘Exploring Potential for Non-Disruptive Vertical Auto
Scaling and Resource Estimation in Kubernetes’, in 2019 IEEE 12th International Conference on Cloud
Computing (CLOUD), Jul. 2019, pp. 33–40. doi: 10.1109/CLOUD.2019.00018.

[81] S. Taherizadeh and M. Grobelnik, ‘Key influencing factors of the Kubernetes auto-scaler for computing-
intensive microservice-native cloud-based applications’, Advances in Engineering Software, vol. 140, p. 102734,
Feb. 2020, doi: 10.1016/j.advengsoft.2019.102734.

[82] J. Zhu, Z. Zheng, Y. Zhou, and M. R. Lyu, ‘Scaling Service-Oriented Applications into Geo-distributed
Clouds’, in 2013 IEEE Seventh International Symposium on Service-Oriented System Engineering, Mar. 2013, pp.
335–340. doi: 10.1109/SOSE.2013.56.

[83] C. Qu, ‘Auto-scaling and deployment of web applications in distributed computing clouds’, 2016. Accessed:
Feb. 07, 2023. [Online]. Available: https://www.semanticscholar.org/paper/Auto-scaling-and-deployment-
of-web-applications-in-Qu/d16bb76802bcccd26eb9d0b75a9b89e2fbd0c21c

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

103

[84] W.-S. Zheng and L.-H. Yen, ‘Auto-scaling in Kubernetes-Based Fog Computing Platform’, in New Trends in
Computer Technologies and Applications, Singapore, 2019, pp. 338–345. doi: 10.1007/978-981-13-9190-3_35.

[85] N. Wang, B. Varghese, M. Matthaiou, and D. S. Nikolopoulos, ‘ENORM: A Framework For Edge NOde
Resource Management’, IEEE Transactions on Services Computing, vol. 13, no. 6, pp. 1086–1099, Nov. 2020,
doi: 10.1109/TSC.2017.2753775.

[86] GSM Association, ‘IoT Big Data Framework Architecture v2.0’, 2018. [Online]. Available:
https://www.gsma.com/iot/wp-content/uploads/2018/11/CLP.25-v2.0.pdf

[87] T. Salman and R. Jain, ‘A survey of protocols and standards for internet of things’, arXiv preprint
arXiv:1903.11549, 2019.

[88] ‘DB-Engines Ranking’, DB-Engines. https://db-engines.com/en/ranking/time+series+dbms (accessed Feb.
14, 2023).

[89] D. Bees, L. Frost, M. Bauer, M. Fisher, and W. Li, ‘NGSI-LD API: For Context Information Management’,
ETSI White Paper, no. 31, 2019.

[90] ‘JSON-LD 1.1’. https://www.w3.org/TR/json-ld11/ (accessed Feb. 14, 2023).
[91] V. Cardellini, F. Lo Presti, M. Nardelli, and G. R. Russo, ‘Runtime adaptation of data stream processing

systems: The state of the art’, ACM Computing Surveys, vol. 54, no. 11s, pp. 1–36, 2022.
[92] C. Flores, P. Grace, and G. S. Blair, ‘Sedim: A middleware framework for interoperable service discovery in

heterogeneous networks’, ACM Transactions on Autonomous and Adaptive Systems (TAAS), vol. 6, no. 1, pp. 1–
8, 2011.

[93] N. Limam et al., ‘OSDA: Open service discovery architecture for efficient cross-domain service provisioning’,
Computer Communications, vol. 30, no. 3, pp. 546–563, 2007.

[94] P.-G. Raverdy, V. Issarny, R. Chibout, and A. de La Chapelle, ‘A multi-protocol approach to service
discovery and access in pervasive environments’, presented at the 2006 3rd Annual International
Conference on Mobile and Ubiquitous Systems-Workshops, 2006, pp. 1–9.

[95] Y.-D. Bromberg and V. Issarny, ‘INDISS: Interoperable discovery system for networked services’, presented
at the Middleware 2005: ACM/IFIP/USENIX 6th International Middleware Conference, Grenoble,
France, November 28-December 2, 2005. Proceedings 6, 2005, pp. 164–183.

[96] J. Nakazawa, H. Tokuda, W. K. Edwards, and U. Ramachandran, ‘A bridging framework for universal
interoperability in pervasive systems’, presented at the 26th IEEE International Conference on Distributed
Computing Systems (ICDCS’06), 2006, pp. 3–3.

[97] A. Bennaceur, E. Andriescu, R. S. Cardoso, and V. Issarny, ‘A unifying perspective on protocol mediation:
interoperability in the future internet’, Journal of Internet Services and Applications, vol. 6, pp. 1–15, 2015.

[98] G. S. Blair, M. Paolucci, P. Grace, and N. Georgantas, ‘Interoperability in complex distributed systems’,
Formal Methods for Eternal Networked Software Systems: 11th International School on Formal Methods for the Design
of Computer, Communication and Software Systems, SFM 2011, Bertinoro, Italy, June 13-18, 2011. Advanced
Lectures 11, pp. 1–26, 2011.

[99] M. Noura, M. Atiquzzaman, and M. Gaedke, ‘Interoperability in internet of things: Taxonomies and open
challenges’, Mobile networks and applications, vol. 24, pp. 796–809, 2019.

[100] ‘AllJoyn reference implementation’. [Online]. Available:
https://openconnectivity.org/technology/reference-implementation/alljoyn/

[101] ‘IoTivity reference implementation’. [Online]. Available:
https://openconnectivity.org/technology/reference-implementation/

[102] ‘TS-0012-V3.7.3 (OneM2M base ontology)’.
[103] ‘ETSI GS CIM 006’, Jul. 2019. [Online]. Available:

https://www.etsi.org/deliver/etsi_gs/CIM/001_099/006/01.01.01_60/gs_CIM006v010101p.pdf
[104] B. Costa, P. F. Pires, and F. C. Delicato, ‘Modeling iot applications with sysml4iot’, presented at the

2016 42th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), 2016, pp.
157–164.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

104

[105] M. Bauer, M. Boussard, N. Bui, and F. Carrez, ‘Internet of Things – Architecture IoT-A Deliverable
D1.5 – Final architectural reference model for the IoT v3.0’, Technical report D1.5, Jul. 2013.

[106] F. Pramudianto et al., ‘Iot link: An internet of things prototyping toolkit’, presented at the 2014 IEEE
11th Intl Conf on Ubiquitous Intelligence and Computing and 2014 IEEE 11th Intl Conf on Autonomic
and Trusted Computing and 2014 IEEE 14th Intl Conf on Scalable Computing and Communications and
Its Associated Workshops, 2014, pp. 1–9.

[107] J. Janak and H. Schulzrinne, ‘Framework for rapid prototyping of distributed IoT applications powered
by WebRTC’, presented at the 2016 Principles, Systems and Applications of IP Telecommunications
(IPTComm), 2016, pp. 1–7.

[108] T. Kalbarczyk and C. Julien, ‘Omni: An application framework for seamless device-to-device interaction
in the wild’, presented at the Proceedings of the 19th International Middleware Conference, 2018, pp. 161–
173.

[109] A. Bröring et al., ‘Enabling IoT ecosystems through platform interoperability’, IEEE software, vol. 34, no.
1, pp. 54–61, 2017.

[110] G. Fierro et al., ‘Mortar: An open testbed for portable building analytics’, ACM Transactions on Sensor
Networks (TOSN), vol. 16, no. 1, pp. 1–31, 2019.

[111] ‘Introduction — Brick Ontology Documentation’. https://docs.brickschema.org/intro.html (accessed
Feb. 14, 2023).

[112] Y. Gao, J. Zhang, G. Guan, and W. Dong, ‘LinkLab: A scalable and heterogeneous testbed for remotely
developing and experimenting IoT applications’, presented at the 2020 IEEE/ACM Fifth International
Conference on Internet-of-Things Design and Implementation (IoTDI), 2020, pp. 176–188.

[113] J. Honkola, H. Laine, R. Brown, and O. Tyrkkö, ‘Smart-M3 information sharing platform’, presented at
the The IEEE symposium on Computers and Communications, 2010, pp. 1041–1046.

[114] P. Lade, Y. Upadhyay, K. Dantu, and S. Y. Ko, ‘Developing adaptive quantified-self applications using
dynasense’, presented at the 2016 IEEE First International Conference on Internet-of-Things Design and
Implementation (IoTDI), 2016, pp. 61–71.

[115] M. Jang, H. Lee, K. Schwan, and K. Bhardwaj, ‘SOUL: an edge-cloud system for mobile applications in
a sensor-rich world’, presented at the 2016 IEEE/ACM Symposium on Edge Computing (SEC), 2016, pp.
155–167.

[116] K. Kotis and A. Katasonov, ‘Semantic interoperability on the web of things: The semantic smart gateway
framework’, presented at the 2012 Sixth International Conference on Complex, Intelligent, and Software
Intensive Systems, 2012, pp. 630–635.

[117] F. M. Roth, C. Becker, G. Vega, and P. Lalanda, ‘XWARE—A customizable interoperability framework
for pervasive computing systems’, Pervasive and Mobile Computing, vol. 47, pp. 13–30, Jul. 2018, doi:
10.1016/j.pmcj.2018.03.005.

[118] R. Yus, G. Bouloukakis, S. Mehrotra, and N. Venkatasubramanian, ‘The SEMIOTIC Ecosystem: A
Semantic Bridge between IoT Devices and Smart Spaces’, ACM Trans. Internet Technol., vol. 22, no. 3, pp.
1–33, Aug. 2022, doi: 10.1145/3527241.

[119] M. Compton et al., ‘The SSN ontology of the W3C semantic sensor network incubator group’, Journal
of Web Semantics, vol. 17, pp. 25–32, Dec. 2012, doi: 10.1016/j.websem.2012.05.003.

[120] A. Haller et al., ‘The modular SSN ontology: A joint W3C and OGC standard specifying the semantics
of sensors, observations, sampling, and actuation’, SW, vol. 10, no. 1, pp. 9–32, Dec. 2018, doi:
10.3233/SW-180320.

[121] M. Bermudez-Edo, T. Elsaleh, P. Barnaghi, and K. Taylor, ‘IoT-Lite: A Lightweight Semantic Model for
the Internet of Things’, in 2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and
Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People,
and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), Toulouse, Jul. 2016, pp. 90–97.
doi: 10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0035.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

105

[122] L. Daniele, R. Garcia-Castro, M. Lefrançois, and M. Poveda-Villalon, ‘ETSI TS 103 264 (SAREF spec)’.
ETSI, Feb. 2020. [Online]. Available:
https://www.etsi.org/deliver/etsi_ts/103200_103299/103264/03.01.01_60/ts_103264v030101p.pdf

[123] G. Privat and A. Medvedev, ‘Guidelines for Modelling with NGSI-LD’, ETSI White Paper. Available online:
https://www. etsi. org/images/files/ETSIWhitePapers/etsi_wp_42_NGSI_LD. pdf (accessed on 21 June 2022),
2021.

[124] K. Kotis and A. Katasonov, ‘An ontology for the automated deployment of applications in heterogeneous
IoT environments’, [Online]. Available: https://www.semantic-web-
journal.net/sites/default/files/swj247_0.pdf

[125] K. Kritikos and D. Plexousakis, ‘OWL-Q for Semantic QoS-based Web Service Description and
Discovery’, Foundation of Research and Technology, Heraklion, Greece, [Online]. Available:
https://publications.ics.forth.gr/_publications/10.1.1.93.9067.pdf

[126] B. Rajendiran and J. Kanniappan, ‘A Generic Model for Identifying QoS Parameters Interrelations in
Cloud Services Selection Ontology during Runtime’, Symmetry, vol. 13, no. 4, p. 563, Mar. 2021, doi:
10.3390/sym13040563.

[127] Q. Zhang, A. Haller, and Q. Wang, ‘CoCoOn: Cloud Computing Ontology for IaaS Price and
Performance Comparison’, in The Semantic Web – ISWC 2019, vol. 11779, C. Ghidini, O. Hartig, M.
Maleshkova, V. Svátek, I. Cruz, A. Hogan, J. Song, M. Lefrançois, and F. Gandon, Eds. Cham: Springer
International Publishing, 2019, pp. 325–341. doi: 10.1007/978-3-030-30796-7_21.

[128] F. Moscato, R. Aversa, B. Di Martino, T.-F. Fortiş, and V. Munteanu, ‘An analysis of mosaic ontology
for cloud resources annotation’, presented at the 2011 federated conference on computer science and
information systems (FedCSIS), 2011, pp. 973–980.

[129] H. Taheri et al., ‘Cloud broker: a systematic mapping study’, arXiv preprint arXiv:2102.12717, 2021.
[130] A. Elhabbash, F. Samreen, J. Hadley, and Y. Elkhatib, ‘Cloud brokerage: A systematic survey’, ACM

Computing Surveys (CSUR), vol. 51, no. 6, pp. 1–28, 2019.
[131] X. Li, L. Pan, and S. Liu, ‘A survey of resource provisioning problem in cloud brokers’, Journal of Network

and Computer Applications, p. 103384, 2022.
[132] P. Sharma, S. Lee, T. Guo, D. Irwin, and P. Shenoy, ‘Spotcheck: Designing a derivative iaas cloud on

the spot market’, presented at the Proceedings of the Tenth European Conference on Computer Systems,
2015, pp. 1–15.

[133] I. Patiniotakis, Y. Verginadis, and G. Mentzas, ‘PuLSaR: preference-based cloud service selection for
cloud service brokers’, Journal of Internet Services and Applications, vol. 6, no. 1, pp. 1–14, 2015.

[134] M. Mahalingam et al., ‘Virtual extensible local area network (vxlan): A framework for overlaying
virtualized layer 2 networks over layer 3 networks’, 2070–1721, 2014.

[135] P. Garg and Y. Wang, ‘NVGRE: Network virtualization using generic routing encapsulation’, 2070–
1721, 2015.

[136] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti, ‘A survey of software-defined
networking: Past, present, and future of programmable networks’, IEEE Communications surveys & tutorials,
vol. 16, no. 3, pp. 1617–1634, 2014.

[137] B. Yi, X. Wang, K. Li, and M. Huang, ‘A comprehensive survey of network function virtualization’,
Computer Networks, vol. 133, pp. 212–262, 2018.

[138] M. S. Bonfim, K. L. Dias, and S. F. Fernandes, ‘Integrated NFV/SDN architectures: A systematic
literature review’, ACM Computing Surveys (CSUR), vol. 51, no. 6, pp. 1–39, 2019.

[139] P. P. Ray and N. Kumar, ‘SDN/NFV architectures for edge-cloud oriented IoT: A systematic review’,
Computer Communications, vol. 169, pp. 129–153, 2021.

[140] M. Pudelko, P. Emmerich, S. Gallenmüller, and G. Carle, ‘Performance analysis of VPN gateways’,
presented at the 2020 IFIP Networking Conference (Networking), 2020, pp. 325–333.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

106

[141] M. A. Vieira, M. S. Castanho, R. D. Pacífico, E. R. Santos, E. P. C. Júnior, and L. F. Vieira, ‘Fast packet
processing with ebpf and xdp: Concepts, code, challenges, and applications’, ACM Computing Surveys
(CSUR), vol. 53, no. 1, pp. 1–36, 2020.

[142] ‘BPF and XDP Reference Guide — Cilium 1.12.6 documentation’.
https://docs.cilium.io/en/stable/bpf/ (accessed Feb. 14, 2023).

[143] R. Kumar and M. C. Trivedi, ‘Networking analysis and performance comparison of Kubernetes CNI
plugins’, presented at the Advances in Computer, Communication and Computational Sciences:
Proceedings of IC4S 2019, 2021, pp. 99–109.

[144] Y. Rekhter, T. Li, and S. Hares, ‘A border gateway protocol 4 (BGP-4)’, 2070–1721, 2006.
[145] ‘Calico CNI plugin’. [Online]. Available: https://www.tigera.io/project-calico/
[146] ‘Cilium - Linux Native, API-Aware Networking and Security for Containers’. Accessed: Dec. 06, 2022.

[Online]. Available: https://cilium.io
[147] ‘Flannel’. [Online]. Available: https://github.com/flannel-io/flannel
[148] ‘Kube-OVN’. [Online]. Available: https://github.com/kubeovn/kube-ovn
[149] ‘Submariner’. [Online]. Available: https://submariner.io/
[150] ‘SMI | A standard interface for service meshes on Kubernetes’. https://smi-spec.io/ (accessed Feb. 03,

2023).
[151] ‘Linkerd’. https://linkerd.io/ (accessed Feb. 14, 2023).
[152] ‘SMI | A standard interface for service meshes on Kubernetes’. https://smi-spec.io/blog/announcing-

smi-gateway-api-gamma/ (accessed Feb. 03, 2023).
[153] ‘Introduction - Kubernetes Gateway API’. https://gateway-api.sigs.k8s.io/ (accessed Feb. 03, 2023).
[154] ‘GAMMA - Kubernetes Gateway API’. https://gateway-api.sigs.k8s.io/contributing/gamma/ (accessed

Feb. 03, 2023).
[155] ‘NFC overview’. https://nfc-forum.org/learn/nfc-technology/
[156] R. Want, ‘An Introduction to RFID Technology’, IEEE Pervasive Comput., vol. 5, no. 1, pp. 25–33, Jan.

2006, doi: 10.1109/MPRV.2006.2.
[157] ‘Bluetooth overview’. https://www.bluetooth.com/learn-about-bluetooth/tech-overview/
[158] ‘Zigbee’, ZigBee. https://csa-iot.org/all-solutions/zigbee/zigbee-faq/
[159] ‘Z-wave overview’. https://www.z-wave.com/learn
[160] ‘Thread’. https://www.threadgroup.org/
[161] N. Kushalnagar, G. Montenegro, and C. Schumacher, ‘IPv6 over Low-Power Wireless Personal Area

Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals’, RFC Editor, RFC4919,
Aug. 2007. doi: 10.17487/rfc4919.

[162] H. A. A. Al-Kashoash and A. H. Kemp, ‘Comparison of 6LoWPAN and LPWAN for the Internet of
Things’, Australian Journal of Electrical and Electronics Engineering, vol. 13, no. 4, pp. 268–274, Oct. 2016, doi:
10.1080/1448837X.2017.1409920.

[163] W. Sun, Department of ECE and INMC, Seoul National University, Seoul, South Korea, M. Choi,
Department of ECE and INMC, Seoul National University, Seoul, South Korea, S. Choi, and Department
of ECE and INMC, Seoul National University, Seoul, South Korea, ‘IEEE 802.11ah: A Long Range 802.11
WLAN at Sub 1 GHz’, JICTS, vol. 1, no. 1, pp. 83–108, 2017, doi: 10.13052/jicts2245-800X.115.

[164] ‘Wi-Fi Halow’. https://www.wi-fi.org/discover-wi-fi/wi-fi-certified-halow
[165] ‘ETSI TR 101 683’. Feb. 2000. [Online]. Available:

https://www.etsi.org/deliver/etsi_tr/101600_101699/101683/01.01.01_60/tr_101683v010101p.pdf
[166] K. Kritikos, P. Skrzypek, and F. Zahid, ‘Are cloud platforms ready for multi-cloud?’, presented at the

Service-Oriented and Cloud Computing: 8th IFIP WG 2.14 European Conference, ESOCC 2020,
Heraklion, Crete, Greece, September 28–30, 2020, Proceedings 8, 2020, pp. 56–73.

[167] U. Demirbaga et al., ‘Autodiagn: An automated real-time diagnosis framework for big data systems’, IEEE
Transactions on Computers, vol. 71, no. 5, pp. 1035–1048, 2021.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

107

[168] V. Stefanidis, Y. Verginadis, I. Patiniotakis, and G. Mentzas, ‘Distributed complex event processing in
multiclouds’, presented at the Service-Oriented and Cloud Computing: 7th IFIP WG 2.14 European
Conference, ESOCC 2018, Como, Italy, September 12-14, 2018, Proceedings 7, 2018, pp. 105–119.

[169] D. Baur, F. Griesinger, Y. Verginadis, V. Stefanidis, and I. Patiniotakis, ‘A model driven engineering
approach for flexible and distributed monitoring of cross-cloud applications’, presented at the 2018
IEEE/ACM 11th International Conference on Utility and Cloud Computing (UCC), 2018, pp. 31–40.

[170] B. Costa, J. Bachiega, L. R. Carvalho, M. Rosa, and A. Araujo, ‘Monitoring fog computing: A review,
taxonomy and open challenges’, Computer Networks, vol. 215, p. 109189, Oct. 2022, doi:
10.1016/j.comnet.2022.109189.

[171] X. Masip, E. Marín, J. Garcia, and S. Sànchez, ‘Collaborative Mechanism for Hybrid Fog‐Cloud
Scenarios’, Fog and Fogonomics: Challenges and Practices of Fog Computing, Communication, Networking, Strategy,
and Economics, pp. 7–60, 2020.

[172] Yiannis Verginadis, ‘A Review of Monitoring Probes for Cloud Computing Continuum’, presented at
the 5th International Workshop on Recent Advances for Multi-Clouds and Mobile Edge Computing
(M2EC), 2023.

[173] S. K. Battula, S. Garg, J. Montgomery, and B. Kang, ‘An efficient resource monitoring service for fog
computing environments’, IEEE Transactions on Services Computing, vol. 13, no. 4, pp. 709–722, 2019.

[174] S. Taherizadeh, V. Stankovski, and M. Grobelnik, ‘A capillary computing architecture for dynamic
internet of things: Orchestration of microservices from edge devices to fog and cloud providers’, Sensors, vol.
18, no. 9, p. 2938, 2018.

[175] A. Bali and A. Gherbi, ‘Rule based lightweight approach for resources monitoring on IoT edge devices’,
presented at the Proceedings of the 5th International workshop on container technologies and container
clouds, 2019, pp. 43–48.

[176] M. Großmann and C. Klug, ‘Monitoring container services at the network edge’, presented at the 2017
29th International Teletraffic Congress (ITC 29), 2017, vol. 1, pp. 130–133.

[177] R. Krahn et al., ‘TEEMon: A continuous performance monitoring framework for TEEs’, presented at
the Proceedings of the 21st International Middleware Conference, 2020, pp. 178–192.

[178] A. Morton, ‘Active and passive metrics and methods (with hybrid types in-between)’, 2070–1721, 2016.
[179] A. Souza, N. Cacho, A. Noor, P. P. Jayaraman, A. Romanovsky, and R. Ranjan, ‘Osmotic monitoring of

microservices between the edge and cloud’, presented at the 2018 IEEE 20th International Conference on
High Performance Computing and Communications; IEEE 16th International Conference on Smart City;
IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), 2018, pp. 758–
765.

[180] J. S. Ward and A. Barker, ‘Observing the clouds: a survey and taxonomy of cloud monitoring’, Journal of
Cloud Computing, vol. 3, no. 1, pp. 1–30, 2014.

[181] W. A. Higashino, ‘Complex event processing as a service in multi-cloud environments’, 2016.
[182] M. Hirzel, ‘Partition and compose: Parallel complex event processing’, presented at the Proceedings of

the 6th ACM International Conference on Distributed Event-Based Systems, 2012, pp. 191–200.
[183] V. Chandola, A. Banerjee, and V. Kumar, ‘Anomaly detection: A survey’, ACM computing surveys (CSUR),

vol. 41, no. 3, pp. 1–58, 2009.
[184] C. C. Aggarwal and C. C. Aggarwal, An introduction to outlier analysis. Springer, 2017.
[185] L. Atzori, A. Iera, and G. Morabito, ‘The internet of things: A survey’, Computer networks, vol. 54, no.

15, pp. 2787–2805, 2010.
[186] G. Fortino and P. Trunfio, Internet of things based on smart objects: Technology, middleware and applications.

Springer, 2014.
[187] M. Markou and S. Singh, ‘Novelty detection: a review—part 1: statistical approaches’, Signal processing,

vol. 83, no. 12, pp. 2481–2497, 2003.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

108

[188] M. A. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko, ‘A review of novelty detection’, Signal
processing, vol. 99, pp. 215–249, 2014.

[189] N. Mohamudally and M. Peermamode-Mohaboob, ‘Building an anomaly detection engine (ADE) for Iot
smart applications’, Procedia computer science, vol. 134, pp. 10–17, 2018.

[190] M. Munir, S. A. Siddiqui, M. A. Chattha, A. Dengel, and S. Ahmed, ‘FuseAD: unsupervised anomaly
detection in streaming sensors data by fusing statistical and deep learning models’, Sensors, vol. 19, no. 11,
p. 2451, 2019.

[191] L. Huang, X. Nguyen, M. Garofalakis, M. Jordan, A. Joseph, and N. Taft, ‘In-network PCA and anomaly
detection’, Advances in neural information processing systems, vol. 19, 2006.

[192] H. E. Egilmez and A. Ortega, ‘Spectral anomaly detection using graph-based filtering for wireless sensor
networks’, presented at the 2014 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2014, pp. 1085–1089.

[193] P. Domingos, ‘Metacost: A general method for making classifiers cost-sensitive’, presented at the
Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining,
1999, pp. 155–164.

[194] I. Mani and I. Zhang, ‘kNN approach to unbalanced data distributions: a case study involving
information extraction’, presented at the Proceedings of workshop on learning from imbalanced datasets,
2003, vol. 126, pp. 1–7.

[195] C. Aggarwal and C. Zhai, ‘Springer Science & Business Media; 2012’, Mining Text Data.[Google Scholar].
[196] K. M. Ting, ‘An instance-weighting method to induce cost-sensitive trees’, IEEE Transactions on Knowledge

and Data Engineering, vol. 14, no. 3, pp. 659–665, 2002.
[197] M. V. Joshi, R. C. Agarwal, and V. Kumar, ‘Mining needle in a haystack: classifying rare classes via two-

phase rule induction’, presented at the Proceedings of the 2001 ACM SIGMOD international conference
on Management of data, 2001, pp. 91–102.

[198] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, ‘A deep learning approach for network intrusion detection
system’, presented at the Proceedings of the 9th EAI International Conference on Bio-inspired Information
and Communications Technologies (formerly BIONETICS), 2016, pp. 21–26.

[199] U. Fiore, F. Palmieri, A. Castiglione, and A. De Santis, ‘Network anomaly detection with the restricted
Boltzmann machine’, Neurocomputing, vol. 122, pp. 13–23, 2013.

[200] W. Lee et al., ‘Real time data mining-based intrusion detection’, presented at the Proceedings DARPA
Information Survivability Conference and Exposition II. DISCEX’01, 2001, vol. 1, pp. 89–100.

[201] S. Rajasegarar, C. Leckie, M. Palaniswami, and J. C. Bezdek, ‘Distributed anomaly detection in wireless
sensor networks’, presented at the 2006 10th IEEE Singapore international conference on communication
systems, 2006, pp. 1–5.

[202] X. R. Wang, J. T. Lizier, O. Obst, M. Prokopenko, and P. Wang, ‘Spatiotemporal anomaly detection in
gas monitoring sensor networks’, presented at the Wireless Sensor Networks: 5th European Conference,
EWSN 2008, Bologna, Italy, January 30-February 1, 2008. Proceedings, 2008, pp. 90–105.

[203] A. Servin and D. Kudenko, ‘Multi-agent reinforcement learning for intrusion detection’, presented at
the Adaptive Agents and Multi-Agent Systems III. Adaptation and Multi-Agent Learning: 5th, 6th, and 7th
European Symposium, ALAMAS 2005-2007 on Adaptive and Learning Agents and Multi-Agent Systems,
Revised Selected Papers, 2008, pp. 211–223.

[204] M. Oh and G. Iyengar, ‘Sequential anomaly detection using inverse reinforcement learning’, presented
at the Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & data
mining, 2019, pp. 1480–1490.

[205] Y. Chen, S. Su, and H. Yang, ‘Convolutional neural network analysis of recurrence plots for anomaly
detection’, International Journal of Bifurcation and Chaos, vol. 30, no. 01, p. 2050002, 2020.

[206] O. Janssens et al., ‘Convolutional neural network based fault detection for rotating machinery’, Journal
of Sound and Vibration, vol. 377, pp. 331–345, 2016.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

109

[207] P. Baldi, ‘Autoencoders, unsupervised learning, and deep architectures’, presented at the Proceedings of
ICML workshop on unsupervised and transfer learning, 2012, pp. 37–49.

[208] T. Luo and S. G. Nagarajan, ‘Distributed anomaly detection using autoencoder neural networks in WSN
for IoT’, presented at the 2018 ieee international conference on communications (icc), 2018, pp. 1–6.

[209] N. Patel, A. N. Saridena, A. Choromanska, P. Krishnamurthy, and F. Khorrami, ‘Adversarial learning-
based on-line anomaly monitoring for assured autonomy’, presented at the 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2018, pp. 6149–6154.

[210] I. Goodfellow et al., ‘Generative adversarial networks’, Communications of the ACM, vol. 63, no. 11, pp.
139–144, 2020.

[211] M. Z. Alom, V. Bontupalli, and T. M. Taha, ‘Intrusion detection using deep belief networks’, presented
at the 2015 National Aerospace and Electronics Conference (NAECON), 2015, pp. 339–344.

[212] A. Sari, ‘A review of anomaly detection systems in cloud networks and survey of cloud security measures
in cloud storage applications’, Journal of Information Security, vol. 6, no. 02, p. 142, 2015.

[213] Z. C. Lipton, J. Berkowitz, and C. Elkan, ‘A critical review of recurrent neural networks for sequence
learning’, arXiv preprint arXiv:1506.00019, 2015.

[214] N. Hassan, S. Gillani, E. Ahmed, I. Yaqoob, and M. Imran, ‘The role of edge computing in internet of
things’, IEEE communications magazine, vol. 56, no. 11, pp. 110–115, 2018.

[215] C. Vandana and A. A. Chikkamannur, ‘IOT future in Edge Computing’, International Journal of Advanced
Engineering Research and Science, vol. 3, no. 12, p. 236962, 2016.

[216] J. Deogirikar and A. Vidhate, ‘Security attacks in IoT: A survey’, presented at the 2017 International
Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), 2017, pp. 32–37.

[217] K. Punithasurya and S. J. Priya, ‘Analysis of different access control mechanism in cloud’, International
Journal of Applied Information Systems, vol. 4, no. 2, pp. 34–39, 2012.

[218] E. Bertin, D. Hussein, C. Sengul, and V. Frey, ‘Access control in the Internet of Things: a survey of
existing approaches and open research questions’, Annals of telecommunications, vol. 74, pp. 375–388, 2019.

[219] V. C. Hu et al., ‘Guide to attribute based access control (abac) definition and considerations (draft)’,
NIST special publication, vol. 800, no. 162, pp. 1–54, 2013.

[220] ANSI, ‘Next Generation Access Control - Functional Architecture (NGAC-FA)’. InterNational
Committee for Information Technology Standards [incits]ANSI, 2018. [Online]. Available:
https://webstore.ansi.org/standards/incits/incits4992018

[221] OASIS, ‘The Abbreviated Language for Authorization Version 1.0 Working Draft’. [Online]. Available:
https://www.oasis-open.org/committees/download.php/55228/alfa-for-xacml-v1.0-wd01.doc

[222] ‘OASIS Standards’. [Online]. Available: https://www.oasis-open.org/standards/
[223] ‘W3C XML Schema Definition Language (XSD)’. [Online]. Available:

https://www.w3.org/TR/xmlschema11-1/
[224] H. Firpi, ‘Handbook of Bioinspired Algorithms and Applications Edited by Stephan Olariu and Albert

Y.’, 2007.
[225] A. Procopiou and N. Komninos, ‘Bio/Nature-inspired algorithms in AI for malicious activity detection’,

2019.
[226] A. K. Kar, ‘Bio inspired computing–a review of algorithms and scope of applications’, Expert Systems with

Applications, vol. 59, pp. 20–32, 2016.
[227] N. Dash, R. Priyadarshini, B. K. Mishra, and R. Misra, ‘Bio-inspired computing through artificial neural

network’, in Fuzzy Systems: Concepts, Methodologies, Tools, and Applications, IGI Global, 2017, pp. 1285–1313.
[228] V. Jain and M. Agrawal, ‘Applying genetic algorithm in intrusion detection system of iot applications’,

presented at the 2020 4th International Conference on Trends in Electronics and Informatics
(ICOEI)(48184), 2020, pp. 284–287.

[229] A. Thakkar and R. Lohiya, ‘Role of swarm and evolutionary algorithms for intrusion detection system:
A survey’, Swarm and evolutionary computation, vol. 53, p. 100631, 2020.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

110

[230] P. Chaudhary and K. Kumar, ARTIFICIAL IMMUNE SYSTEM: ALGORITHMS AND APPLICATIONS
REVIEW. 2018. [Online]. Available: https://www.ssarsc.org/documents/ais.pdf

[231] R. Roman, R. Rios, J. A. Onieva, and J. Lopez, ‘Immune system for the internet of things using edge
technologies’, IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4774–4781, 2018.

[232] J. R. Al-Enezi, M. F. Abbod, and S. Alsharhan, ‘Artificial immune systems-models, algorithms and
applications’, 2010.

[233] L. N. De Castro and F. J. Von Zuben, ‘Learning and optimization using the clonal selection principle’,
IEEE transactions on evolutionary computation, vol. 6, no. 3, pp. 239–251, 2002, doi:
10.1109/TEVC.2002.1011539.

[234] S.-I. T. Tosin and J. R. Gbenga, ‘Negative selection algorithm based intrusion detection model’,
presented at the 2020 IEEE 20th Mediterranean Electrotechnical Conference (MELECON), 2020, pp. 202–
206.

[235] X. Shen, X. Z. Gao, and R. Bie, ‘Artificial immune networks: Models and applications’, International
Journal of Computational Intelligence Systems, vol. 1, no. 2, pp. 168–176, 2008, doi:
10.1109/ICCIAS.2006.294161.

[236] F. Gu, J. Greensmith, and U. Aickelin, ‘The dendritic cell algorithm for intrusion detection’, in
Biologically Inspired Networking and Sensing: Algorithms and Architectures, IGI Global, 2012, pp. 84–102.
[Online]. Available: https://doi.org/10.4018/978-1-61350-092-7.ch005

[237] J. Timmis, T. Knight, L. N. de Castro, and E. Hart, ‘An overview of artificial immune systems’,
Computation in cells and tissues: Perspectives and tools of thought, pp. 51–91, 2004, doi: 10.1007/978-3-662-
06369-9_4.

[238] L. N. De Castro and F. J. Von Zuben, ‘Artificial immune systems: Part I–basic theory and applications’,
Universidade Estadual de Campinas, Dezembro de, Tech. Rep, vol. 210, no. 1, 1999, [Online]. Available:
https://www.researchgate.net/profile/Leandro-De-
Castro/publication/228712042_Artificial_Immune_Systems_Part_I-
Basic_Theory_and_Applications/links/0fcfd5075b7c95b9cd000000/Artificial-Immune-Systems-Part-I-
Basic-Theory-and-Applications.pdf

[239] C.-H. Hong and B. Varghese, ‘Resource management in fog/edge computing: a survey on architectures,
infrastructure, and algorithms’, ACM Computing Surveys (CSUR), vol. 52, no. 5, pp. 1–37, 2019.

[240] Y. Verginadis et al., ‘Context-aware policy enforcement for PaaS-enabled access control’, IEEE
Transactions on Cloud Computing, vol. 10, no. 1, pp. 276–291, 2019.

[241] ‘H2020 PUZZLE Project | Home l Towards a Sophisticated SIEM’, Apr. 12, 2020. https://puzzle-
h2020.com/ (accessed Feb. 23, 2023).

[242] ‘WSO2 Balana Implementation’. WSO2, Feb. 22, 2023. Accessed: Feb. 22, 2023. [Online]. Available:
https://github.com/wso2/balana

[243] ‘Keycloak’. Keycloak, Feb. 23, 2023. Accessed: Feb. 23, 2023. [Online]. Available:
https://github.com/keycloak/keycloak

[244] ‘Drools - Business Rules Management System (JavaTM, Open Source)’. Accessed: Feb. 22, 2023. [Online].
Available: https://drools.org/

[245] ‘Open Policy Agent’. Accessed: Feb. 22, 2023. [Online]. Available: https://openpolicyagent.org/
[246] ‘Overview of Network Policy — Cilium 1.13.90 documentation’.

https://docs.cilium.io/en/latest/security/policy/ (accessed Feb. 22, 2023).
[247] Itzhak Gilboa, Rational choice. Cambridge, MA, USA: MIT Press, 2010.
[248] Jeffrey O. Kephart and Rajarshi Das, ‘Achieving Self-Management via Utility Functions’, IEEE Internet

Computing, vol. 11, no. 1, pp. 40–48, Jan. 2007, doi: 10.1109/MIC.2007.2.
[249] Yu-Kwong Kwok and Ishfaq Ahmad, ‘Static scheduling algorithms for allocating directed task graphs to

multiprocessors’, ACM Computing Surveys (CSUR), vol. 31, no. 4, pp. 406–471, Dec. 1999, doi:
10.1145/344588.344618.

[D2.1 Requirements and Conceptual Architecture of the NebulOuS Meta-OS]

111

[250] Saeid Abrishami, Mahmoud Naghibzadeh, and Dick H.J. Epema, ‘Cost-Driven Scheduling of Grid
Workflows Using Partial Critical Paths’, IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 8,
pp. 1400–1414, Aug. 2012, doi: 10.1109/TPDS.2011.303.

[251] Matthias Ehrgott, Multicriteria Optimization, Second. Berlin Heidelberg: Springer-Verlag, 2005. Accessed:
Dec. 09, 2018. [Online]. Available: //www.springer.com/gp/book/9783540213987

[252] R. Yus, G. Bouloukakis, S. Mehrotra, and N. Venkatasubramanian, ‘The semiotic ecosystem: A semantic
bridge between IoT devices and smart spaces’, ACM Transactions on Internet Technology (TOIT), vol. 22, no.
3, pp. 1–33, 2022.

[253] S. Veloudis et al., ‘Achieving security-by-design through ontology-driven attribute-based access control in
cloud environments’, Future Generation Computer Systems, vol. 93, pp. 373–391, 2019.

